
Low-level programming

Lecture 5

Structures
Dynamic data structures

Files, project compilation

Marcin Radom, Ph.D.
Institute of Computing Science

Faculty of Computing and Telecommunication

Structures
Theory and examples

Structures

• Structure is a type which collects one or many variables (which are then called fields)
under a common name (they are old „records” in Pascal language).

• Using structures allows easier organization of data which are then gathered as a
single entity.

• Example: different variables describing a person in a company, like name, position,
time of employment, salary, etc.

• Structure is therefore a set of fields where a field can be single variable or an object of
another structure.

• What one can do with a structure object:

• assign one to the other,

• copy one into other,

• return as a result of a function,

• send them to a function.

• Structure definition:
struct type_of_structure { list_of_fields }

list_of_identifiers ;

3

Structures

• Declaration of a new structure without specifying the
identifiers (names for structure objects) will not reserve any
memory.

• Example: point coordinates:

struct point { // does not reserve memory

int x;

int y;

};

struct point pt; // pt variable definition

point pt; // only in C++ (i.e., we don’t have to use struct keyword here)

4

Structures

• Structure can be initiated using curly brackets syntax as in the example:

struct point maxpt = {1920, 1200};

• In a direct initialization (as seen above) values are assigned to the specific
fields of a structure in the order taken from brackets and the order of
fields in a structure (i.e., if in point field x is defined before y, then x =
1920, y=1200).

• Example:

struct{
int width;
int accuracy;
char conversion;

} pattern;

struct{
float re;
float im;

} z0, z1, z2;

5

Structures

• Examples:

struct person {

char *name;

char *surname;

int birth_year;

};

struct person Ala, Ola, Ela;

struct address {

char town[16];

char street[32];

int house;

int apartment;

};

struct address AAla, AOla, AEla;

6

7

Ala

name

surname

birth_y
1990

"Alicja"

"Nowak"

AAla

16

32

5

11

"Wheel"

"Little"

town

street

house

apartment

Structures

• When we have a structure like this:

struct point {
int x;
int y;
}pt, pt1;

• then calling to a specific field of it can be done using the following syntax:

structure_name.field name

for example:

pt.x = 320;

pt.y = 200;

printf("%d \t %d", pt.x, pt.y);

• Operator . (dot) joins the structure object with its field.

• E.g.: calculating distance between two points

• function: double sqrt(double) – returns square root from its argument:

double result = 0.0;
result = sqrt(pow((double)pt.x - pt1.x, 2) + pow((double)pt.y - pt1.y, 2));

8

Nested structures

• Examples:

struct engine {

float power;

char *fuel;

};

struct car {

struct {

char *producer;

char *model;

} mark;

struct engine V8;

};

9

Nested structures

• How to define rectangle easy? For example by giving its two
opposite coordinates (in a diagonal):

struct rect {

struct point p1;

struct point p2;

}

• Calling:

struct rect my_rectangle;

my_rectangle.p1.x = 10; // refers to x coordinate

my_rectangle.p1.y = 20; // of p1, where p1 is a field of

// rectangle

10

Structures – allowed operation

• Allowed operations:

• Assigning whole structure to the other one.

• Copying one structure into another.

• Obtaining structure object address with & operator.

• Calling a structure specific field.

• Structure can have its fields initialized directly or using { }.

• Structure cannot be directly compared, i.e., a new function
is required which compares all fields separately – meaning,
we have to write it ourselves.

11

Assigning structures

struct signature {
char *Name;
char Initials;
char *Surname;

};
struct signature AK = {"Ann", 'M', "Kowalska"}, NN, st;
st.Name = "Andrew" ; // string constant – cannot be modified!
NN = AK ;

// if types were equal:
// NN . Name = AK . Name ;
// NN . Initial = AK . Initial ;
// NN . Surname= AK . Surname;
// AK.Name and NN.Name point to the same text
// AK.Surname and NN.Surname point to the same text

char BeatifulName[20] = { "Teofil" };
AK.Name = BeatifulName; // AK.Name points to beginning of array BeatifulName
NN = AK; // now NN.Name points the same as AK.Name
AK.Name[0] = 'M'; // modification will be visible in array

// BeatifulName both in AK.Name and NN.Name
printf("%s, %s", AK.Name, NN.Name); // Meofil, Meofil

12

Assigning structures

• Example:

int T1[3], T2[3] = { 1, 2, 3 };

T1 = T2; // error, T1 is not a pointer variable so it cannot be used

// to modify its destination-address. Copying the

// elements will also not work

struct TT{

int T[3];

};

struct TT T1, T2 = { { 1, 2, 3} };

T1 = T2; // or: copying arrays which are fields

// of the structures T1 and T2

// but:

int a = T1.T[1];

13

Arrays of structures
Theory and example

Arrays of structures

• Lets assume we have a structure with a sequence of characters
and type int variable:

struct key {
char *word;
int count;

}

• An array of such a structure (i.e., an array which elements are
objects of this structure type) can be declared as follows:

struct key keytab[50];

• so the syntax is:

struct structure_name array_name [size]

15

Arrays of structures

• Example:

struct library {

char name [16] ;

int number ;

} computers [100] ; // reserves memory for the array

struct library printers [100] ; // reserves memory for the array

int how_k = 0, how_d = 0;

for (int i = 0 ; i < 100 ; ++i) // sums up

{

how_k += computers[i].number ;

how_d += printers[i].number ;

}

16

Arrays of structures: Initialization

• An array can be initialized using bracket syntax:

int year[] = {31, 28, 31, …, 30, 31};

• An array of structures can be similarly initialized:

struct key {
char *word;
int count;

} keytab[] = {
"auto",0,
"break",0,
/* … */
"while",0

};

۰ Initial values must be given in pairs, in order of their fields appearance
within the structure type.

17

Arrays of structures: Initialization

• To be more precise, the pairs can also be separeted using brackets:

struct key {

char *word;

int count;

} keytab[] = { // the number of elements will be

// calculated automatically

{"auto",0},

{"break",0},

/* … */

{"while",0}

};

• Internal brackets can be omitted when we give all values for all
fields, and when the fields are simple types.

18

Arrays of structures: Example

const int MAX = 100

struct TV{

char Mark[32];

int Price;

int Number;

};

int main(int argc, char* argv[]){

struct TV TabTel[MAX];

int how_many = 0, which;

bool go_on= true;

char option;

while(go_on){

printf("Choose option [N, W, U, S, Q] : ");

fflush(stdin);

scanf("%c", &option);

19

Arrays of structures: Example

switch(option & 0x5F){

// add new TV, variable how_many stores its number, must be

// less than MAX

case 'N’:

if (how_many < MAX){

printf("Enter a name : ");

scanf("%31s", TabTel[how_many].Mark); // mark is a table

printf("Enter price: ");

scanf("%d", &TabTel[how_many].Price);

printf("How many?: ");

scanf("%d", &TabTel[how_many++].Number);

} else

printf("Table is full.\n");

break;

// show all TVs

case 'W’:

for(int i = 0; i < how_many ; ++i)

printf("%d. TV: %s, Price : %d, How many: %d\n", i, TabTel[i].Mark,

TabTel[i].Price, TabTel[i].Number);

break;

20

Arrays of structures: Example

// remove TV with a given index:
case 'U': printf("Provide index of TV: ");

scanf("%d", &which);
if (which >= 0 && which < how_many){
// in place of the removed one put the last one:

TabTel[which] = TabTel[--how_many];
printf("Removed.\n");

} else printf("Wrong ID.\n");
break;

// compute sum of prices:
case 'S’:

which = 0;
for (int i = 0; i < how_many; ++i)

which += TabTel[i].Price * TabTel[i].Number;
printf("Total value: %d\n", which);
break;

// quit
case 'Q’:

go_on = false;
break;

default: printf("Wrong option.\n");
}

}
return 0;

}

21

Pointers to structures

• Example:

struct key {

char *word;

int count;

}

struct key *p; // pointer for key structure, initially points to nothing

struct key table [] = { <elements_of_table> };

p = & table [0]; // points on the first element

//

struct AZ {

char z1;

char z2;

int lz;

} p1 = { 'a', 'b', 37 },

p2 = { 'x', 'y', 35 };

struct AZ p3 = { 'k', 'l', 36 };

22

Pointers to structures

• Example:

struct S1 {

int i;

float f;

} es1;

struct S2 {

int i;

long l;

} es2;

struct S1 *wst1;

struct S2 *wst2;

wst1 = &es1;

wst2 = &es2;

wst1 = &es2; // error, wrong (structure) type

wst2 = wst1; // error, wrong (pointer) type

23

Structures – access to fields

• Access to structure fields:

۰ For the identifier . (dot)

name_of_structure.name_of_field

۰ For the reference . (dot)

reference.name_of_field

۰ For the pointer -> (~arrow)

pointer->name_of_field

• Example:

struct signature {
char *Name;
char Initial;
char *Surname;

};
struct signature st, *wst = &st ;
st . Name = "Andrew" ; // st is identifier
wst -> Initial = 'K' ; // wst is a pointer to the structure

24

Dynamic data structures
Pointers and lists

Pointers to structures

• Pointer to structures are still pointers, like for the normal variables:

struct point {

int x;

int y;

}pt;

struct point *pp = &pt;

۰ pp is a pointer to the structure of a type: struct point

۰ if pp points to structure point, then *pp refers to this structure object,
while (*pp).x and (*pp).y are its fields.

۰ Parenthesis are necessary, because operator . (dot) has a higher priority
than indirect addressing operator *

۰ So: a statement *pp.xmeans (for the compiler) exactly the same as
*(pp.x), and it is WRONG because x is not a pointer!!!

26

Pointers to structures

struct rect{ // definition of a rectangle
struct point pt1;
struct point pt2;

}
struct rect r, *rp = &r;

• Operators . and -> are left-side joined, so the following statement are equivalent:

r.pt1.x
rp->pt1.x // pt1.x, because pt1 is NOT a pointer
(r.pt1).x
(rp->pt1).x

• Four operators:

۰ reference to the field of a structure: . (dot)

۰ operator: ->

۰ operator: () - calling a function

۰ operator: [] - array indexer

have THE HIGHEST priority, so they are „computed” before any other.

27

Pointers to structures

• Example:

struct {
int len;
char *str;

} *p;
++p->len // increases variable len, because ++ has higher

// priority than ->

• On the same principle, the following statements:

۰ (++p)->len increases p before calling field len

۰ p++->len increases p after calling len

۰ *p->str provides something on which ptr points

۰ *p->str++ z increases str, after providing that for str points to (the same as *s++)

۰ (*p->str)++ increases something what str points to

۰ *p++->str increases p, after providing something, which str points to

• Summary: it is far better to use parenthesis (). We minimize the probability of a
mistake because of not remembering exactly what priorities differences are
between the different operators.

28

Structures –
dynamic memory assignment

• Example:
struct dog{

char *leash;

char *collar;

char *the_dog_itself;

};

struct dog *Morus;

Morus = new struct dog; // allocates memory for a structure

// its fields (pointers) at the moment point at nothing

// all field must have memory allocated separately:

Morus->leash = new char[20];

delete [] Morus->leash ; // allocated memory must be released separately

// before removing the structure object itself

delete Morus; // releases memory of the structure object

29

Structures –
dynamic memory assignment example

// Program – registry of bicycles

const int MAX = 100;

struct Bicycle{

char *Mark;

int Price;

int Number;

};

int main(int argc, char* argv[]){

struct Rower* TabRow[MAX]; // array of bicycles

int how_many = 0, which_one;

bool go_on = true;

char option ;

char Bufor[64];

while(go_on){

printf("Choose an option [N, W, U, S, Q] : ");

fflush(stdin);

scanf("%c", &option);

30

Structures –
dynamic memory assignment example

switch(option & 0x5F) {

// add new bicycle

case 'N’:

if (how_many < MAX) { // allocates memory for a new structure:

TabRow[how_many] = new struct Bicycle;

printf("Provide name: ");

scanf("%63s", Bufor);

// allocate memory for the bytes provided by user:

TabRow[how_many]->Mark = new char[strlen(Bufor) + 1];

// copy name from buffer to the field:

strcpy(TabRow[how_many]->Mark, Bufor);

printf("Enter price: ");

scanf("%d", &TabRow[how_many]->Price);

printf("Enter number of objects: ");

scanf("%d", &TabRow[how_many++]->Number);

} else

printf("Table is full. n");

break;

31

Structures –
dynamic memory assignment example

// show all bicycles:

case 'W’:

for(int i = 0; i < how_many; ++i)

printf("%d. Bicycle: %s, Price: %d, How many: %d\n", i,

TabRow[i]->Mark, TabRow[i]->Price, TabRow[i]->Number);

break;

// remove bicycle object by an index:

case 'U’:

printf("Provide index: ");

scanf("%d", &which_one);

if (which_one >= 0 && which_one < how_many){

// first remove the fields, then the structure:

delete [] TabRow[which_one]->Mark;

delete TabRow[which_one]; // removes the structure

// move the last one in place of the removed one:

TabRow[which_one] = TabRow[--how_many]; //copy address

printf("Removed.\n");

} else

printf("Wrong ID.\n");

break;

32

Structures –
dynamic memory assignment example

// sum of values:

case 'S’:

which_one = 0;

for (int i = 0; i < how_many ; ++i)

which_one += TabRow[i]->Price* TabRow[i]->Number;

printf("Total value: %d\n", which_one);

break;

// quit

case 'Q’:

go_on = false;

break;

default:

printf("Wrong option.\n");

}

}

}

33

List

• One-directional list – all the structures have one pointer to the
next one in line

• Single node:

struct lnode{

int number;

struct lnode *next;

}

۰ Pointer next points to the same types of object as the structure it is in.

34

List

• Two-directional list – each structure have two pointes: next and previous

• Example:

struct list{
char etykieta[8];
struct list *previous;
struct list *next;

} E0 = { "AA", NULL, NULL };
struct list E1 = { "BB" },

E2 = { "CC", NULL, NULL };
E0.next = &E1; // E0 has pointer pointing to the next element: E1
E1.next = &E2; // E1 has pointer pointing to the next element: E2
E2.previous = &E1; // E2 has pointer pointing to the previous element: E1
E1.previous = &E0; // E1 E2 has pointer pointing to the previous element: E0

35

AA

previous

next

BB

previous

next

CC

previous

next

E0 E1 E2

NULL
NULL

List with one-way pointers

struct Elem { // single node declaration

Elem *Next; // pointer to the next node

int Value;

};

struct Elem *Head; // pointer to type Elem structures

int main(){

//------------- Create list --------------

Elem e1 = {NULL, 10};

Elem e2 = {NULL, 20};

Elem e3 = {NULL, 30};

Elem e4 = {NULL, 40};

Elem e5 = {NULL, 50};

e1.Next = &e2;

e2.Next = &e3;

e3.Next = &e4;

e4.Next = &e5;

Head = &e1; // first pointer of the list: e1 (i.e., Head of the list)

36

List with one-way pointers - Example

//------------ Temporary variables ---------------

Elem *Temp, *Aux;

//------------ Writes down all the nodes: --------------

printf("\nAfter reverse:\n\n");

Temp = Head;

while (Temp != NULL){ // until the last elements

printf("%3d", Temp->Value); // writes down value of a node

Temp = Temp->Next; // go to the next node

}

//---------------- Reversing the list --------------------

Temp = Head; // current

Head = NULL; // head of reversed list

while (Temp != NULL){

Aux = Temp->Next; // tail of the initial list (being reversed)

Temp->Next = Head; //new head for partially reversed list

// first element of tail of the initial list becomes head of the reversed list

Head = Temp;

Temp = Aux; // shorted list (by head)

}

37

List with one-way pointers – Example

38

1 2 3 4 5 NULLTemp

Head NULL

2 3 4 5 NULL

Head

Temp

1 NULL

3 4 5 NULL

Head 2

Temp

1 NULL

….

I

II

List with one-way pointers - Example

//---------------- Writes down the list --------------------
printf("\n\nAfter reversing:\n\n");

Temp = Head;
while (Temp != NULL){

printf("%3d", Temp->Value);
Temp = Temp->Next;

}

printf("\n\n");
return 0;

}

39

Union

• Union is a variable while its syntax is similar to the syntax of a structure.

• However, an union can, at a given moment, store only one value for one of its fields.

• In different moments the stored field can change, but it can be only one stored at a
time.

• All union fields are stored in the same area of memory.

• Example:

union u_tag {
int ival;
float fval;
char *sval;

} u;

۰ Variable u will have enough bytes to store the largest of its fields.

۰ Variable u can be assigned a value of any of its fields..

۰ At any given moment variable u can store either int, float or a pointer to
the characters sequence. Only one of them at a time!

40

Union

• The programmer must know which field of a union is used at a given time
(because if we try to access a field which is not stored at the moment,
results are dependent on the program implementation (compiler, etc.)).

• Accessing fields of a union:

union_name.field

or

pointer_to_union->field

• Example:

enum types {INT, FLOAT, STRING};
types utype;
/* … */
if (utype == INT) printf("%d\n", u.ival);
else if (utype == FLOAT) printf("%f\n", u.fval);
else if (utype == STRING) printf("%s\n", u.sval);
else printf("bad type %d in utype\n", utype);

41

Union

• Examples:

union

{

char p1 ; // 1 byte

int p2 ; // 4 bytes

long long p3 ; // 8 bytes

} u1; // total size for union: 8 bytes

u1.p1 = 'A'; // fields p2, p3 are unidentified

u1.p2 = 1357; // fields p1, p3 are unidentified

u1.p3 = 15432678LL; // fields p1, p2 are unidentified

union something

{

char color_1 [64] ;

char color_2 [64] ;

}

42

Union inside a structure

• Unions can be used in arrays or as structure fields.

• Example:

struct {
char *name;
int flags;
int utype;
union {

int ival;
float fval;
char *sval;

} u;
} symtab[NSYM]; // table of structures

۰ for field ival we call:

symtab[i].u.ival

۰ for the first sign of sval we can used two syntaxes:

// not: symtab[i].u.*sval !!!! – error, no variable: sval
*symtab[i].u.sval // dot has higher priority than *
symtab[i].u.sval[0]

43

Nesting unions and structures

• Example:
struct paper{

char author[64];

char title[64];

int year;

union {

struct {

char title[64];

int volume;

int page;

} journal;

struct {

char name[64];

} conference;

} place;

} a1;

// string.h

strcpy (a1.place.conference.name, "Polman");

44

Multi files projects
Compiler joining rules, etc.

Compiler files joining theory

• Separating code into different files allows:

• Making the code which is more readable.

• It is easier to use different modules in other programs.

• Compiling different modules separately.

• Module – a fragment of a program compiled as a separate
file.

• Each module consists of:

• Interface (information what a given module has) in a form of a
header file (*.h or .hpp)

• Implementation – file: *c. or *.cpp. At the beginning of it we should
include its header file (e.g., for module.c it will be module.h).

46

Compiler files joining theory

• Typical header file consists of:

• Explicit constants (e.g. EOF, NULL in stdio.h)

• Macro-functions: e.g. getchar() is by default alias for getc(stdin) or
functions from a library ctype.h

• Functions declarations e.g. file string.h contains declarations
(prototypes) of functions working on strings.

• Definitions of patterns, structures, e.g., standard input/output functions
(a pattern of I/O structure is in stdio.h).

• Types definitions, e.g., type FILE is a pointer to the structure defined in
stdio.h (with help of typedef or directive #define). Also types like size_t or
time_t are in such header files.

• Each and every header file should be made in such a way that it
can be included many times within a program into any module.

47

Compiler files joining theory

48

Compiler files joining theory

• Most programmers make their own header files and use
them in their programs. Some of them are special-purpose
files, while the others are for general common tasks.

• Included files can have their own #include instructions.

• Header files can have declarations of external variables to be
shared in different files. It is however cumbersome, because
one has to check if a given variable has been already
declared or not.

• Header files usually contain variables with: const static.

• const qualifier protects from modifications, while static makes every
included header file have its own copy of a variable.

• In such a way one can define a variable in only one file and use it in
other ones with keyword extern.

49

Compiler files joining theory

• In a single file we can include another file with its own code.

• Program divided into different files will be merged into one „file”
by compiler. For the compiler it will be one module, often called
translation unit.

• It means that changing something in one file will require another
compilation of the whole program, not one translation unit.

• In general a program can be divided into different translation
units, each one compiled separately.

• Translation units can and should divide a program into some
„logical” units from the point of view of task / problems that
program solves.

• Each translation unit is compiled separately.

50

Compiler files joining theory

• In C types of variables and calling of a function is always checked. Each
function called in a given translation unit must be declared in that unit.

• Function definition should be done once and placed into a single
translation unit. All declarations and definitions must be compatible.

• After being joined by the linker, all functions „see each other” without
problems.

• Names of global functions are in a „common” area of the global modules
(they are exported).

• Global variables are not shared. Global variable x from one translation
unit is accessible only in that unit; the other unit can defined global
variable with the same name for its own use – there will be then two
separate global variables, each visible in its own module.

• If we want to export global variable, it must be defined in one unit and in
the other ones we have to use order extern, e.g.:

extern double x;

51

Example 1

• Example: Program separated into different files, while being a
single translation unit for the compiler

// code in file Part1.cpp

double Recip(double x){

if(x != 0)

return 1.0/x;

else

return 0;

}

// code in file Part2.cpp

int Power(int n) {

if (n < 0 || n > 12)

return 0;

if (n == 0)

return 1;

else

return n * Power(n-1);

}

52

Example 1

// code in file main.cpp
#include <stdio.h>
#include "Part1.cpp"
#include "Part2.cpp"

int main(int argc, char* argv[])
{

int k;
printf("Integer number: ");
scanf("%d",&k);
printf("\n%lf\t%d\n\n", Recip(k), Power(k));

return 0;
}

53

Example 2

• Example: Program in different files, and for the compiler it
will be divided into different modules (translation units).

//code in header file Part1.h

double Recip(double x);

// code in file Part1.cpp

#include "Part1.h"

double Recip(double x)

{

if(x != 0)

return 1.0/x;

else

return 0;

}

54

Example 2

// code in header file Part2.h

int Power(int n);

// code in file Part2.cpp

#include "Part2.h"

int Power(int n)

{

if (n < 0 || n > 12)

return 0;

if (n == 0)

return 1;

else

return n * Power(n-1);

}

55

Example 2

// code in file main.cpp

#include <stdio.h>

#include "Part1.h"

#include "Part2.h"

int main(int argc, char* argv[])

{

int k;

printf("Integer number: ");

scanf("%d", &k);

printf("\n%lf\t%d\n\n", Recip(k), Power(k));

return 0;

}

56

Scope of variables
Local and global variables and range

Variable declaration scope

• Variables scope is an important issue, since we need to know if a
given variable is valid (accessible) in a given code fragment or not.

• By declaration scope we understand such fragments of a code in
which a given declaration is accessible.

• By visibility scope of the declared variable we understand an
area of the code in which identifier can be used (i.e., the name of
identifier is associated with the declaration). Narrow range can
shadow declaration of another, broad-scope variables.

• There are two main scopes for variables:

• global scope/range: for the whole program

• local scope/range: definition of a single function

58

Variable declaration scope

• Local variables (privates, automatic variables) – they are declared
inside a function.

• Each local variable of a function starts to exist (in the memory) when a
function is called, they end when the function ends.

• Such variable cannot store its older values for the next calling of a
function.

• Variables declared inside a code block (their scope is in range of {
} brackets) – should be visible from the line where their declaration
is to the end of the code block (e.g., control variable of a loop: for
declared within () parenthesis of such a loop).

• Global variables (external) – they are visible (and accessible) for
any function of a program in a single file.

• Global variable must be defined once, outside of any function.

• Global variable is visible starting from its declaration to the end of file.

• It must be declared with extern if it should be visible in different files.

59

Variable declaration scope - Example

• Example

int i, j, k;

float X, Y;

int F1(int a, int b){

char c1, c2;

float B;

}

int F2(float Z1, float Z2, char cp) {

int A1[15];

long A2[15][15];

float B1, B2, B3;

}

void main(void){

int m, n, p, q;

float V1, V2, V3;

long T1[15][15], T2[15][15];

}

60

Variable declaration scope - Example

• Scope for variables in example:

• global :
i, j, k, X, Y, F1, F2 (F1,F2 – functions)

• local in function F1 :
a, b, c1, c2, B

• local in function F2 :

Z1, Z2, cp, A1, A2, B1, B2, B3

• local in function main :

m, n, p, q, V1, V2, V3, T1, T2

61

Variable declaration range

{ int i;

...

{

...

int j;

...

{

int n;

...

}

for(int k=0;...)

{ ... }

}

}

62

Variables shadowing

• Global variables can be shadowed inside a function (or a code block) by declaring a
local variable with the same name (it can be of any type).

• In such a situation the name of the variable in such a block refers to the local variable
only. Global one exists but it is not accessible by its name inside such a block.

• Example:

int i = 5; // i == 5
int F1 (int n){

int i = 7; // i == 7, shadowing
return i + n;

}

int F2 (int m)
{ return i + m; } // i == 5

int main(void){
int k, z, i = 0; // i == 0
k = F1(0); // k == 7
z = F2(0); // z == 5
return 0;

}

63

Same identifier in range - error

• Example:

float eps = 0.001;

...

double eps = 0.05; // error – global variable range redefinition

...

void main(void)

{

long k1;

...

int k1; // error – local variable redefinition in same scope

...

}

64

Accessing global variables

• In order to access a shadowed variables we can use scope
operator ::

• If, for example, variable x is shadowed by a local x, in order
to access global x we need to write ::x

• Example:

const int max = 15750; // global scope
int MAX(int TAB[], int size)
{

int max = TAB[0]; // local
for (int i = 1 ; i < size ; ++i)

if (::max > TAB[i] && max < TAB[i]) //global (::) & local
max = TAB[i]; // local

return max; // local
}

65

Static variables – global scope

• Static variable types:

• Global scope

• Local with static

• Lets assume that our program has two modules and for example in stack.h
there are defined two variables sp and val:

int sp;

double val[MAXVAL];

• For such variables we can access them from another module using keyword
extern (so it gives us access to global variables from different files).

• If for some reason we do not want to allow such a scenario (i.e., to make
some variables global only in one file) we have to use keyword static.

• Declaration with static used for a global variables and a function limits their
scope from the line of their declaration to the end of file they are in.

• Declaring external object as static hides their name (in different files).

66

Static variables – global scope

• External declarations with static often are used for variables, but it can also
be used for functions.

• Names of the functions are global, accessible in all code.

• If a function is declared as static, then it is accessible only within the file
where it is declared.

• Example:

static char buff[SIZE];

static int index;

static void count(double a):

int other(int a, int b);

• Variables index and buff, also the function count are static– they are not accessible
from other files.

• Static function can only be called within the file where it is declared.

• Such names (variables and functions) can be used for other variables in different files.

67

Static variables – local range

• static declaration can be used for local variables.

• Internal static variables are local for their function. However, the
value they store are kept between different calling to their
functions (they act like a memory of a function).

• Example:

int Counter(void){
static int ct = 0;
return ++ct;

}
int number;
number = Counter(); // number == 1
..................
number = Counter(); // number == 2
..................
number = Counter(); // number == 3

68

Register variables

• register variable is an information for the compiler that such
variable will be extensible used.

• This suggest to store such a variable directly on a CPU register.

• Example:

register int i;

register char c;

• In practice the compiler / machine can ignore such a „suggestion”
and make a variable follow normal rules of memory assignment.

• Register variable cannot be used with & operator (to get their
address). It does not matter if such a variable will be stored in
register of CPU or not (we don’t know it anyway when we write
the code, nor knows it the compiler).

69

Questions?

