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Abstract

We present a general rule induction algorithm based on sequential covering, suitable for variable
consistency rough set approaches. This algorithm, called VC-DomLEM, can be used for both
ordered and non-ordered data. In the case of ordered data, the rough set model employs dominance
relation, and in the case of non-ordered data, it employs indiscernibility relation. VC-DomLEM
generates a minimal set of decision rules. These rules are characterized by a satisfactory value
of the chosen consistency measure. We analyze properties of induced decision rules, and discuss
conditions of correct rule induction. Moreover, we show how to improve rule induction efficiency
due to application of consistency measures with desirable monotonicity properties.

Keywords: Rough Set, Dominance-based Rough Set Approach, Monotonicity, Variable
Consistency, Decision Rule, Sequential Covering

1. Introduction

Rough set approach to reasoning about data consists of the following steps. In the first step,
the data are checked for possible inconsistencies, by calculation of lower and upper approximations
of considered sets of objects. In case of the original Rough Set Approach proposed by Pawlak
[43, 44, 45, 47], the approximated sets are decision classes. Since this approach assumes that the
data are non-ordered, and thus employs indiscernibility relation, we call it Indiscernibility-based
Rough Set Approach (IRSA). In the Dominance-based Rough Set Approach (DRSA) proposed by
Greco et al. [17, 22, 23, 26, 58], where data are ordered and it is assumed that there exists a mono-
tonic relationship between evaluations of objects and their assignment to ordered decision classes,
one approximates upward and downward unions of decision classes. The classification problem
handled by IRSA is called a non-ordinal classification, while the classification problem handled by
DRSA is called an ordinal classification with monotonicity constraints. In both approaches, the ap-
proximations are built using granules of knowledge, which are either indiscernibility classes (IRSA)
or dominance cones (DRSA). In IRSA and DRSA, the lower approximation of a set is defined
using a strict inclusion relation of the granules of knowledge in the approximated set. The lower
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approximation is thus composed only of the granules that are subsets of the approximated set. This
definition of the lower approximation appears to be too restrictive in practical applications. In con-
sequence, lower approximations of sets are often empty, preventing generalization of data in terms
of sufficiently certain rules. This observation has motivated research on probabilistic generalizations
of rough sets. Different versions of probabilistic rough set approaches were proposed, starting from
Variable Precision Rough Set (VPRS) model [56, 64, 65], Variable Consistency Dominance-based
Rough Set Approaches (VC-DRSA) [7, 24], Bayesian Rough Set (BRS) model and Rough Bayesian
(RB) model [54, 56], Decision Theoretic Rough Set model [29, 62, 63] and Parameterized Rough
Sets (PRS) [28, 30]. The probabilistic rough set approaches allow to extend lower approximation
of a set by objects with sufficient evidence for membership to the set. In this paper, we rely on
the Variable Consistency Indiscernibility-based Rough Set Approaches (VC-IRSA) and Variable
Consistency Dominance-based Rough Set Approaches proposed in [8, 9]. The former approaches
extend IRSA, while the latter are extensions of DRSA. We use different object consistency measures
to quantify the evidence for membership to a set. They measure the overlap between a granule of
knowledge based on an object and the approximated set or its complement.

In the second step, decision rules are generated in order to generalize description of objects
contained in approximations. Objects from lower approximations of sets are the basis for induction
of certain rules, objects from upper approximations of sets are used to obtain possible rules, and
objects from boundaries of sets are used to generate approximate rules. In this paper, we present
an algorithm for induction of a minimal set of minimal decision rules, based on sequential covering.
This algorithm, called VC-DomLEM, generalizes the description of objects contained in probabilis-
tic lower approximations defined according to VC-IRSA or VC-DRSA. When applied to the set of
probabilistic lower approximations, it induces a set of probabilistic rules. Each such rule is sup-
ported by objects from a lower approximation and is allowed to cover objects from the respective
positive region. To control the quality of the rules, we use three different rule consistency mea-
sures – �-consistency, �′-consistency, and �-consistency. These measures have the same properties
as corresponding object consistency measures used to calculate probabilistic lower approximations.

The overall goal of using VC-DomLEM is to find a minimal set of rules with required quality
which cover probabilistic lower approximations and show a high predictive accuracy. In general,
induction of decision rules is a complex problem and many algorithms have been introduced to
solve it. Examples of rule induction algorithms that were presented for IRSA are the algorithms:
by Grzymała-Busse [33], by Skowron [59], by Słowiński and Stefanowski [57], and by Stefanowski
[60]. Algorithms defined for DRSA have been proposed: by Greco et al. [25], by Błaszczyński
and Słowiński [6] and by Dembczyński et al. [15]. All these algorithms can be divided into three
categories that reflect different induction strategies: generation of a minimal set of decision rules,
generation of an exhaustive set of decision rules, and generation of a satisfactory set of decision
rules. Algorithms from the first category focus on describing objects from lower approximations by
minimal number of minimal rules that are necessary to cover all consistent objects from the decision
table. Algorithms from the second category generate all minimal decision rules. The third category
includes algorithms that generate all minimal rules that satisfy some a priori defined requirements
(e.g., maximal rule length or minimal support). According to this classification, VC-DomLEM
belongs to the first category.

Decision rules are considered to be a data model. Thus, in the case of classification problems
addressed by IRSA, and in the case of ordinal classification problems with monotonicity constraints
addressed by DRSA, they do not only describe the data, but they also can be used for prediction.
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Classification of (new) objects by the induced decision rules is the third step of the rough set
approach. In this step, recommendations of decision rules for classified objects are aggregated using
classification strategies [5, 26, 27].

This paper is organized as follows. In Section 2, we remind basic definitions of the original
Indiscernibility-based Rough Set Approach and the Dominance-based Rough Set Approach. We
define desirable monotonicity properties of object consistency measures that are used in Variable
Consistency Rough Set Approaches. We present a generic definition of probabilistic lower approxi-
mation, followed by definitions of positive, negative and boundary regions of approximated sets of
objects. In Section 3, we define syntax and semantics of decision rules. Section 4 introduces the
properties of induced decision rules. In Section 5, we present VC-DomLEM, which is an algorithm
that induces decision rules by sequential covering [11, 36, 42], also called separate and conquer
[20, 39, 48]. In Section 6, we describe the setup of a computational experiment, performed to
analyze the behavior of VC-DomLEM algorithm for different rule consistency measures. Section 7
contains the results of this experiment. In the last Section 8, we give final remarks and conclude
the paper.

2. Rough set approximations and respective regions of evaluation space

In the rough set approach, decision about classification of object y from universe U to a given set
X ⊆ U is based on available data. The data are presented as a decision table, where rows correspond
to objects from U and columns correspond to attributes from a finite set A. The attributes from
set A are divided into disjoint sets of condition attributes C and decision attributes D. The value
set of attribute qi ∈ C ∪D, i ∈ {1, 2, . . . , ∣C ∪D∣}, is denoted by Vqi , and VP =

∏
i:qi∈P

Vqi is called

P -evaluation space, where P ⊆ C. For simplicity, we assume set D to be a singleton D = {d}.
In this paper, we are considering a given subset P ⊆ C of attributes. To simplify the notation,

in the following, we will skip P in all expressions valid for any P ⊆ C, unless this may cause
misunderstanding.

Values of some condition attributes are supposed to be monotonically dependent on the values
of the decision attribute. This means, that, according to some domain knowledge, value sets of
these condition attributes, as well as of the decision attribute, are ordered. Moreover, there exists a
monotonic relationship between these attributes, e.g., “the higher the value on condition attribute qi,
the higher the value on decision attribute d”. The orders and this kind of monotonic relationship are
typical to Multiple Criteria Decision Aiding (MCDA) problems. In MCDA, the order of value sets
of the attributes is imposed by preferences of the Decision Maker, and such attributes are called
criteria. For example, in a multiple criteria classification of service providers, when considering
such criteria as “price” and “quality”, and decision attribute “customer’s satisfaction”, the value
sets of these attributes are naturally ordered by preference and, moreover, there exists a monotonic
relationship between them: “the lower the price and the higher the quality, the higher the customer’s
satisfaction”. The order of value sets of the attributes, and the monotonic relationship between them
can have, however, a more general meaning, not related to preferences, e.g., in physics, the condition
attributes “mass” and “distance”, and the decision attribute “gravity”, have ordered value sets and,
moreover, they are monotonically dependent according to the Newton’s law of universal gravitation:
“the higher the mass and the lower the distance, the higher the gravity”. In this paper, we refer
to attributes as criteria if their value sets are ordered and monotonically related with the value set
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of d, independently whether the meaning of the order is preferential or not. The other attributes
are called regular ones.

Decision attribute d makes a partition of set U into a finite number of disjoint sets of objects,
called decision classes. Let X ⊆ U be one of these decision classes. Decision about classification
of object y ∈ U to set X depends on its class label known from the decision table, and/or on its
relation with other objects from the table. In IRSA, the considered relation is the indiscernibility
relation in the evaluation space [43, 44, 45, 47]. Consideration of this relation is meaningful when set
of attributes A is composed of regular attributes only. Indiscernibility relation makes a partition
of universe U into disjoint blocks of objects that have the same description and are considered
indiscernible. Such blocks are called granules. A granule of objects indiscernible with object y will
be denoted by I(y).

When some condition attributes from C and decision attribute d have preference-ordered and
monotonically related value sets, in order to make meaningful classification decisions, one has to
consider the dominance relation instead of the indiscernibility relation in the evaluation space. It
has been proposed in [17, 22, 23, 26, 58] and the resulting approach was called Dominance-based
Rough Set Approach (DRSA). Dominance relation defines dominance cones in the evaluation space.
For each object y ∈ U two dominance cones are defined with respect to (w.r.t.) P ⊆ C. The positive
dominance cone D+(y) is composed of all objects that for each qi ∈ P are not worse than y. The
negative dominance cone D−(y) is composed of all objects that for each qi ∈ P are not better than
y. The set of objects included in cones D+(y) or D−(y) is a counterpart of granule I(y) in IRSA.

We consider a classification problem with n disjoint classes numbered by decision attribute d.
While in IRSA, decision classes Xi, i = 1, . . . , n, are not necessarily ordered, in DRSA, they are
ordered, such that if i < j, then classXi is considered to be worse thanXj . In IRSA, the assignment
of objects to decision classes is supposed to respect the indiscernibility principle which says that
objects indiscernible w.r.t. considered set of condition attributes should belong to the same class.
Violation of this principle causes inconsistency w.r.t. indiscernibility which is captured by rough
approximations of decision classes.

DRSA takes into account monotonic relationship between evaluations of objects on particular
criteria and assignment of these objects to decision classes. For example, the better the value of
criterion qi ∈ C for object y, the better the decision class it may belong to. This relationship is cap-
tured by the dominance principle which says that if evaluations of object y on all considered criteria
are not worse than evaluations of object z, then y should be assigned to a class not worse than that
of z. Violation of this principle causes inconsistency w.r.t. dominance which is captured by rough
approximations of sets based on dominance. In order to handle preference orders, and monotonic
relationships between evaluations on criteria and assignment to decision classes, approximations
made in DRSA concern the following unions of decision classes: upward unions X≥i =

∪
t≥iXt,

where i = 2, 3, . . . , n, and downward unions X≤i =
∪

t≤iXt, where i = 1, 2, . . . , n− 1.
In order to avoid repetition of the same definitions and properties for IRSA and DRSA, from

now on we will use a unique symbol X to denote a set of all objects belonging to class Xi, in the
context of IRSA, or to union of classes X≥i , X≤i , in the context of DRSA. Moreover, we will use
symbol E(y) to denote any granule of the type I(y), D+(y) or D−(y), y ∈ U . If both X and E(y)
are used in the same equation, then for X representing class Xi, E(y) denotes granule I(y), and for
X representing union of ordered classes X≥i (resp. X≤i ), E(y) stands for dominance cone D+(y)
(resp. D−(y)).

As written above, different probabilistic rough set approaches aim to extend lower approximation
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of set X by inclusion of objects with sufficient evidence for membership to X. This evidence can be
quantified by different object consistency measures defined as function ΘX : U → ℝ+ ∪ {0}. In [9],
we distinguished gain-type and cost-type object consistency measures and we specified conditions
that must be satisfied by these measures. For a gain-type measure, the higher the value, the more
consistent the given object is. For a cost-type measure, the lower the value, the more consistent
the given object is.

Let us give a generic definition of probabilistic lower approximation of set X. For X ⊆ U , y ∈ U ,
given a gain-type (resp. cost-type) object consistency measure ΘX , and a fixed gain-threshold (resp.
cost-threshold) �X , we get the following definition of the lower approximation of set X:

X = {y ∈ X : ΘX(y) ∝ �X}, (1)

where ∝ denotes ≥ in case of a gain-type object consistency measure and a gain-threshold, or ≤ for
a cost-type object consistency measure and a cost-threshold. In the above definition, �X ∈ [0, AX ]
is a technical parameter influencing the degree of consistency of objects belonging to the lower
approximation of X. Values of �X and AX depend on the interpretation of the object consistency
measure.

The definition of upper approximation and the definition of boundary of set X, both making
use of the complementarity property of rough approximations, are given in [9].

In [9], we introduced and motivated four desirable monotonicity properties of object consistency
measures used in definition (1). For IRSA and DRSA, we are interested in the following two
properties:

(m1) Monotonicity w.r.t. set of attributes P ⊆ C. Formally, for all P ⊆ P ′ ⊆ C, X ⊆ U , y ∈ U , a
gain-type measure ΘP

X is monotonically non-decreasing w.r.t. P , if and only if (iff)

ΘP
X(y) ≤ ΘP ′

X (y), (2)

and a cost-type measure ΘP
X is monotonically non-increasing w.r.t. P , iff

ΘP
X(y) ≥ ΘP ′

X (y). (3)

(m2) Monotonicity w.r.t. set of objectsX ⊆ U , when setX is augmented by new objects. Formally,
for all X ⊆ U , X ′ = X ∪XΔ, XΔ ∩U = ∅, y ∈ U , a gain-type measure ΘX is monotonically
non-decreasing w.r.t. X, iff

ΘX(y) ≤ ΘX′(y), (4)

and a cost-type measure ΘX is monotonically non-increasing w.r.t. X, iff

ΘX(y) ≥ ΘX′(y). (5)

Moreover, for DRSA additional desirable properties are:

(m3) Monotonicity w.r.t. union of classes X≥i ⊆ U and X≤k ⊆ U . Formally, for all X≥i ⊆ X
≥
j ⊆ U ,

j ≤ i, X≤k ⊆ X≤l ⊆ U , l ≥ k, y ∈ U , gain-type measures Θ
X≥i

and Θ
X≤k

are monotonically

non-decreasing w.r.t. X≥i and X≤k , respectively, iff

Θ
X≥i

(y) ≤ Θ
X≥j

(y), Θ
X≤k

(y) ≤ Θ
X≤l

(y). (6)
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Analogously, a cost-type measures Θ
X≥i

and Θ
X≤k

are monotonically non-increasing w.r.t. X≥i
and X≤k , respectively, iff

Θ
X≥i

(y) ≥ Θ
X≥j

(y), Θ
X≤k

(y) ≥ Θ
X≤l

(y). (7)

(m4) Monotonicity w.r.t. dominance relation D. Formally, for X≥i , X
≤
i ⊆ U , y ∈ U , and ∗ standing

for either ≥ or ≤ in every instance, a gain-type measure ΘX∗i
is monotonically non-decreasing

w.r.t. dominance relation, iff

∀y1, y2 ∈ U : y1Dy2 ⇒ ΘX∗i
(y1) ≥ ΘX∗i

(y2), (8)

and a cost-type measure ΘX∗i
is monotonically non-increasing w.r.t. dominance relation, iff

∀y1, y2 ∈ U : y1Dy2 ⇒ ΘX∗i
(y1) ≤ ΘX∗i

(y2). (9)

Let us now remind some useful definitions of positive, negative and boundary regions of X
in the evaluation space, introduced in [7]. First, let us note that each set X has its complement
¬X = U −X. Positive region of X in the evaluation space is defined as:

POS(X) =
∪
y∈X

E(y). (10)

Basing on the definition of the positive region of set X, we also define negative and boundary
regions of the approximated set as follows:

NEG(X) = POS(¬X)− POS(X), (11)
BND(X) = (U − POS(X))−NEG(X). (12)

Finally, let us recall definitions and monotonicity properties of object consistency measures,
which will be used in definition (1).

The first object consistency measure that we consider is a cost-type measure �X . ForX,¬X ⊆ U ,
where ¬X = U −X, y ∈ U , it is defined as

�X(y) =
∣E(y) ∩ ¬X∣
∣¬X∣

. (13)

As proved in [9], this measure has properties (m1), (m2) and (m4). To overcome a lack of property
(m3) for �X in the context of DRSA, we proposed a modified measure �∗X , which has all four
desirable monotonicity properties. For X≥i , X

≤
i ⊆ U , y ∈ U , measures �∗

X≥i
and �∗

X≤i
are defined as

�∗
X≥i

(y) = max
j≤i

�
X≥j

(y), (14)

�∗
X≤i

(y) = max
j≥i

�
X≤j

(y). (15)

The third object consistency measure is a cost-type measure �′X . For X,¬X ⊆ U , where
¬X = U −X, y ∈ U , it is defined as

�′X(y) =
∣E(y) ∩ ¬X∣
∣X∣

. (16)
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As proved in [9], this measure has all four desirable monotonicity properties.
The fourth object consistency measure is a gain-type rough membership measure �X [46]. For

X ⊆ U , y ∈ U , it is defined as

�X(y) =
∣E(y) ∩X∣
∣E(y)∣

. (17)

As it was proved in [9], rough membership measure �X has properties (m2) and (m3), but it lacks
properties (m1) and (m4).

The fifth object consistency measure, defined only in the context of DRSA, is a gain-type
measure �′X introduced in [7]. For X≥i , X

≤
i ⊆ U , y ∈ U , measures �′

X≥i
and �′

X≤i
are defined as

�′
X≥i

(y) = max
z∈D−(y)∩X≥i

�
X≥i

(z), (18)

�′
X≤i

(y) = max
z∈D+(y)∩X≤i

�
X≤i

(z). (19)

In [7] we showed that measure �′X , extending rough membership measure �X , has properties (m2),
(m3), and (m4). It lacks, however, property (m1).

3. Syntax and semantics of decision rules

In the variable consistency rough set approaches, we consider decision rules of the type:

if Φ then Ψ,

where Φ and Ψ denote condition and decision part of the rule, called also premise and conclusion,
respectively. The condition part of the rule is a conjunction of elementary conditions concerning
individual attributes/criteria, and the decision part of the rule suggests an assignment to a decision
class or to a union of decision classes. A precise syntax of decision rules is given below. Decision
rules are induced so as to cover objects from probabilistic lower approximations (1) of sets being
classes or unions of decision classes. However, in some cases it is impossible for a rule to cover only
objects from a probabilistic lower approximation. To handle these cases, the positive region of the
considered set is computed according to (10).

Set X of objects belonging to the lower approximation of X is the basis for induction of a set
of decision rules that suggest assignment to X. A rule from this set is supported by at least one
object from X, and it covers object(s) from POS(X). The elementary conditions (selectors) that
form this rule are built using evaluations of objects belonging to X only.

Below, we define the syntax of a decision rule for the non-ordinal classification problem, handled
by VC-IRSA:

if qi1(y) = ti1 ∧ . . . ∧ qiz(y) = tiz then y ∈ Xi, (20)

where qi1 , . . . , qiz denote regular attributes, and tij denotes a value taken from the value set of
attribute qij , ij ∈ {i1, . . . , iz} ⊆ {1, . . . , ∣C∣}.
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For the ordinal classification problem with monotonicity constraints, handled by VC-DRSA, the
syntax of a decision rule is the following:

if qi1(y) ર ti1 ∧ . . . ∧ qip(y) ર tip ∧ qip+1(y) = tip+1 ∧ . . . ∧ qiz(y) = tiz

then y ∈ X≥i , (21)
if qi1(y) ⪯ ti1 ∧ . . . ∧ qip(y) ⪯ tip ∧ qip+1(y) = tip+1 ∧ . . . ∧ qiz(y) = tiz

then y ∈ X≤i , (22)

where qi1 , . . . , qip denote criteria, and qip+1 , . . . , qiz denote regular attributes; moreover, tij denotes
a value taken from the value set of attribute qij , ij ∈ {i1, . . . , iz} ⊆ {1, . . . , ∣C∣}. We use symbols ર
and ⪯ to indicate weak preference and inverse weak preference w.r.t. single criterion, respectively.
If qij ∈ C is a gain (cost) criterion, then elementary condition qij (y) ર tij means that the evaluation
of object y ∈ U on criterion qij is not worse than tij , ij ∈ {i1, . . . , ip}. Elementary conditions for
regular attributes are of the type qij (y) = tij , ij ∈ {ip+1, . . . , iz}.

4. Characteristics and properties of decision rules

Decision rules should be short and accurate. Shorter decision rules are easier to understand.
Shorter rules also allow to avoid overfitting the training data. Overfitting occurs when the learned
model fits training data perfectly but it is not performing well on new data. Rules induced in
variable consistency rough set approaches avoid overfitting because they are not required to classify
training data perfectly. Such a relaxation is typical for other machine learning rule induction
algorithms [11, 12, 13, 37, 61]. This relaxation allows to induce more general rules with less
elementary conditions. A similar consideration is also present in [55, 56]. The difference to other
rule induction algorithms proposed in machine learning is that in case of the algorithms defined
within variable consistency rough set approaches, it is known a priori which objects in the data set
can be classified incorrectly, i.e., which objects from the positive region of X do not belong to the
lower approximation of X. Relaxation of the requirement to cover only consistent objects involves
a trade-off between accuracy and simplicity [37].

Decision rules can be characterized by many attractiveness measures (see [32] for a study of
some properties of these measures).

A decision rule that suggests assignment to set X is denoted by rX . Condition part of rule rX
is denoted by Φ(rX), while its decision part is denoted by Ψ(rX). Moreover, we denote by ∥Φ(rX)∥
the set of objects fulfilling condition part of the rule.

In variable consistency rough set approaches, a rule consistency measure is defined as function
Θ̂X : RX → ℝ+ ∪ {0}, where RX is a set of rules suggesting assignment to X. We consider the
following three rule consistency measures:

�-consistency of rX : �̂X(rX) =

∣∣∥Φ(rX)∥ ∩ ¬X
∣∣

∣¬X∣
, (23)

�′-consistency of rX : �̂′X(rX) =

∣∣∥Φ(rX)∥ ∩ ¬X
∣∣

∣X∣
, (24)

�-consistency of rX : �̂X(rX) =

∣∣∥Φ(rX)∥ ∩X
∣∣∣∣∥Φ(rX)∥

∣∣ . (25)
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Induced rules must satisfy similar constraints on consistency as objects from the lower approxima-
tion which serve as a base for rule induction. In particular, each rule is required to satisfy threshold
�̂X defined w.r.t. a given rule consistency measure Θ̂X . Such a threshold can be calculated as
follows: �̂X = ∣¬X∣

∣¬X∣�X in case of definition (23), �̂X = ∣X∣
∣X∣�X in case of definition (24), and �̂X = �X

in case of definition (25). �-consistency measure is related to cost-type object consistency measure
�X defined as (13). �′-consistency measure is related to cost-type object consistency measure �′X
defined as (16). �-consistency measure is related to gain-type rough membership measure �X de-
fined as (17). It can be shown that each of the defined above rule consistency measures derives
monotonicity properties from the corresponding object consistency measure.

As it will be shown in Section 5, �-consistency measure can be used to induce decision rules from
positive regions computed using object consistency measure �∗X . As it will be also shown in Section
5, it is possible, with some additional steps, to induce rules satisfying constraints on �-consistency
from positive regions computed using object consistency measure �′X . It should be noticed that
there is a difference in the definitions of �-consistency, �′-consistency and �-consistency, comparing
to the corresponding definitions of object consistency measures �X , �′X and �X . In the definitions of
rule consistency measures, X is used instead of X. In this way, the covered objects from X that do
not belong to POS(X) worsen the value of considered rule consistency measure. This is especially
important when such objects belong to NEG(X).

Now, let us introduce several concepts characteristic for machine learning and decision support
approaches that apply a set of (decision) rules as a data model. We will also show how some of these
concepts are adapted in rough set approaches, when one takes into account rough approximations
of considered sets of objects.

A decision rule suggesting assignment to set X is discriminant if it covers only objects belonging
to X. In IRSA and DRSA, a certain decision rule is discriminant if it covers only objects from X.
Moreover, in variable consistency rough set approaches considered in this paper, a probabilistic rule
is discriminant if it covers only objects belonging to positive region POS(X). Rule is minimal if
removing any of its elementary conditions causes that it is no more discriminant. We consider also
minimality of a rule in the context of all rules from given set R. In this context, a rule is minimal
if there is no other rule with not less general conditions and not less specific decision. Using the
notation introduced in Section 4, rX is minimal if there does not exist other rule rY ∈ R, Y ⊆ U ,
such that ∥Φ(rY )∥ ⊇ ∥Φ(rX)∥ and Y ⊆ X. Set of rules suggesting assignment to X is complete
iff each object y ∈ X is covered by at least one rule from this set. In the rough set approaches,
however, we consider completeness of the set of rules from the view point of lower and/or upper
approximation of X. In particular, in VC-IRSA and VC-DRSA, set of rules RX is complete iff each
object y ∈ X is covered by at least one rule rX ∈ RX . Finally, rule rX belonging to the set of
rules suggesting assignment to X is non-redundant, if removing rX causes that this set ceases to be
complete.

According to the rule induction strategy used in AQ [40, 41], as well as in FOIL [50, 52], each
induced rule should be minimal and discriminant, and the resulting set of rules should be complete.
These requirements are satisfied by most of decision rule induction algorithms proposed for rough
set approaches, e.g., LEM2, DomLEM [25, 33, 34, 35, 60]. The requirement of completeness is,
however, softened in case of pruned sets of rules induced by IREP [21], RIPPER [13] or SLIPPER
[14]. In other cases, like Lightweight Rule Induction (LRI) [61], a given number of rules is induced
for each set X which also leads to softening the requirement of completeness. This is also true for
statistical approach to rule learning [53], where it is assumed that the number of induced rules is
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parameterized. Moreover, the requirement to use discriminant rules is usually softened in a voting
setting. In this setting, a set of rules is typically seen as an ensemble of rules, i.e., one assigns a
weight to each rule and uses a voting scheme for prediction. This is the case, e.g., for SLIPPER,
LRI and a statistical approach to rule learning [53].

Rule induction methods that do not require discrimination of rules and/or completeness of the
set of rules proved to be successful in classification. Thus, these features do not seem to be necessary
to build an accurate classifier. On the other hand, classifiers that skip these requirements are less
useful when it comes to comprehensibility or transparency of their responses. Inclination towards
“glass-box” methods, as opposed to “black-box” approaches, is frequently postulated by researchers
in many fields of artificial intelligence [18, 19, 31]. Not only a precise response of a classifier but
also interpretable justification of presented suggestion is considered to be important.

5. Induction of decision rules by sequential covering in VC-DomLEM

So far, we have given the description of decision rules together with their characteristics and
properties. The remaining task is to describe the algorithm for inducing rules. The proposed
algorithm, called VC-DomLEM, induces probabilistic rules for non-ordinal classification problems
handled by VC-IRSA and ordinal classification problems with monotonicity constraints handled by
VC-DRSA. It is general enough to be adapted for induction of certain, possible and approximate
rules in IRSA, as well as certain and possible rules in DRSA. This algorithm heuristically searches
for rules that satisfy given threshold value of one of rule consistency measures (23), (24) or (25).
The applied heuristic strategy is called sequential covering [11, 36, 42] or separate and conquer
[20, 39, 48]. It constructs a rule that covers a subset of training objects, removes the covered
objects from the training set and iteratively learns another rule that covers some of the remaining
objects, until no uncovered objects remain. This strategy has been previously applied in AQ family
of algorithms, CN2, LEM, IREP, RIPPER and DomLEM.

VC-DomLEM induces a minimal set R of minimal decision rules. This algorithm is composed of
two parts. The first part is presented as Algorithm 1, while the second one is presented as Algorithm
2. In the following, we describe both parts, referring to numbered lines of the algorithms.

In Algorithm 1, sets X ∈ X are considered one by one. For each X, complete set RX of
non-redundant rules is induced by the V C-SequentialCoveringmix method (line 4), presented as
Algorithm 2. Each rule rX ∈ RX uses elementary conditions constructed for objects from X, on
attributes from set P ⊆ C. Value of chosen measure Θ̂X , defined by (23), (24) or (25), has to be
not worse than given threshold value �̂X . Moreover, rX is allowed to cover only objects from set
AO(X), calculated according to chosen option s ∈ {1, 2, 3} (line 3). We consider three reasonable
options: (1) AO(X) = POS(X), (2) AO(X) = POS(X)∪BND(X), and (3) AO(X) = U . Option
(1) implies induction of rules covering the positive region only. Option (3) implies induction of
rules that may cover any object in the data set. Such rules, in general, may be composed of
fewer elementary conditions than those induced according to option (1). Option (2) is intermediate
between option (1) and option (3) – it does not allow rules to cover objects from the negative region.
Set of rules RX is added to set R in line 5. Minimality of set R is checked after each addition in
line 6. In fact, minimality check is necessary only for VC-DRSA, where unions of ordered classes
can overlap. Moreover, this step can be simplified if in line 2 upward or downward unions are
considered from the most specific (i.e., containing the smallest number of objects) to the most
general (i.e., containing the largest number of objects). In such a case, only rules from set RX can
be non-minimal.
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Algorithm 1: V C-DomLEM
Input : set X of classes Xi ∈ U , upward unions of classes X≥i ∈ U , or downward unions of

classes X≤i ∈ U ,
rule consistency measure Θ̂X ,
set {�̂X : X ∈ X} of rule consistency measure thresholds,
object covering option s.

Output: set of rules R.
R := ∅;1

foreach X ∈ X do2

AO(X) := AllowedObjects(X, s);3

RX := V C-SequentialCoveringmix(X,AO(X), Θ̂X , �̂X);4

R := R ∪RX ;5

RemoveNonMinimalRules(R);6

end7

In Algorithm 2, rules for a given set X are induced by V C-SequentialCoveringmix method.
These rules consist of elementary conditions that are constructed using evaluations of objects from
X (line 5). The word mix in the name of the algorithm is used to indicate that each elementary
condition can be constructed using evaluations of different positive objects (i.e., objects from set
X). For regular attributes, elementary conditions involve relation =. In case of criteria, elementary
conditions involve relation ર or ⪯, for an upward or downward union of classes, respectively. The
induction of rules is carried out as long as there are still some positive objects to be covered,
i.e., there are uncovered objects from X that can be used to construct elementary conditions (line
3). Each rule is constructed in a greedy search by adding new elementary conditions as long as
consistency threshold �̂X is not satisfied by the chosen rule consistency measure Θ̂X , or rule rX
covers objects not belonging to set AO(X) (line 6). The elementary condition added to rule rX in
line 8 is a new condition from set EC (i.e., condition that is not already present in the constructed
rule) that is evaluated as the best in line 7. In order to evaluate elementary condition ec ∈ EC,
the following two quality measures are used:

(1) one of rule consistency measures (23), (24) or (25) of rule rX ∪ ec,

(2)
∣∣∥Φ(rX ∪ ec)∥ ∩X

∣∣,
where rX ∪ ec denotes a rule resulting from extension of rule rX by new elementary condition ec.

The best elementary condition according to (1) is selected. In case of a tie between compared
elementary conditions, the best one according to (2) is chosen. If this is not sufficient to determine
the best condition, the order in which elementary conditions are checked decides. It is worth noting
that in VC-DRSA, it is possible to add a new elementary condition on a criterion which is already
present in the rule. When such a new elementary condition is added, previous elementary condition
on that criterion becomes redundant and is removed in line 11. This allows to start with a rule as
general as possible, and then specialize it to meet constraint on rule consistency measure checked
in line 6. After elementary condition is added to the rule (line 8), the set of candidate elementary
conditions EC is updated (line 9). All elementary conditions that come from objects that are not
covered by the constructed rule are removed from EC. In this way, the search for new elementary
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conditions is narrowed to only these conditions that can be constructed from objects in ∥Φ(rX)∥.
This also causes that addition of a new elementary condition on a criterion already present in the
rule can only result in a more specific rule (i.e., a rule that covers a subset of objects covered so
far).

After the constructed rule satisfies necessary constraints from line 6, elementary conditions that
became redundant are removed from that rule (line 11). This can be done in different ways (e.g.,
elementary conditions can be considered from the oldest to the newest ones). However, it needs to
be assured that after this step the rule still satisfies constraints from line 6. Next, the rule is added
to the set of rules induced so far (line 12). Objects that are covered by that rule are removed from
set B, which is the base for building candidate elementary conditions (line 13).

Constructed set of rules RX is checked for redundancy in line 15. The rules considered as
redundant are removed. They are removed in an iterative procedure which consists of three steps.
First, each rule that can be removed is put on a list. If the list is non-empty, then one of the rules can
be removed without loosing completeness of RX . Otherwise, the checking is stopped. Second, one
rule rX is selected from the list according to the following measures considered lexicographically:

(1) the worst (i.e., the smallest) value of
∣∣∥Φ(rX)∥ ∩X

∣∣,
(2) the worst value of Θ̂X(rX),

(3) the smallest index of rX on the constructed list of rules.

Third, the selected rule is removed from set RX .

Algorithm 2: V C-SequentialCoveringmix

Input : set X ⊆ U of positive objects,
set AO(X) ⊇ X of objects that can be covered,
rule consistency measure Θ̂X ,
rule consistency measure threshold �̂X .

Output: set RX of rules suggesting assignment to X.
B := X;1

RX := ∅;2

while B ∕= ∅ do3

rX := ∅;4

EC := ElementaryConditions(B);5

while (Θ̂X(rX) does not satisfy �̂X) or (∥Φ(rX)∥ ⊈ AO(X)) do6

ec := BestElementaryCondition(EC, rX , Θ̂X , X);7

rX := rX ∪ ec;8

EC := ElementaryConditions(B ∩ ∥Φ(rX)∥);9

end10

RemoveRedundantElementaryConditions(rX , Θ̂X , �̂X , AO(X));11

RX := RX ∪ rX ;12

B := B ∖ ∥Φ(rX)∥;13

end14

RemoveRedundantRules(RX , Θ̂X , X);15
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5.1. Induction of rules satisfying �-consistency and �′-consistency condition
Monotonicity properties of rule consistency measures: �-consistency (23) and �′-consistency

(24), allow to increase efficiency of rule induction in V C-SequentialCoveringmix algorithm. These
properties are derived from corresponding object consistency measures �X (13) and �′X (16).

There are two scenarios defined for V C-SequentialCoveringmix algorithm:

(�) application of �-consistency measure in order to induce rules covering objects from X calcu-
lated using �X or �∗X object consistency measure,

(�) application of �′-consistency measure in order to induce rules covering objects from X calcu-
lated using �′X object consistency measure.

Moreover,

() elementary condition ec is selected according to the following two measures considered lexi-
cographically:

(1) the best (i.e., the smallest) value of rule consistency measure Θ̂X for rule rX ∪ ec, where
Θ̂X is �-consistency in scenario (�), or �′-consistency in scenario (�),

(2) the best (i.e., the greatest) value of
∣∣∥Φ(rX ∪ ec)∥ ∩X

∣∣.
Theorem 1. For V C-SequentialCoveringmix, in scenario (�) or (�), and subject to (), sequen-
tial addition of the best elementary condition always leads to decision rule rX that has value of the
chosen rule consistency measure Θ̂X not worse than threshold �̂X , where �̂X = ∣¬X∣

∣¬X∣�X in scenario

(�) or �̂X = ∣X∣
∣X∣�X in scenario (�).

Proof. Let us assume that constructed rule rX does not satisfy yet the constraint on rule consis-
tency measure from line 6 of Algorithm 2. Elementary conditions from set EC are constructed, in
line 9, using evaluations of objects that belong to the set of positive objects B and that are covered
by rX . Thus, in the worst case, this method induces rX that is composed of elementary conditions
that use all evaluations of some object y belonging to B. This results in rX that corresponds to
E(y). Since y belongs to X, y has value of ΘX not worse than threshold �X . This implies that rule
rX has value of Θ̂X not worse than �̂X . □

As it was proved in [9], both �X and �′X have property (m1). This property is also satisfied
by related rule consistency measures �-consistency and �′-consistency. When combined with the
greedy nature of the presented algorithm, it allows to consider for addition to constructed rule rX
only new elementary conditions involving attributes that are not already present in the rule. A new
elementary condition involving criterion already present in the rule decreases the quality of that
rule, measured by its consistency and the number of covered objects from the probabilistic lower
approximation of X, as shown by the following theorem.

Theorem 2. For V C-SequentialCoveringmix, in scenario (�) or (�), and subject to (), addition
of a new (more specific) elementary condition on some criterion that is already present in constructed
rule rX does not change the value of rule consistency measure while it decreases support of that rule.

13



Proof. Let us assume that constructed rule rX does not satisfy yet the constraint on rule con-
sistency measure from line 6 of Algorithm 2. Moreover, let us assume that it is composed of
elementary conditions involving attributes from set R, R ⊂ P ⊆ C, R ∕= ∅. At each step, best
elementary condition ec was selected to extend the rule so that the resulting rule covered the lowest
number of objects not belonging to X (i.e., value of �-consistency or �′-consistency measure of the
resulting rule was minimized) and, in case of a tie between considered elementary conditions, the
highest number of objects from X. For criterion qi ∈ R, next (more specific) elementary condi-
tion involving this criterion has to decrease the support of the constructed rule. In order to prove
that the new elementary condition on criterion qi ∈ R cannot change the value of rule consistency
measure, let us denote by ec1 the first elementary condition on the considered criterion, and by
ec2 the new (more specific) elementary condition on that criterion. Let us observe that due to
the greedy nature of the algorithm, at the time when ec1 was chosen, ec2 had to be evaluated as
not better than ec1 according to the value of rule consistency measure. This means that at that
time the difference DF between the set of objects covered by rule rX ∪ ec1 and the set of objects
covered by rule rX ∪ ec2 could not contain any object not belonging to X. According to Algorithm
2, removal of elementary conditions from a rule is not permitted until it satisfies constraints from
line 6. Thus, at any time after the rule has been extended with elementary condition ec1, we have
∥Φ(rX)∥ − ∥Φ(rX ∪ ec2)∥ ⊆ DF . Because DF ∩ ¬X = ∅, value of rule consistency measure is not
altered by addition of ec2. □

Theorem 2 shows that during rule induction by Algorithm 2, elementary conditions involving
criteria that are already present in the rule are redundant from the viewpoint of �-consistency and �′-
consistency measures. Moreover, such elementary conditions decrease the support of the rule. Thus,
we can reduce the number of elementary conditions considered to be added to the constructed rule
to only those that involve attributes which are not already present in the rule. The computational
benefit coming from this reduction is hard to estimate. Anyway, this improvement does not involve
any additional cost (i.e., it does not involve any additional steps to reduce the number of considered
elementary conditions).

Measures �-consistency and �′-consistency both have property (m4). This allows us to further
increase the efficiency of Algorithm 2 in case of VC-DRSA. In line 7, one should consider iteratively
subsequent attributes. If current attribute qi is a criterion, one can skip some of its values, or
possibly even the whole criterion. In order to explain this process, let us assume that qi is a
numerically-coded gain-type criterion and we construct a rule for set X of objects belonging to an
upward union of classes. Moreover, let ecbest denote the best elementary condition found so far,
let �̂bestX denote value Θ̂X(rX ∪ ecbest), and let := denote assignment operator. First, one should
find value qmax

i , which is the maximal value of qi among objects from set B ∩ ∥Φ(rX)∥, and assign
ec := “qi ≥ qmax

i ”. If Θ̂X(rX ∪ ec) is worse than �̂bestX , then one can skip criterion qi. Otherwise,
one proceeds with qi as follows. If Θ̂X(rX ∪ ec) is better than �̂bestX , then ecbest := ec. Second,
one should consider two threshold values of qi: ⌈qi⌉, initialized with qmax

i ; ⌊qi⌋, initialized with
any value smaller than the minimal value in Vqi . Third, one should consider iteratively subsequent
values of criterion qi, for objects in B ∩ ∥Φ(rX)∥ only. If value v ∈ Vqi does not belong to interval
(⌊qi⌋, ⌈qi⌉], then it can be skipped. Otherwise, ec := “qi ≥ v”. If Θ̂X(rX ∪ ec) is worse than �̂bestX ,
then ⌊qi⌋ := v. If Θ̂X(rX ∪ ec) = �̂bestX and

∣∣∥Φ(rX ∪ ec)∥ ∩ X
∣∣ > ∣∣∥Φ(rX ∪ ecbest)∥ ∩ X

∣∣, then
ecbest := ec and ⌈qi⌉ := v.

�-consistency measure can be used to induce decision rules for objects belonging to X≥i (or X≤i )
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calculated with object consistency measure �∗X . From definition (14), �∗
X≥i

(y) ≥ �
X≥i

(y), ∀y ∈ U ,

X≥i ⊆ U . For a fixed �
X≥i

, if some object y ∈ U belongs to X≥i calculated with �∗X , then it also

belongs to X≥i calculated with �X . In other words, for a given object consistency measure threshold
value �

X≥i
, probabilistic lower approximation of union X≥i calculated with measure �X is a superset

of probabilistic lower approximation of union X≥i calculated with measure �∗X . Since it is possible
to cover by rules all objects belonging to the former, it is also possible to cover by rules all objects
belonging to the latter.

�-consistency measure can be also used to induce decision rules for objects belonging to X≥i
(or X≤i ) calculated with object consistency measure �X . Remark that �X does not have property
(m3) and has property (m4). Let us observe that X≥j calculated with �X , for j < i, may not include

object y ∈ Xi : y ∈ X≥i ∧(D−(y)∩X≥j = ∅). In result, such object may not be covered by the decision

rules suggesting assignment to X≥j . However, it must be covered by the decision rules suggesting
assignment to X≥i , which is sufficient for accurate classification by these rules [5]. Analogous
observation is true for objects belonging to X≤i calculated with object consistency measure �X .

5.2. Induction of rules satisfying �-consistency condition
Let us consider VC-IRSA and the following scenario for V C-SequentialCoveringmix algorithm:

(�′) application of �-consistency measure in order to induce rules covering objects from X calcu-
lated using �X object consistency measure.

In order to adjust V C-SequentialCoveringmix algorithm to scenario (�′), we need the following
modification:

(′) elementary condition ec is selected according to the following two measures considered lexi-
cographically:

(1) the best (i.e., the greatest) value of �-consistency measure of rule rX ∪ ec,
(2) the best (i.e., the greatest) value of

∣∣∥Φ(rX ∪ ec)∥ ∩X
∣∣.

Theorem 3. For V C-SequentialCoveringmix method, in scenario (�′), and subject to (′), se-
quential addition of the best elementary condition always leads to decision rule rX that has value of
�-consistency measure not worse than threshold �̂X = �X .

Proof. In VC-IRSA, elementary conditions are of type qij (y) = tij , where tij denotes a value
taken from the value set of attribute qij , ij ∈ {1, . . . , ∣C∣}. These conditions are constructed only
using evaluations of objects belonging to set B ⊆ X (line 5 of Algorithm 2). Moreover, set EC is
kept up-to-date, so it contains only those elementary conditions that come from objects covered by
the constructed rule (line 9 of Algorithm 2). Thus, at any moment during construction of rule rX ,
there exists at least one object y ∈ B which satisfies all elementary conditions of rX . In the worst
case, rule rX may be composed of elementary conditions that use all evaluations of some object
y ∈ B. This results in rX that corresponds to I(y). Since y belongs to X, y has value of ΘX not
worse than threshold �X . This implies that rule rX has value of Θ̂X not worse than �̂X . □
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In the case of VC-DRSA and lower approximations calculated using measure �′X , VC-DomLEM
needs an adaptation to enable induction of rules satisfying a constraint on �-consistency measure.
This adaptation is imposed by a lack of monotonicity property (m4) of �-consistency measure.
Notice that �-consistency measure is also missing property (m1), however, VC-DomLEM deals
already with this problem because it permits to add a new elementary condition on a criterion which
is already present in the constructed rule. If an elementary condition covering too many objects
not belonging to the positive region of X has been selected in some iteration, it can be narrowed
down later to cover less such objects. When used frequently, this option is computationally costly,
however.

Now, let us consider induction of rules, which satisfy constraint on �-consistency measure, from
probabilistic lower approximations calculated using object consistency measure �′X , defined as (18)
or (19). The problem that can be faced by VC-DomLEM during induction of rules is presented in
the following Example 1 and Fig. 1.

Example 1. When applying in equation (1) object consistency measure �′X defined as (18), and
choosing gain-threshold �

X≥2
= 0.75, P = {q1, q2}, we obtain X≥2 = {y1, y2, y3}. One can observe

that objects belonging to union X≥2 are characterized by the following values of rough membership
measure: �

X≥2
(y1) = 0.75, �

X≥2
(y2) = 0.66, �

X≥2
(y3) = 0.5. Objects y2 and y3 belong toX≥2 because

they dominate object y1. Moreover, according to definition (10), POS(X≥2 ) = {y1, y2, y3, y6}.
Now, we intend to construct decision rules suggesting assignment to union of classes X≥2 . For

this purpose, we apply rule �-consistency measure, defined as (25). We take �̂
X≥2

= �
X≥2

= 0.75 and

construct elementary conditions using evaluations of objects belonging to X≥2 , in order to cover
objects from POS(X≥2 ) only (i.e., we assume the most restrictive object covering option, corre-
sponding to s = 1). For attribute q1, considered elementary conditions have the following values of
�-consistency measure: 0.6 for q1(y) ≥ 2, 0.6(6) for q1(y) ≥ 4 and 0.5 for q1(y) ≥ 5. It is visible that
�-consistency measure does not have property (m4) since it is a gain-type measure and its value for
q1(y) ≥ 5 is smaller than for q1(y) ≥ 4. The first elementary condition selected by VC-DomLEM for
rule r

X≥2
is q1(y) ≥ 4. This elementary condition has value of �-consistency measure equal to 0.6(6).

The constraint on rule consistency from line 6 of V C-SequentialCoveringmix is not satisfied. Un-
fortunately, any elementary condition that can be further added to the constructed rule does not
help to satisfy this constraint. The best elementary condition that can be added in the second
iteration is q2(y) ≥ 4, resulting in the rule if q1(y) ≥ 4∧q2(y) ≥ 4 then y ∈ X≥2 , with �-consistency
of 0.6(6). Thus, in the current form, it is impossible to construct by VC-DomLEM algorithm a rule
that satisfies threshold on �-consistency measure. Such rule would be if q1(y) ≥ 2∧ q2(y) ≥ 2 then
y ∈ X≥2 , with �-consistency 0.75.

Note that the possibility to add elementary condition on a criterion already present in the rule
does not solve the problem resulting from the lack of property (m4). It allows only to special-
ize elementary conditions already present in the rule. To overcome the lack of property (m4) of
�-consistency measure, we propose to reduce the set of objects considered when creating elementary
conditions by using edge regions of unions of classes X≥i and X≤i .
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Figure 1: Illustration of VC-DomLEM problems with induction of rules satisfying �-consistency condition, caused
by the lack of property (m4).

For X≥i , X
≤
i ⊆ U , y, z ∈ U , edge regions are defined as follows:

EDGE(X≥i ) = {y ∈ X≥i : z ∈ D−(y) ∩X≥i ⇒ z ∈ D+(y)}, (26)

EDGE(X≤i ) = {y ∈ X≤i : z ∈ D+(y) ∩X≤i ⇒ z ∈ D−(y)}. (27)

It should be noticed that the edge region of unionX≥i is a subset of probabilistic lower approximation
of that union. This subset contains only objects that do not (at least) weakly dominate any other
object belonging to X≥i . Analogically, the edge region of union X≤i contains only objects that are
not (at least) weakly dominated by any other object belonging to X≤i . We say that object y weakly
dominates object z iff y is not worse than z on each criterion qi ∈ P , for at least one criterion
qi ∈ P is strictly better, and for each regular attribute qi ∈ P is indifferent to z. We say that object
y is weakly dominated by object z iff y is not better than z on each criterion qi ∈ P , for at least
one criterion qi ∈ P is strictly worse, and for each regular attribute qi ∈ P is indifferent to z.

Let us consider VC-DRSA and the following scenario for V C-SequentialCoveringmix algorithm:

(�′′) application of �-consistency measure in order to induce rules covering objects from X calcu-
lated using �′X object consistency measure.

In order to adjust V C-SequentialCoveringmix algorithm to scenario (�′′), we need the following
modification:

(�) edge region of set X is used instead of the probabilistic lower approximation of X.

Theorem 4. For V C-SequentialCoveringmix method, in scenario (�′′), and subject to (′) and
(�), sequential addition of the best elementary condition always leads to decision rule rX that has
value of �-consistency measure not worse than threshold �̂X = �X .
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Proof. Because of the definition of object consistency measure �′X , the objects that are included
in the edge region of X are only those that have value of rough membership �X not worse than the
specified threshold �X . Proposed reduction of the set of objects, together with the possibility to
add next elementary condition involving criterion that is already present in the constructed rule,
guarantee that each rule suggesting assignment to set X can finally reach the value of �-consistency
measure not worse than threshold �̂X = �X . It is true because one can always construct a rule with
all elementary conditions generated using evaluations of some object y belonging to the edge region
of X. □

Presented modification of VC-DomLEM algorithm implies additional computational cost be-
cause edge regions must be calculated. On the other hand, an edge region is smaller than the corre-
sponding lower approximation, thus the number of potential elementary conditions to be checked by
VC-DomLEM is also smaller. Moreover, as we have shown in Example 1, without this modification
it might be impossible to induce rules having value of �-consistency measure not worse than the
specified threshold.

6. Experimental setup

The aim of the experiment presented in this paper is to evaluate the usefulness of VC-DomLEM
algorithm in terms of its predictive accuracy. To this end, we compared our algorithm to other
methods on 12 ordinal data sets listed in Table 1. Data sets: employee rejection/acceptance (ERA),
employee selection (ESL), lectures evaluation (LEV) and social workers decisions (SWD) were taken
from [2]. Other data sets come from the UCI repository1 and other public repositories (as in case
of data sets: bank of Greece (bank-g) and financial analysis made easy (fame)).

Table 1: Characteristics of data sets
Id Data set Objects Attributes Classes
1 breast-c 286 8 2
2 breast-w 699 9 2
3 car 1296 6 4
4 cpu 209 6 4
5 bank-g 1411 16 2
6 fame 1328 10 5
7 denbosch 119 8 2
8 ERA 1000 4 9
9 ESL 488 4 9
10 LEV 1000 4 5
11 SWD 1000 10 4
12 windsor 546 10 4

In general, it is not always the case that ordinal classifiers that preserve monotonicity constraints
perform better than non-ordinal classifiers [4] in predictive accuracy. This is mainly attributed to the
fact that monotonicity constraints that need to be satisfied bias the classifier. The unbiased classifier
may generalize the data more effectively. Taking this into account, we compared VC-DomLEM to
other ordinal classifiers that preserve monotonicity constraints as well as to non-ordinal classifiers.

1see http://www.ics.uci.edu/˜mlearn/MLRepository.html
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Let us now describe briefly the classifiers that we considered in the experiment. We used the
implementation of VC-DomLEM from jRS and jMAF frameworks.2 We considered VC-DomLEM
in two variants. The first variant, denoted as �-VC-DomLEM, involves induction of rules satisfying
�-consistency or �′-consistency condition from lower approximations calculated with object consis-
tency measure �X or �′X , respectively. The second variant, denoted as �-VC-DomLEM, involves
induction of rules satisfying �-consistency condition from lower approximations calculated with
object consistency measure �′X . Moreover, we used two ordinal classifiers that preserve monotonic-
ity constraints, namely: Ordinal Learning Model (OLM) [1, 3] and Ordinal Stochastic Dominance
Learner (OSDL) [10]. We also used some well known non-ordinal classifiers: Naive Bayes, Support
Vector Machine (SVM) with linear kernel [49], decision rule classifier RIPPER [13], and decision
tree classifier C4.5 [51].

7. Results of the computational experiment and discussion

In the experiment, the predictive accuracy was estimated by stratified 10-fold cross-validation,
which was repeated several times. We measured mean absolute error (MAE), which is a standard
measure used for ordinal classification problems. Additionally, we measured the average percentage
of correctly classified objects. These results are shown in Tables 2 and 3, respectively. In both
cases, tables with results contain the value of measure and its standard deviation for each data set
and each classifier. Moreover, for each data set we calculated a rank of the result of a classifier
when compared to the other classifiers. The rank is presented in brackets (the smaller the rank,
the better). We show these ranks because they are used in statistical test described further. Last
row of each table shows the average rank obtained by a given classifier. Moreover, for each data
set, the best value of the predictive accuracy measure, and those values which are within standard
deviation of the best value, are marked as bold.

We used a statistical approach to compare differences in predictive accuracy between classifiers
in variants which we mentioned above. First, we applied Friedman test to globally compare perfor-
mance of eight different classifiers on multiple data sets [16, 38]. The null-hypothesis in this test
was that all compared classifiers perform equally well. It was tested using the ranks of each of the
classifiers on each of the data sets. We do not present complete post hoc analysis [16] of differences
between classifiers, however, we show the average rank of each classifier in the last row of the tables
with results.

We analyzed the ranks of MAE, which are presented in Table 2. The p-value in Friedman test
performed for this comparison was 0.00017. Then, we analyzed the ranks of percentage of correctly
classified objects, which are presented in Table 3. The p-value in Friedman test was in this case
0.00018. The results of Friedman test and observed differences in average ranks allowed us to state
with high confidence that there is a significant difference between compared classifiers.

We continued our experimental comparison with examination of importance of difference in
predictive accuracy for each pair of classifiers. We applied Wilcoxon test [38] with null-hypothesis
that the medians of results on all data sets of the two compared classifiers are equal. Let us
remark, that in the paired tests ranks are assigned to the value of difference in the predictive
accuracy between the two compared classifiers. First, we applied this test to MAE from Table 2.
We observed significant difference (p-values smaller than 0.05) between �-VC-DomLEM and any

2see http://www.cs.put.poznan.pl/jblaszczynski/Site/jRS.html
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Table 2: Mean absolute error (MAE)
Id �-VC-DomLEM �-VC-DomLEM Naive SVM RIPPER C4.5 OLM OSDL

Bayes

1 0.2331 (1) 0.2436 (3) 0.2564 (4) 0.3217 (7) 0.2960 (5) 0.2424 (2) 0.324 (8) 0.3065 (6)
+
−0.003297 +

−0.007185 +
−0.005943 +

−0.01244 +
−0.01154 +

−0.003297 +
−0.01835 +

−0.001648

2 0.03720 (2) 0.04578 (6) 0.03958 (3) 0.03243 (1) 0.04483 (5) 0.05532 (7) 0.1764 (8) 0.04149 (4)
+
−0.002023 +

−0.003504 +
−0.0006744 +

−0.0006744 +
−0.004721 +

−0.00751 +
−0.00552 +

−0.001168

3 0.03421 (1) 0.03524 (2) 0.1757 (7) 0.08668 (4) 0.2029 (8) 0.1168 (6) 0.09156 (5) 0.04141 (3)
+
−0.0007275 +

−0.0009624 +
−0.002025 +

−0.002025 +
−0.01302 +

−0.003108 +
−0.005358 +

−0.0009624

4 0.08293 (1) 0.0925 (2) 0.1707 (5) 0.4386 (8) 0.1611 (4) 0.1196 (3) 0.3461 (7) 0.3158 (6)
+
−0.01479 +

−0.01579 +
−0.009832 +

−0.01579 +
−0.01372 +

−0.01790 +
−0.02744 +

−0.01034

5 0.04559 (1) 0.04867 (2) 0.1146 (6) 0.1280 (7) 0.0489 (3) 0.0515 (4) 0.05528 (5) 0.1545 (8)
+
−0.001456 +

−0.000884 +
−0.01371 +

−0.001205 +
−0.00352 +

−0.005251 +
−0.001736 +

−0

6 0.3406 (1.5) 0.3469 (3) 0.4829 (6) 0.3406 (1.5) 0.3991 (5) 0.3863 (4) 1.577 (7) 1.592 (8)
+
−0.001878 +

−0.004 +
−0.002906 +

−0.001775 +
−0.003195 +

−0.005253 +
−0.03791 +

−0.007555

7 0.1232 (1) 0.1289 (2.5) 0.1289 (2.5) 0.2129 (7) 0.1737 (6) 0.1653 (5) 0.2633 (8) 0.1541 (4)
+
−0.01048 +

−0.01428 +
−0.01428 +

−0.003961 +
−0.02598 +

−0.01048 +
−0.02206 +

−0.003961

8 1.307 (2) 1.376 (7) 1.325 (5) 1.318 (3) 1.681 (8) 1.326 (6) 1.321 (4) 1.280 (1)
+
−0.002055 +

−0.002867 +
−0.003771 +

−0.007257 +
−0.01558 +

−0.006018 +
−0.01027 +

−0.00704

9 0.3702 (3) 0.4146 (5) 0.3456 (2) 0.4262 (6) 0.4296 (7) 0.3736 (4) 0.474 (8) 0.3422 (1)
+
−0.01352 +

−0.005112 +
−0.003864 +

−0.01004 +
−0.01608 +

−0.01089 +
−0.01114 +

−0.005019

10 0.4813 (6) 0.5213 (7) 0.475 (5) 0.4457 (4) 0.4277 (3) 0.426 (2) 0.615 (8) 0.4033 (1)
+
−0.004028 +

−0.002055 +
−0.004320 +

−0.003399 +
−0.00838 +

−0.01476 +
−0.0099 +

−0.003091

11 0.454 (4) 0.498 (7) 0.475 (6) 0.4503 (2) 0.452 (3) 0.4603 (5) 0.5707 (8) 0.433 (1)
+
−0.004320 +

−0.004546 +
−0.004320 +

−0.002867 +
−0.006481 +

−0.004497 +
−0.007717 +

−0.002160

12 0.5024 (1) 0.5201 (3) 0.5488 (4) 0.5891 (6) 0.6825 (8) 0.652 (7) 0.5757 (5) 0.5153 (2)
+
−0.006226 +

−0.003956 +
−0.005662 +

−0.02101 +
−0.03332 +

−0.03721 +
−0.006044 +

−0.006044

2.04 4.12 4.62 4.71 5.42 4.58 6.75 3.75

Table 3: Percentage of correctly classified objects
Id �-VC-DomLEM �-VC-DomLEM Naive SVM RIPPER C4.5 OLM OSDL

Bayes

1 76.69 (1) 75.64 (3) 74.36 (4) 67.83 (7) 70.4 (5) 75.76 (2) 67.6 (8) 69.35 (6)
+
−0.3297 +

−0.7185 +
−0.5943 +

−1.244 +
−1.154 +

−0.3297 +
−1.835 +

−0.1648

2 96.28 (2) 95.42 (6) 96.04 (3) 96.76 (1) 95.52 (5) 94.47 (7) 82.36 (8) 95.85 (4)
+
−0.2023 +

−0.3504 +
−0.06744 +

−0.06744 +
−0.4721 +

−0.751 +
−0.552 +

−0.1168

3 97.15 (1) 97.1 (2) 84.72 (7) 92.18 (4) 84.41 (8) 89.84 (6) 91.72 (5) 96.53 (3)
+
−0.063 +

−0.1311 +
−0.1667 +

−0.2025 +
−1.309 +

−0.1819 +
−0.4425 +

−0.063

4 91.7 (1) 90.75 (2) 83.41 (5) 56.62 (8) 84.69 (4) 88.52 (3) 68.58 (7) 72.41 (6)
+
−1.479 +

−1.579 +
−0.9832 +

−1.579 +
−1.409 +

−1.409 +
−2.772 +

−1.479

5 95.44 (1) 95.13 (2) 88.54 (6) 87.2 (7) 95.11 (3) 94.85 (4) 94.47 (5) 84.55 (8)
+
−0.1456 +

−0.0884 +
−1.371 +

−0.1205 +
−0.352 +

−0.5251 +
−0.1736 +

−0

6 67.55 (1) 67.1 (2.5) 56.22 (6) 67.1 (2.5) 63.55 (5) 64.33 (4) 27.43 (7) 22.04 (8)
+
−0.4642 +

−0.4032 +
−0.2328 +

−0.2217 +
−0.5635 +

−0.5844 +
−0.7179 +

−0.128

7 87.68 (1) 87.11 (2.5) 87.11 (2.5) 78.71 (7) 82.63 (6) 83.47 (5) 73.67 (8) 84.6 (4)
+
−1.048 +

−1.428 +
−1.428 +

−0.3961 +
−2.598 +

−1.048 +
−2.206 +

−0.3961

8 26.9 (2) 21.43 (7) 25.03 (3) 24.27 (5) 20 (8) 27.83 (1) 23.97 (6) 24.7 (4)
+
−0.3742 +

−0.1700 +
−0.2494 +

−0.2494 +
−0.4243 +

−0.4028 +
−0.4643 +

−0.8165

9 66.73 (3) 62.43 (6) 67.49 (2) 62.7 (5) 61.61 (7) 66.33 (4) 55.46 (8) 68.3 (1)
+
−1.256 +

−1.139 +
−0.3483 +

−0.6693 +
−1.555 +

−0.6966 +
−0.7545 +

−0.3483

10 55.63 (6) 52.43 (7) 56.17 (5) 58.87 (4) 60.83 (2) 60.73 (3) 45.43 (8) 63.03 (1)
+
−0.3771 +

−0.2055 +
−0.3399 +

−0.3091 +
−0.6128 +

−1.271 +
−0.8179 +

−0.2625

11 56.43 (6) 51.67 (7) 56.57 (5) 58.23 (2) 57.63 (3) 57.1 (4) 47.83 (8) 58.6 (1)
+
−0.4643 +

−0.4497 +
−0.4784 +

−0.2055 +
−0.66 +

−0.4320 +
−0.411 +

−0.4243

12 54.58 (2) 52.93 (4) 53.6 (3) 51.83 (5) 44.08 (8) 47.99 (7) 49.15 (6) 55.37 (1)
+
−0.7913 +

−1.427 +
−0.2284 +

−1.813 +
−0.8236 +

−2.888 +
−0.7527 +

−0.3763

2.25 4.25 4.29 4.79 5.33 4.17 7 3.92
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Table 4: Comparison of mean strength and length of rules induced by �-VC-DomLEM and �-VC-DomLEM
�-VC-DomLEM �-VC-DomLEM

Id strength length strength length
1 0.243 1.857 0.179 2.636
2 0.306 2.600 0.298 2.917
3 0.129 3.836 0.129 3.836

4 0.300 1.968 0.301 2.033
5 0.129 2.216 0.124 2.742
6 0.143 2.430 0.133 3.122
7 0.230 2.182 0.260 2.769
8 0.070 2.341 0.262 2.000

9 0.356 1.864 0.346 2.319
10 0.181 2.377 0.207 2.395
11 0.164 2.602 0.179 2.857
12 0.144 3.644 0.149 3.534

other classifier except OSDL. The same was true for the following pairs: �-VC-DomLEM and OLM,
Naive Bayes and OLM, C4.5 and RIPPER, C4.5 and OLM, OSDL and OLM. Then, we applied
Wilcoxon test to percentage of correctly classified objects from Table 3. We observed significant
difference between �-VC-DomLEM and any other classifier except C4.5 and OSDL. The same was
true for the following pairs: �-VC-DomLEM and OLM, Naive Bayes and OLM, RIPPER and OLM,
C4.5 and RIPPER, C4.5 and OLM, OSDL and OLM.

It follows from the results of the experiment that �-VC-DomLEM is better than the other
compared classifiers. It has the best value of the average rank of both predictive accuracy measures.
However, when we compared �-VC-DomLEM to other classifiers in pairs, we were not able to show
significant difference in predictive accuracy with respect to OSDL and also C4.5 (but only in case
of percentage of correctly classified objects). On the other hand, �-VC-DomLEM is comparable to
other classifiers except OLM. OLM is clearly the worst classifier in our experiment.

It is generally acknowledged that decision rules are relatively easy to interpret by users. Stronger
and shorter rules are particularly relevant since they represent strongly established relationships
between causes and effects. From this point of view, it is thus interesting to compare our two versions
of VC-DomLEM – �-VC-DomLEM and �-VC-DomLEM. Table 4 summarizes this comparison. It
can be seen that, in general, rules induced by �-VC-DomLEM are shorter. On the other hand, both
versions induce rules which are on the average of the same strength except for ERA data set for
which rules induced by �-VC-DomLEM are significantly stronger.

Finally, we compared mean execution times of both versions of VC-DomLEM over all runs
on the twelve data sets. Induction of rules with �-VC-DomLEM was on average 3.3 times faster
than induction of rules with �-VC-DomLEM. This observation is concordant with our remarks
expressed in Section 5, concerning the advantage of using rule consistency measures which have
property (m4). Comparing the mean execution times of �-VC-DomLEM and other algorithms used
in the experiment, we can conclude that �-VC-DomLEM is as efficient as SVM and OSDL, while
Naive Bayes, RIPPER, OLM, and C4.5 are significantly faster.

8. Conclusions

In this paper, we have presented a rule induction algorithm based on sequential covering, called
VC-DomLEM. This algorithm can be used for both ordered and non-ordered data. It generates
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a minimal set of decision rules. We have proposed three rule consistency measures which can be
applied during rule induction: �-consistency, �′-consistency, and �-consistency. In Theorems 1, 3,
and 4, we have proved that the presented algorithm is correct, i.e., it can always induce rules that
are consistent to a required degree. Moreover, we have analyzed properties of induced rules, and we
have shown how to improve rule induction efficiency due to application of rule consistency measures:
�-consistency or �′-consistency (Theorem 2).

The computational experiment presented in Section 7, concerning twelve ordinal classification
data sets, showed good performance of VC-DomLEM. In particular, �-VC-DomLEM produced the
best results with respect to mean absolute error and percentage of correctly classified objects. We
have verified that, in general, decision rules produced by �-VC-DomLEM are shorter than rules
induced by �-VC-DomLEM.
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