
Low-level programming

Lecture 7

Functions – continued

I/O operations

Marcin Radom, Ph.D.
Institute of Computing Science

Faculty of Computing and Telecommunication

Pointers to the function

• Functions in C are not variables, yet there can be pointers for
them.

• Such pointers can be assigned values, stored in arrays, given
to other functions as arguments and also can be returned as
a function values.

• Example of function pointer definition:

int (*pf)();

2

Pointers to the function

۰ We read the example in the following way int (*pf) () ;

• name of function is pf,

• we go left, because inside where pf is there is nothing else in this parenthesis () -
(*pf) – so: pf is in fact a pointer

• we go right, next parenthesis () –
(*pf)() – pf is a pointer to a function without arguments

• now going left – ... a function returning int (*pf)() – value type int.

• All in one: pf is a pointer to a function taking no arguments and returning value type int.

• If we skip the first parenthesis, we get: int *pf () – this would be however a
declaration of a function which returns a pointer to type int and has no arguments.

• Name of a function is also the address of it in the memory (i.e., an address to the
area of memory, where code for such a function resides).

• Because of that we can set it to point at address stored by pointer:

pointer = name_of_function; // IT IS NOT A CALLING OF A FUNCTION
// pointer = name_of_function() – error, this IS A CALLING and also we
// try to write the value of it into pointer

3

Pointers to the function

• Example:

int (*pf)(int, int); // type of result and arguments

int Ki(int x, int y){

return (x + y) * (x + 2 * y);

}

long Kl(int x, int y){

return (long)(x + 3 * y) * (x - y);

}

pf = Ki; // correct (compiler will know that pf is

// pointer and will set it up correctly)

pf = & Ki; // correct (using operator & is not required, yet

// we can still do it)

pf = Kl; // error, wrong pointer (wrong type of result for

// pointer (int) vs function (long))

4

Pointers to the function

• Calling functions - examples:

void bubbleSort (float T[], int n) { ... }

void mergeSort (float T[], int n) { ... }

void heapSort (float T[], int n) { ... }

// pointer to a function can be assigned initial value:

void (*wS)(float[], int) = bubbleSort;

void (*nS)(float[], int) ;

nS = wS; // ns and ws point to function bubbleSort

float TAB[150];

/* equivalent to calling function bubbleSort: */

wS (TAB, 150); // we can now use the pointer to call the function

//

// calling what pointer points to, that is: calling a function bubbleSort

(*nS)(TAB, 150); // parenthesis ARE REQUIRED for correct C syntax

5

Array of pointers to the functions

• We can declare an array of pointers to functions:

void (*(twf[10]))();

• Definitions above we can read as:

• twf – name of array twf

• [10] – which is 10-elements array...

• * - of pointers...

• () – to the functions having no arguments...

• void - ...which (functions that is) return nothing.

• In such an array we can store chosen functions of our program (e.g., elements of
menu, which then can be easily changed).

• After defining such an array its pointer can be assigned as before (but using indexes):

twf[1] = search; // set second pointer (index [1]) for function search

• Calling example:

twf[1](); // call the second function from array twf

6

Array of pointers to the functions - Example

• Examples:

int fA(double x) { ... }

int fB(double y) { ... }

int fC(double z) { ... }

// initialization – assigning functions to elements of a table

int (*fX [3])(double) = { fA, fB };

fX[2] = fC;

fX[1](37.18); // calling for fB

// definition with default initial values

int (*Test [10])(char*) = { /* */ };

int Results [10]; // result of function from pointer table

char* Texts [10]; // functions arguments from pointer table Texts

for (int i = 0; i < 10; ++i)

Results[i] = Texts[i] (Texts[i]); // calling functions

7

Array of pointers to the functions

• We can establish a „shortcut” for a complex type using
typedef.

• Example:

۰ We could provide a synonym for type being a pointer to a function
which have two float arguments and its return value type is int.

۰ Then we can use it for declaration/definition of function pointers

typedef int (*PF)(float, float); // PF is a type name

int Fun(float a, float b) { ... }

PF f1, f2 = Fun;

PF Tfun[15]; // pointers to function array

8

Pointer to the function
as a function arguments

• Pointer to a function can also be the argument of some other function.

• Example:

// argument here is a specific sorting method

void Sort(float[], int, void (*) (float[], int) = mergeSort);

void Sort(float TAB[], int size, void (*fS) (float[], int))

{

fS(TAB, size);

.................

}

float T1[100], T2[200];

void (*wF)(float[], int) = heapSort;

Sort(T1, 100, bubbleSort); // bubbleSort

Sort(T2, 200, wF); // heapSort

Sort(T2, 200); // default: mergeSort

9

Pointer to the function
as a function arguments

• Pointer to a function can be returned by another function as its
value.

• Example:

typedef char* (*NP)(char*, char*); // NP is type name
struct FUNCTIONS {

int feature; // we use it to identify some specific function
NP function; // pointer to function type NP

} TABLE[15];

// returns a pointer to a function
NP Search(struct FUNCTIONS TAB[], int size, int pattern) {

for (int i = 1; i < size; ++i)
if (TAB[i].feature == pattern)

return TAB[i].function;
return TAB[0].function;

}

// calling chosen function
printf("%s\n" , Search (TABLE, 15, 1527)("Alf","Ogi"));

10

Pointer to the function - Example

• Example - calculator
#include <math.h>

// Counts values for sin, cos, tan, cotan, sqrt, log, recip, sqr

double FSin (double x, bool &err)

{ return sin(x); }

double FCos (double x, bool &err)

{ return cos(x); }

double FTan (double x, bool &err) {

if (cos(x) != 0)

return tan(x);

else {

err = true;

return 0;

}

}

11

Pointer to the function - Example

double FCotan (double x, bool &err){

if (sin(x) != 0)

return 1 / tan(x);

else {

err = true;

return 0;

}

}

double FSqrt (double x, bool &err){

if (x >= 0)

return sqrt(x);

else {

err = true;

return 0;

}

}

12

Pointer to the function - Example

double FLog (double x, bool &err) {

if (x > 0)

return log(x);

else {

err = true;

return 0;

}

}

double FRecip (double x, bool &err){

if (x != 0)

return 1 / x;

else {

err = true;

return 0;

}

}

double FSqr (double x, bool &err)

{ return x * x; }

13

Pointer to the function - Example

int main() {
double (*TabFun[8])(double, bool&)={FSin,FCos,FTan,FCotan,FSqrt,FLog,FRecip,FSqr};
int option;
double arg, result;
bool go_on = true, invalid;
while (go_on) {

printf("\nChose function: \n0 - sin, \n1 - cos, \n2 - tan, \n3 - cotan,"
"\n4 - sqrt,\n5 - log,\n6 - recip,\n7 - sqr, \ninna - end: ");

scanf("%d", &option);
if(option < 0 || option > 7){

printf("\nEnd.\n");
go_on = false;

} else {
printf("Provide value x : ");
scanf("%lf", &arg);
invalid = false;
result = TabFun[option](arg, invalid); // calling proper function
if (invalid)

printf("Invalid argument.\n");
else

printf("Result = %lf\n", result);
}

}
return 0;

}

14

I/O operations
Files, access, write and read

Files

• A file is a certain block of disk memory with its own name.

• From C language point of view file is a sequence of bytes, of which every single one
can be read separately.

• According to the ANSI standard two ways of looking at files are: binary and text
perspective.

• In binary look each byte of file is accessible to the program.

• Single element of such a file is byte.

• Binary file format: [file bytes][EOF]

• From text perspective what program „sees” can vary – it not necessarily be the real
bytes-written sequence (e.g. \n and \r special characters for PC/Mac architectures).

• Single element of such a file is a single character.

• Text file format:

[characters in 1 line][/r][/n]
...
[characters in last line][EOF]

16

Files – text and binary ones

• Example: how to write number 25

• Text file

• It will be coded as two ASCII digits: '2' and '5' and for example additional
space at the end.

• Functions (e.g. fprintf) write numerical values to text file after they
transform them into chains.

• It can lead to a loss of accuracy (e.g. value 0.33 can we written using 4
characters and we could loose all additional fraction values).

• Binary file

• The most precise way to write a number is to write the exact structure
of its bytes as coded in the given type, e.g., type double variable should
be written in using same number of bytes as the size of type double.

17

32H 35H 20H

Files – text and binary ones

• If data in the file are represented in the same type as in the program, we say they
are in binary form.

• In such case there is no conversion between numerical value and a string.

• In a binary file number 25 (assuming it is int) is written using 4 bytes in little-
endian conversion (in which a less significant byte (a lower one in other words) is
written first).

• In standard input/output form data exchange in binary format is realized using
fread and fwrite.

• In reality all data are written in binary form (even signs).

• If all data in file are interpreted as character codes, we say file contains
text data.

• In some or all data are interpreted as numerical binary values, we say
that file contains binary data.

18

19H 0H 0H 0H

Files

• To represent files in programs file streams are used.

• Such a stream is represented in C by file structural variable FILE.

• Structure FILE is declared in <stdio.h> and stores the following
information:

• buffer location,

• current character position in buffer,

• type of access to the file (for reading, writing, etc.),

• error signals or end of file information.

• All operations on a file stream require pointer to the FILE structure.

• Declaration for such a file pointer can be:

FILE *fp; //fp is a pointer to FILE structure

19

Files

• In <stdio.h> three pointers to files are defined. They are assigned
to 3 typical „files” opened by C programs:

• stdin – standard input (usually keyboard)

• stdout – standard output (usually screen)

• stderr – standard output for errors (usually screen)

• Above pointers are type FILE, so they all can be used as arguments
for standard input/output functions, e.g., pointer fp from last
example.

• Phases of working with a file:

• File opening,

• Write or read operations (always from current position, index is moved
by reading/writing the next values),

• Closing file

20

Files

• For file operations in C we use some common functions from
<stdio.h> (#include <stdio.h>).

• There are 3 groups of functions:

• fopen, fclose, fcloseall (opening and closing files)

• ftell, fseek, rewind, feof (establishing current position within file, checking if
end of file is reached)

• fread, fwrite, fgetc, fputc, fgets, fputs, fscanf, fprintf (reading and writing
data)

• Opening file:

• To open a file a function fopen() must be used. While using it we need to provide
a path to file (and its name) and type of access to it.

• Function fopen return pointer to the file (pointer to structure of type FILE).

• Function fopen returns NULL is opening was not possible.

21

fopen – open access to file

• Function fopen

FILE* fopen(const char* name, const char* mode);

Function: opening file ”name”

Mode:

r : reading existing file

w : creating file for writing

a : writing at the end of the existing file (append mode)

r+ : writing or reading existing file

w+ : creating new file for writing and reading

a+ : writing or reading starting from the end of existing file

Additionally in some systems binary na text files are distinguished:

t : text file

b : binary file

• Opening non existing file for writing/append will create it.

• Opening existing file for writing will clear its content!

22

fopen – open access to file

• Example:

#include <stdio.h>

int main(void)

{

...

FILE *list;

list = fopen("LIST.TXT","rt+");

if (list== NULL)

printf("\nFile cannot be opened.");

...

return 0;

}

23

fclose – closing access to file

• Function fclose

int fclose (FILE *file);

Function: closes access to the file.

Result: 0 – if action was successful or EOF – if it was not.

Example:

#include <stdio.h>

int main(void)

{ ...

FILE *personel = fopen ("PER.TXT", "rt");

...

fclose (personel);

...

}

24

fclose – closing access to file

• Function fclose() 'breaks' the connection between pointer (established
by function fopen) and a real disk file, releasing such pointer to be used
for some other file for example.

• It is very important because operating systems limits number of access
to the single file from a single program.

• Access to file should be closed if the file is no longer necessary.

• Function fclose() is called automatically for all opened files if the
program ends normally.

• Function fcloseall()

int fcloseall (void);

Function: closes all opened files in the program.

Returns: number of closed files – if the action was successful or EOF – if it was not.

25

fseek – establishing position in file

• Function fseek() allows to treat file as it was an array – it allows access to
the specific byte within the file.

• Function fseek() has 3 arguments:

• Pointer to the file.

• Offset (position):

• Specifies distance and direction from the starting location.

• Must be type long.

• It can be positive (moving forward), negative (moving back) or zero (remain in place).

• Mode (goal), which define starting location.

• In <stdio.h> there are string constant for such modes::

• SEEK_SET – the very start of a file

• SEEK_CUR – current location

• SEEK_END – end of file location

26

fseek – establishing position in file

• Function fseek()

int fseek (FILE *file, long position, int mode);

Function: sets the current location in file.

mode:

SEEK_SET - start of file,

SEEK_CUR - current position

SEEK_END - end of file

position : +/- , from 0, can go beyond file size

Result: 0 : success, !0 : error

27

fseek – establishing position in file

• Example:

#include <stdio.h>
int main(void)
{

...
long pp;
FILE *description = fopen("OP1.DOC","rt+");
// move to the place located 0 bytes beyond end of file
// so in simple words: to the end of file
fseek(description , 0L, SEEK_END);
... // write at the end of file
// move 0 bytes beyond start of file
fseek(description , 0L, SEEK_SET);
... // write at the beginning of file
pp = 15453l; // move from current location
fseek(description , pp, SEEK_CUR);
... // read something
...

}

28

rewind – establishing position in file

• Function rewind sets file pointer to the initial position.

• Calling rewind(fp) is equal to : fseek(fp, 0L, SEEK_SET)

void rewind (FILE *file);

Function: set the current location to the beginning of file

Example:

#include <stdio.h>
int main(void)
{

...
FILE *working = fopen("R1.DAT","rt+");
fseek(working , 0L, SEEK_END);
... // write at the end of file
rewind(working); // go to the beginning of file
...

}

29

feof – checking end of file

• Function feof allows checking if the end of file is reached.

int feof (FILE *file);

Function: reads the status of end-of-file indicator

Result: returns !0 : the is EOF (indicator of the end of file), 0 if not

Example:

#include <stdio.h>
int main(void)
{ ...

FILE *file1= fopen("P1.MAN","rt");
... // read from file
if (feof(file1)!= 0)

printf("\nEnd of file reached.");
...

}

30

fgetc – reading

• Function fgetc reads from stream file a single sign and returns its value as
unsigned char (and transformed to int). If there was any error or end of file is
reached it returns EOF.

int fgetc (FILE *file);

Function: read next sign

Result: integer number 000 | sign_code

Example:

#include <stdio.h>
int main(void)
{

...
char cc;
FILE *info = fopen("INF.DOC","rt");
cc = fgetc(info);
...

}

31

fputc – writing

• Function fputc writes sign (transformed to unsigned char) to the stream
file. It returns a written sign (its ASCII code) or EOF in there was any error.

int fputc (int sign, FILE *file);

Function: writes next sign (integer number: 000 | code)

Result: sign or EOF

Example:

#include <stdio.h>
int main (void)
{

char cc = 'K’;
FILE *data= fopen("DATA.DOC","rt+");
...
fputc(cc, data);
...

}

32

fgets – reading

• Function fgets reads at maximum number-1 signs and puts them into array
text. Function stops after reading new line sign – it is also put into array.
Whole text end with \0.

char* fgets (char *text, int number, FILE *file);

Function: reads sequence of signs, at maximum number-1 signs.

Result: text or NULL in case of error or reaching end of file

Example:

#include <stdio.h>
int main(void)
{

...
char surname[16];
FILE *dir = fopen("DIR.DOC","rt");
fgets(surname, 16, dir);
...

}

33

fputs – writing

• Function fputs writes text from table text into a stream file. It returns
written character or EOF if there was any error.

int fputs (char *text, FILE *file);

Function: writes sequence of characters.

Result: last written character or EOF

Example:

#include <stdio.h>
int main(void)
{

...
char *list = "Index";
FILE *dok = fopen("DOK1.DOC","rt+");
fputs(list, dok);
...

}

34

fscanf – reading from file

• Function fscanf works similarly to scanf, but it requires additional
argument – file stream reference.

• It end its work when whole text has been formatted.

• It returns EOF if there is any error during text transformation or
end of file has been reached. Otherwise it returns the number of
formatted and written characters.

• Function fscanf

Def: int fscanf(FILE *file, const char *format,

pointer, pointer, ...);

Function: reads sequences of characters and convert them into binary
format (just like scanf).

Result: number of written characters or EOF.

35

fscans – reading – example

• Example:

#include <stdio.h>
int main(void)
{

...
int numbers;
float price;
FILE *good = fopen("INVENTORY.DOC","rt");
...
fscanf(good, "%d%f", &number, &price);
...

}

36

fprintf – writing to file

• Function fprintf works similarly to printf, but it writes data to
file (so additional argument defining file is required).

• It returns negative number if there was any error. Otherwise
it returns the number of written characters.

int fprintf (FILE *file, const char *format,
statement, statement, ...);

Function: writes sequence of characters (like printf).

Result: number of written bytes or EOF

37

fprintf – example

• Example:

#include <stdio.h>

int main(void)

{

...

int currency_code = 15;

float price = 0.23547;

FILE *prices_table = fopen("STOCK_EXCHANGE.TAB","wt");

...

fprintf(prices_table, "\n%3d\t%8.3f",

currency_code, price);

...

}

38

fread – reading from file

• Function fread reads from stream file into table given as pointer at
maximum number of objects having specific size.

• Function fread should be used to read data which have been written
using fwrite.

int fread (pointer, int size, int number, FILE *file);

Function: reads number of data, each having specific size.

Result: number of read objects or 0

Example:

double prices[50];
...
fread(prices, sizeof(double), 50, fp);
// it will copy 50 values of type double from file
// into array prices

39

fread – example

• Example:

#include <stdio.h>

int main(void)

{

...

struct book

{

char author[25];

char title[50];

} books[100];

...

FILE *store = fopen("MAGAZINE.DOC","rt");

fread(books, sizeof(book), 100, store);

...

}

// it will copy 100 objects type book from file into

// array books

40

fread – example

void main(void)

{

int number_of_reads;

struct position{

double coordinates[2];

double height;

} path[1000];

...

FILE *tour = fopen("W1.DAT","rb");

// read how many elements the table has

fread(&number_of_reads, sizeof(int), 1, tour);

// reads the elements and put them into tour

fread(path, sizeof(position), number_of_reads, tour);

...

}

41

fwrite – writing to files

• Function fwrite writes number of objects having specific size, from
array pointer into stream file.

int fwrite (pointer, int size, int number, FILE *file);

Function: writes number of data each having its size.

Result: number of written data or 0.

Example:

double prices[50];
...
fwrite(prices, sizeof(double), 50, fp);
// it will write the 50 elements type double from prices
// array into file

42

fwrite – example

• Example:

#include <stdio.h>

int main(void)

{

...

long double measures[row][col];

...

FILE *archive= fopen("ARCH.TAB","wb");

fwrite(measures, sizeof(measures), 1, archive);

...

}

43

Examples
Different file operations

Files – Example 1

#include <stdio.h>

// analyze file Data.txt containing integer number: even one writes into

// Even.txt, odd number into Odd.txt

int main (int n, char* TS[]){ // Even / odd

FILE *Data, *Even, *Odd;

int Number;

Data = fopen ("Data.txt", "rt");

Even = fopen ("Even.txt", "wt");

Odd = fopen ("Odd.txt", "wt");

if (Data == NULL || Even == NULL || Odd == NULL) {

printf ("\nFile could not be read.\n\n");

return 0;

}

// how many number are in Data.txt? :

fscanf(Dane, "%d", &Liczba);

45

Files – Example 1

while (feof(Data) == 0){
if(Number & 1)

fprintf(Even, "%d ", Number);
else

fprintf(Even, "%d ", Number);

fscanf(Data, "%d", & Number);
}

fcloseall();
printf ("\nEnd.\n\n");
return 0;

}

46

Files – Example 2

• Input file contains a sequence of integer numbers separated by #.
Program opens such file and writes the numbers to files *.fir and
*.sec

#include <stdio.h>

#include <string.h>

int main (int n, char* TS[]) {// split using #

char Ntxt[64];

char Nfir[64];

char Nsec[64];

FILE *Ptxt, *Pfir, *Psec;

bool End = false, Which = true;

int Sign;

int Dot;

char *Ptr;

47

Files – Example 2

if (n < 2){

printf ("\nNo name of file.\n" "Run program with a parameter"

"being file name.\n\n");

return 0;

}

strncpy(Ntxt, TS[1], 58);

strncpy(Nfir, TS[1], 58);

strncpy(Nsec, TS[1], 58);

// search for first '.' and calculates length counting from the beginning.

if ((Ptr = strchr(Ntxt, '.')) != NULL)

Dot = Ptr - Ntxt;

else {

printf("\nWrong file number.\n\n");

return 0;

}

// adds new suffix keeping the old file name

strcpy(Nfir + Dot + 1, "fir");

strcpy(Nsec + Dot + 1, "sec");

Ptxt = fopen (Ntxt, "r");

Pfir = fopen (Nfir, "w+");

Psec = fopen (Nsec, "w+");

48

Files – Example 2

if (Ptxt == NULL || Pfir == NULL || Psec == NULL) {
printf ("\nFile could no be opened\n\n");
return 0;

}
while (!End){

// reads input file sign by sign
Sign = fgetc(Ptxt);

// writes signs: first to one file, second to another, and so on
if (!(End = (feof(Ptxt) != 0)))

if (Sign == '#’)
Which = !Which;

else
if (Which)

fputc(Sign, Pfir);
else

fputc(Sign, Psec);
}
printf ("\nEnd.\n\n");
return 0;

}

49

Files – Example 3

• Program makes a list of employees (max 50). Each one is
described using structure containing surname and salary.
There are the following options:

• R : reads number employees and array of structures describing them
from a specific file,

• N : new employee – reads data and put them into next table
element,

• W : shows info about all employees,

• Z : writes number of employees and array of structures describing
them info specific file,

• K : quit.

50

Files – Example 3

#include <stdio.h>

struct Employee{

char Surname[32];

double Salary;

};

void From_file(Employee Tab[], int& how_many){

FILE* file;

char name[16];

printf("Enter file name to read: ");

fflush(stdin);

scanf("%15s", name);

file = fopen(name,"rt");

if (file == NULL) {

printf("No such file.");

return;

}

fscanf(file,"%d",&how_many); // number of employees

fread(Tab, sizeof Employee, how_many, file);

fclose(file);

}

51

Files – Example 3

void To_file(Employee Tab[], int how_many){

FILE* file;

char name[16];

printf("Enter file name to write : ");

fflush(stdin);

scanf("%15s", name);

plik = fopen(name,"wt");

// number of employees

fprintf(plik,"%d",ile);

// array of employees

fwrite(Tab, sizeof Employee, how_many, file);

fclose(file);

}

52

Files – Example 3

void New_em(Employee Tab[], int& how_many) {

if (how_many == 50) {

printf("Table is full.\n");

return;

}

printf("Enter surname : ");

fflush(stdin);

scanf("%31s",Tab[how_many].Surname);

printf("Enter salary : ");

scanf("%lf",&Tab[how_many++].Salary);

}

void ShowAll(Employee Tab[], int how_many) {

if (how_many == 0) {

printf("Empty table.\n");

return;

}

for(int i = 0; i < how_many; i++)

printf("Employee %d : %s , %.2lf\n", i, Tab[i].Surname, Tab[i].Salary);

}

53

Files – Example 3

int main(int argc, char* argv[]){

Employee TaPa[50];

bool go_on = true;

int how_many = 0;

char option;

while (go_on) {

printf("Choose option [R,N,W,Z,K] : ");

fflush(stdin);

scanf("%c",&option);

switch(opcja & 0x5F){

case 'R' :From_file(TaPa, how_many); break;

case 'N' :New_em(TaPa, how_many); break;

case 'W' :ShowAll(TaPa, how_many); break;

case 'Z' :To_file(TaPa, how_many); break;

case 'K' :go_on = false; break;

default : printf("Wrong option.\m");

}

}

return 0;

}

54

Questions?

