
Low-level programming

Lecture 3

Operators

Types conversion

Input / output operations

Marcin Radom, Ph.D.
Institute of Computing Science

Faculty of Computing and Telecommunication

Operators in C language
Arithmetic, logical, bit.

Operators priorities

Arithmetic operators

• Binary arithmetic operators: * / + – %

• Integer division cuts the remainder, only quotient is stored.

• Modulo division % (remainder). Statement x % y provides the
remainder of the division of x by y, 0 if x is divisible by y without the
reminder, e.g., 9 % 4 = 1

int number, even;

even = number % 2; // 0 – even (!), 1 – odd

• Operator % cannot be used for float and double types.

• Rounding and sign depend on the arguments.

• + and – (binary operators) have lower priority than * / and %. All five
operators have lower priority than unary operators + and – (these two
tells about the sign of a number, usually we use only – for negatives).

• Arithmetic operators are computed from left to right side.

3

Arithmetic operators

• Example – pattern:

(3 * x * x + 5 * x - 1) / (7 * x ((2 * x + 3) * (1 - x) + 5)
+ 3)

• Action when an overflow (i.e., when the result of an operation is
greater than the type range) or an underflow (lower than range)
depends on the compiler and computer architecture.

int a = 1700000000, b = 1900000000, sum;
sum = a + b; // integer overflow
float x = 0.5e35, y = 0.2e5, z;
z = x * y; // floating point overflow

4

3]5)1)(32[(7

153 2

++−+

−+

xxx

xx

Arithmetic operators – Example 1

int main(){

// take A value to make// an overflow

int W, A = 2100000000;

W = A + A;

printf("%d\n\n", W); // negative value

// take X value to make

// float overflow

double Z, X = 9E307;

Z = X + X;

printf("%32.15le\n\n", Z);

// division on integers cut the remainder

int p;

p = 9/5;

printf("\n%d\n\n", p); // 1

5

Arithmetic operators – Example 1

// Precision may also suffer when big integer is converted to float!

int k, m = 2111333444;

float f;

//double f;

f = m;

k = (int)f;

printf("\n%d\t%d\n\n", m, k); // m = 2111333444 k = 2111333504

// first add two number (there will be overflow)

// Then convert to long it. Value however would be correct

// if long long variable have been used.

int a = 2000222333, b = 2000222333;

long long n;

n = a + b;

printf("\n%lld\n\n", n); // negative number

// when: n = a + (long long) b; to n = 40004444666

6

Arithmetic operators – Example 1

// While adding one small and one big number (in floats) result may be unprecise due to

// lost of precision. The sum should be calculated starting from small values and

// then going to larger ones.

const long N = 10000000; // number of sums

double big = 1.8E18; // value of large number

double little = 1.2; // value of small number

double S1, S2;

int i;

S1 = big;

// sum of small and large number

for (i = 0 ; i < N ; ++i)

S1 = S1 + little;

printf("S1 = %28.15E\n", S1); // S1 = 1.8E18

7

Arithmetic operators – Example 1

S2 = 0;

for (i = 0 ; i < N ; ++i)

S2 = S2 + little;

S2 = S2 + big;

printf("S2 = %28.15E\n", S2); // small number sum: S2 = 1.8E18

// difference of sums of small and large numbers

printf("S2 - S1 = %23.15E\n\n", S2 - S1); // S2 - S1 = 1.2E7

// in theory – 10 iterations. In practice: infinite loop

// Number 0.1 (1,6*2-4) is represented as 0.10000000149011612 (double precision)

// (http://www.h-schmidt.net/FloatConverter/IEEE754.html)

double X = 0;

int N = 0;

while (X != 1.0){

X += 0.1;

++N;

}

printf("End. N = %d\n", N);

return 0;

}

8

Arithmetic operators – Example 2

• Jaen Meeus algorithm for Easter date (the result is day and month, no exceptions,
only year must be provided)

void main(){
int a, b, c, d, e, f, g, h, i, k, l, m, p, n, y;
printf("Provide year: ");
scanf("%d", &y);
a = y % 19;
b = y / 100;
c = y % 100;
d = b / 4;
e = b % 4;
f = ((b + 8) / 25);
g = (b - f + 1) / 3;
h = (19 * a + b - d - g + 15) % 30;
i = c / 4;
k = c % 4;
l = (32 + 2 * e + 2 * i - h - k) % 7;
m = (a + 11 * h + 22 * l) / 451;
p = (h + l - 7 * m + 114) % 31 + 1;
n = (h + l - 7 * m + 114) / 31;
printf("%\nIn year %d Easter is: %d.%d .\n\n", y, p ,n);

}

9

Arithmetic operators – Example 1, year 1828

10

Relational and logic operators

• Relational operators are: <, >, >=, <= . They all have the same priority. After them (from priority
point of view) there are: == and !=

• They have lower priority than arithmetic operators, therefore i < lim – 1 is same as:
i < (lim – 1) (so: first subtraction, then the result is compared with the left side)

• Logical and relational conditions are also integer values!

• Condition is true if the value is different than zero

• Condition is false if the value is equal to zero

• For example: 0 > 1 has logical/arithmetical value 0, condition 0 <= 1 has „logical” value different than zero
(because it’s true)

• Example:

#include <stdio.h>

int main() {

printf("(0>1) == %d\n", (0>1));

printf("(0<=1) == %d\n", (0<=1));

return 0;

}

results: (0>1) == 0

(0<=1) == 1

11

Relational and logic operators

• Example for relational operators:
enum boolean { false, true } ;

enum boolean lower, equal, notequal, greaterorequal;

int i = 5;

float x = 12.3;

lower = i < x; // true

equal = i == x; // false

notequal = i != x; // true

greaterorequal = i >= x; // false

• Logical operators: || (or), && (and), ! (not)

• Statements joined with these operators (|| and &&) are calculated
from left to right, to the moment when the value has been
established.

• If it happens before the end of the statement, the rest of it will
not be computed (because it is no longer necessary).

12

Relational and logic operators

• Example:
for(i = 0; i < lim-1 && ((c = getchar()) != '\n' && c != EOF; ++i){ //… }

• First condition of the loop is i < lim-1 and it is checked first. Then the
other conditions are being checked (the ones joined with &&). If the first
condition is false, the rest will not be checked / computed.

• Numerical value of false condition is 0, true – usually 1 (but in fact:
anything other than zero).

• If condition i < lim-1 is false, then its numerical value will be 0. It also
means than all the statement is false (from &&/and logical table).

• Unary negation operator ! changes argument different than zero
(true) into zero (false), false (0) into true (1), for example:

if (!abc) { /* … */ }

if (abc == 0) { /* … */ } // same as above

• To use any of the above depends only on the programmer preferences

13

Relational and logic operators

• Example for logical operators:

int a, b, c;

enum boolean z;

z = a < b && b < c; // if a < b < c then z = 1

int year = 2000;

enum boolean leap_year;

leap_year = !(year % 4) && year % 100 || !(year % 400);

int f = 0, k;

// if a < b then the rest of the condition is not checked

// and the f value remain unchanged. If a > b then the second

// statement is checked and the f value is incremented.

(a > b) && (k <= f++); // optimization

// if k > 5 then the second condition is not checked and the

// b value remains unchanged. If k < 5 then the second condition

// is checked and b value is changed into 7.

(k > 5) || (c < (b = 7));

14

Increment and decrement operators

• In C language the are two operators for incrementing and decrementing values of
variables.

• Increment operator ++ adds 1 to its argument, decrement operator - - takes 1 from its
argument.

• Operators ++ and - - can be used as prefixes (e.g. ++n) or as postfix (n++).

• Statement ++n increases n before its value will be used for anything else, when n++
increases it after n has been (possibly) used in a statement.

• Example:

++alfa ––beta // before

alfa++ beta–– // after

float x = 2.5, y;

x ++ ; // equal to x = x + 1;

++ x ; // equal to x = x + 1;

x -- ; // equal to x = x - 1;

-- x ; // equal to x = x - 1;

// error: (++ and --) can only be used to single variable, NOT IN STATEMENTS as below:

y = ++(2 * x);

15

Increment and decrement operators

• Using ++n and n++ can give different effects, e.g.:

int n = 5, x;

x = n++; // x = 5

n = 5;

x = ++n; // x = 6

int i = 3, j = 4, s;

s = j++ + i; // s == 7 j == 5

j = 4;

s = ++j + i; // s == 8 j == 5

• Sometimes it does not matter which form is used:

if (c == '\n') n++;

• In some situations only one of them can be used.

16

Types conversion (basics)

• Example: add text from table t to the end of table s. Table s must
be big enough (have space for all table t content):

void strcat(char s[], char t[]) {

int i, j;

i = j = 0;

while (s[i] != '\0') i++; // find the end of signs chain s

while ((s[i++] = t[j++]) != '\0') ; //copy t to the end of s

}

• The second loop while can be alternatively written as:

while (t[j] != '\0') {
s[i] = t[j];

i++; j++;

}

17

Bit operators

• C language offers six different bit operators:

• & - bit conjunction (AND)

• | - bit alternative (OR)

• ^ - bit symmetric difference XOR (eXclusive OR : 'first or the second one, but not
both' – gives 1 if one and only one argument is equal to 1

• << - bits moving left

• >> - bits moving right

• ~ - 1’s complement, negation – changes all 1 to 0, all 0 to 1.

• They can be used for integer variables: char, short, int, long both with and
without sign (negative and positive values)

• Example:

int i = 35, opposite, odd_value;
opposite = ~ i + 1;
odd_value = i & 1; // for odd values the result is 1

// i: 0000000000100011
// 1: 0000000000000001
// odd_value: 0000000000000001

18

Bit operator: &

• Bit conjunction operator & is frequently used to „mask” some set
of bits, e.g.:

n = n & 0177;

makes 0 for all lower bits of variable n

• 0177 – octal form of decimal 127

• 127 is: 01111111 (so 7 lower bits is set to 1

• & is a bit AND, it means it will gives 0, it at least one of the arguments is 0.

• E.g. n: 0 0 1 1 0 1 0 1 1 0 1 1 1 0 1 1 (13755)10

0177: 0 0 0 0 0 0 0 0 0 1 1 1 1 1 1 1 (127)10

new n: 0 0 0 0 0 0 0 0 0 0 1 1 1 0 1 1 (59)10

19

Bit operator: |

• Bit alternative operator | is used to „set” bits, e.g.:

x = x | SET_ON;

where SET_ON is some vector of bits which are either set (=1) or unset (=0).

• Operation above will set all bits in x to 1 if on the same position of
SET_ON the value is 1.

• E.g. x: 0 1 1 1 0 1 1 0 0 0 1 0 1 1 0 0

SET_ON: 0 1 0 0 1 0 1 0 0 1 1 1 1 1 1 1

result: 0 1 1 1 1 1 1 0 0 1 1 1 1 1 1 1

20

Bit operator: ^

• Symmetric difference operator ^: sets 1 only if in both arguments on the
same position are different values (1 and 0 / 0 and 1), 0 if there are the same
(both 1’s or both 0’s), e.g.

new_number = number ^ SET_XOR;

• E.g. number: 0 1 0 1 0 1 0 1

SET_XOR: 1 1 1 1 0 0 0 0

new_number: 1 0 1 0 0 1 0 1

• Other examples:

char a = 'r', b = 8;
a = a & 0x5F; // changes small ASCII letters into large ones

// a: 01110010 ('r', 11410)
// 0x5F: 01011111 (9510)
// result: 01010010 ('R', 8210)

b = b | 0x30; // changes unary value 0-9 into its sign code in ASCII
// b: 00001000 (810)
// 0x30: 00110000 (4810)
// result: 00111000 ('8', 5610)

21

Bit operators: << and >>

• Operators << and >> move bits of left argument by the number of positions given by
the right argument: in the left direction (<<) or in right direction (>>). Bits moved
outside of a range are given 0 value (also taken from outside range)

• E.g. x << 2 moves bits in x by 2 positions left, it is equivalent to the multiplication x
by 4.

• Examples for x:

x: 0 0 0 0 0 1 1 1 (7 = 4 + 2 + 1)

new_x: 0 0 0 1 1 1 0 0 (28= 4 + 8 + 16)

• Analogously >> moves bit in right direction and is equivalent to the division without
remainder.

• When moving in right direction value without sign (unsigned) left over’ bits are filled
with 0’s

• When moving bits of signed value, on some machines such bits are filled with 0’s
(„logical” movement), on the other ones with the sign bit (‚arithmetic’ movement).

int i = 35, r, s;
r = i << 2; // equivalent r = i * 4;
s = i >> 3; // equivalent s = i / 8;

22

Compound assignment operators

• Statements like a = a + 20 (where the same variable is on the left and on the right side of the
assignment operator =) can be also written as a += 20. Operator += is called assignment
operator.

• For most binary operators there exist assignment operator op=, where op is:

*= /= %= += –= <<= >>= &= ^= |=

• Important!!! The whole statement on the right side is considered as single argument for the
operation:

stat1 op= stat 2 //stat1 and stat2

is equivalent to

stat1 = (stat1) op (stat2)

where statement stat1 is calculated only once:

Example: a *= b – c + 1;

is in fact: a = a * (b – c + 1);

and not: a = a * b – c + 1; (!!!)

23

Compound assignment operators

• Assignment has value and can be placed in statements. Most often:

int c;
// below we read from keyboard a sequence of signs.
// If the sequence ends, getchar returns EOF (end of file
// code). c must be int type (for EOF value for example)
while ((c = getchar()) != EOF)

• Example:

double price, increment;
price += increment; // price = price + increment;

int x = 10;
x -= 5 – 2 ; // x = x – (5 - 2)

int i, j, k;
i = (j = 5) + 1; // is equivalent to j = 5; i = j + 1;
i = j = k = 0; // is equivalent to i = 0; j = 0; k = 0;

24

Conditional operator

• Lets assume we want write the bigger value (out of two) into some c variable. In can be
done in this way:

if (a > b)

c = a;

else

c = b;

• It can also be done using conditional operator (three-argument): = ? :

c = (a > b) ? a : b;

• Conditional statement has general form:

{variable =} statement1 ? statement2 : statement3

How it works: first statement1 is calculated. If it is true (different than 0) then statement2 is calculated
and its value will be assigned to the opening variable on the left side. If statement1 is false (or has value
0), then statement 3 is calculated and its value will be assigned to the opening variable (in the example
above it is variable c).

25

Conditional operator

• Parenthesis are not necessary in a conditional statement – because ? operator priority
is very low.

• Conditional statements can narrow down the size of the code:

• Example:

float x, y, max;

max = x > y ? x : y; // () are not required

• Order/operator sizeof

• Returns the number of bytes of its argument (variable, table, etc.)

• Example:

long number_1;
size_1= sizeof number_1; // == 4
size_1 = sizeof (long); // == 4

26

Comma , as operator

• Statements separated by comma are calculated from left to right, type and value of
the results is taken from the right-most argument.

• Using comma operator is limited. It is generally better to separate instruction using
semicolons.

• Can be used in loop for.

• Example:

long a1, a2, a3, s;
// a3 == 84000 s == 84000
s = (a1 = 52700, a2 = 31300, a3 = a1 + a2);
s = a1 = 52700, a2 = 31300, a3 = a1 + a2; // s == 52700

float x, y ,z;
z = (x = 5.3, y = 2.5, y++); // y == 3.5 z == 2.5

• Assignment operator

• Calculations / assignment are performed from right to left, e.g.:

a1 = a2 = a3 = 123;

27

Priorities and joining the operators

• In C every operator has a priority (it decides the sequence of
calculations, e.g., a+b*c – first multiplication, then addition).
Joining decides from which side the calculations start when same
priority operators are being used, e.g., subtraction has left-side
joining, so 3-3-3 gives -3.

• Example:

char a, b, c, d, e;
// left-side joining, so: (((a + b) - c) - d) + e;
a + b - c - d + e;
// right-side joining, so: a ? b : (c ? d : e);
a ? b : c ? d : e;

28

Priorities and joining the operators
Example 1

int main () {

int nFirst, nSecond= 5, nThird;

nFirst = 25;

nThird = nSecond + nFirst;

printf("\nWThe result of \n"

„Third = Second + First\n"

„for Second = 5 and First = 25 \n"

"------------------------------\n"

" Third = %d\n\n", nThird);

return 0;

}

29

Priorities and joining the operators
Example 2

int main () {

double dbA, dbB;

printf("\nCalculating statement a*a+b+1\n"

"---------------------------------------\n"

"Give value of a : ");

scanf("%lf", &dbA);

printf("\nEnter value b : ");

scanf("%lf", &dbB);

printf("\nResult : a*a+b+1 = %.2lf\n\n", dbA * dbA + dbB + 1);

return 0;

}

30

Priorities and joining the operators
Example 3

/*

k =

1 + x for x > 0

37 for x == 0

-x - 1 for x < 0

*/

int main () {

double dbK, dbX;

char* Text = "\nEnter value x : ";

printf("%s", Text);

scanf("%lf", &dbX);

dbK = dbX > 0 ? 1 + dbX : dbX == 0 ? 37 : -dbX - 1;

printf("\n Result : k = %5.2lf\n", dbK);

return 0;

}

31

Priorities and joining the operators

32

Operators Joining

Function execution: () one-argument postfix : [] -> left-side

(typ) sizeof one-argument prefix : ! ~ ++ -- + - * & right-side

* / % left-side

+ - left-side

<< >> left-side

< <= > >= left-side

== != left-side

& left-side

^ left-side

| left-side

&& left-side

|| left-side

?: right-side

= += -= *= /= %= ^= |= <<= >>= right-side

, left-side

Operators summary

• Using joining rules and priorities without parenthesis makes program
smaller, but increases the chances for errors and bugs.

• A good advice for a start is to use parenthesis more often, even when
theoretically they are not required.

• In C the sequence of calculations for operator arguments is not pre-
defined (except for && || ?: ,), e.g.:

X = fun1() + fun2();

Function fun2() may be executed before fun1() or the opposite...

• Similarly, sequence of calculations for function arguments is not specified,
for example:

my_function(++n, reverse(n));

• It is not known (i.e., it depends on the compiler) whether n will be incremented first,
and then send to reverse, or the opposite.

33

Data types conversion
Theory

Types conversion

• If the operator uses arguments with different types they will be
converted to a common type using rules:

• Automatically converted are only such statements where 'lower' type is
converted to the 'bigger' type without loosing information (i.e., widening
conversion – as a result the number of bytes required for the final value is
incremented)

int li32 = 21212345;
long long li64 = li32; // extending conversion

• Statements which does not have sense, e.g. table index as a float are forbidden:
table[3.14]

• Statements where loss of information can occur (i.e., narrowing conversion –
number of bytes for the result is reduced) are not forbidden, but may trigger
warnings from the compiler, e.g.:

int li32 = 21212345;
short li16 = li32; // narrowing conversion

// loss of data li16 == -21319

35

Types conversion

• Variables type char are usually small (signed) values from 0 to 127 (0 – 7F as
hexadecimal), so they can be used in arithmetical statements.

• They can provide good flexibility for conversion issues.

• Example of a program changing a sequence of digits into an int:

int number(char s[]) {
int i, n;
n = 0;
for (i = 0; s[i] >= '0' && s[i] <= '9'; ++i) {

// of s[i] is a digit, then subtracting '0' gives
// us the numerical value of such a digit
n = 10 * n + (s[i] – '0’);

}
return n;

}
// e.g. for "123„
// i = 0, n = 10 * 0 + ('1' – '0') = 1
// i = 1, n = 10 * 1 + ('2' – '0') = 12
// i = 2, n = 12 * 1 + ('3' – '0') = 123

36

Types conversion

• Another example – a program changing large letters (and
only them) into small ones:

int lower(int c){

if (c >= 'A' && c <= 'Z’)

return c + 'a' – 'A’;

else

return c;

}

// e.g. for 'D’

// ASCII code 'D' == 68, 'a' – 'A' is equal 32,

// so 68+32=100, what gives ASCII code of 'd'

• The program works because in ASCII table numerical value
distance between letters from a-z to A-Z is the same.

37

Types conversion

38

Types conversion

• In header file <ctype.h> there are some interesting conversion
functions.

• One of them is function tolower(c) which return value of a lower
sign letter if c is big letter.

• For example if(c > '0' && c < '9') checks if c is a digit – it can be
replaced by isdigit(c) from <ctype.h>.

• C language does not precise whether char values are with sign or
not, so after conversion to int there can be some issues, e.g.:

char c = 255;
int a = c; // a == ?

Result depends on the machine / system / compiler.

39

Types conversion

• Logical and relational statements joined with || and && will
have value of 1 if they are true, and 0 if they are false.

• For example:

int d = c >= '0' && c <= '9'; // d = 1 if c is a digit

Assign to the variable d value 1 if and only if c is a digit (ASCII code
between 48 (zero digit) and 57 (nine digit)).

• For instructions like if, for or while 'true' in their conditional
part means any value other than ZERO („not zero”).

• In other words: while(0) will never start, and while(1) is
infinite loop.

40

Types conversion

• In general if arguments of some binary operator (e.g. * or -) have
different types, the „smaller” type is promoted to a „larger” one before
computing the statement.

• In other words in implicit conversions (done by the compiler
automatically) smaller type is temporarily extended to larger type and
the result (theoretically) is given as a larger type.

• Rules for arithmetic conversions:

• If one of two arguments is long double, then the second one will be extended to
long double

• In other case, if any argument type is double, the second one will be implicitly
converted to double

• In other case, if any argument type is float, the second one will be implicitly
converted float

• Alternatively, all other objects like char and short are converted to int

• Then, if any argument has qualifier long, then the second one will be converted
to long.

41

Types conversion

• Rules become more complicated for arguments with unsigned qualifier.

• The result of comparison of two objects, of which one is a number with
sign (signed), and the second one is without sign (unsigned) depends on
the machine – the results may vary!

• Variables with unsigned can have greater values than the ones with
signed, because in opposition to signed, no bit has to „remember” the
sign, variables with unsigned are only positive.

• Rules for arithmetic conversion when at least one argument is
unsigned:

• If one of two arguments is unsigned long int, the second one will be converted
(extended to) unsigned long int

• In other case, if any argument is long int, and the second one is unsigned int,
results depends on the fact whether long int can store any value from unsigned
int. If yes, the argument unsigned int is converted to long int. If not, both will be
converted to unsigned long int.

• In other case, if any argument is unsigned int, then the second one is also
converted to unsigned int.

42

Types conversion

• Floating point arithmetic can be calculated using single-precision – change
from C99 version.

• Shorter integer types in combination with longer one with a sign does not
carry no-sign property on the resulting type – change from C99 version.

• Example:

int i; char c;
i = c; // lower value written to larger ones – OK

// no loss due to conversion
c = i; // Attention – this can cause a loss of data:

// e.g. i == 258, c == ?

• c = i; - if i is larger than 255, loss of data will occur.

• If x is type float while variable y is type int then specific conversions occur.
However, y=x (so float into int) will cause the loss of fraction part.

• There is a problem when there is no prototype of a function (then all char and
short become int, while float becomes double).

43

Types conversion - casting

• In any statement we can explicitly force the conversion of types
using unary casting operation.

• Construction:

(type) statement

Forces conversion of statement in specific type.

• Casting works as if the value of a statement should (must) be
assigned to variable having type.

• E.g. function sqrt() (from: math.h) calculates square root from a
given number and demands the value to be double. If n is e.g. type
int, then casting is requited:

sqrt((double)n);

44

Types conversion - casting

• ATTENTION: casting creates temporary value of a given type. The
original variable (n from the previous example) remains unchanged (its
type obviously – also).

• Example:

int how_many = 27;
float that_much = 1.4;

how_many = how_many + that_much ;
/* conversion: 27 to 27.0, floating point addition, conversion 28.4 to
28, assignment */

how_many = how_many + (int) that_much ;
/* conversion 1.4 to 1, floating point addition, assignment */

• Casting operator has the same priority as any other unary operator.

• In general it is a suggestion to the compiler that the programmer knows
what he’s doing. If he really is... well, depends on skill.

45

Types conversion - casting

• If arguments types are declared in function prototype (it informs the
compiler on the types of in/out parameters of a function), e.g.:

double sq_root(double);

then its calling:

double result = sq_root(2);

will force automatic conversion of integer value 2 into floating-point value 2.0 (double
precision) and such a value will be send to function sq_root, without additional casting in
the code.

• The above will works if a function has no prototype on a condition, that
sq_root will be in the same files as function from which sq_root will be called
and its (sq_root) definition will be declared before its calling.

• If such a function will be below its calling (in a code), compiler will give
warning. Errors can also occur.

• If there is no prototype, function is assumed to have all argument of type
int.

46

Naming new types

• In a C language there is order typedef which can be used to create new
names for types. It does not create a new type, it only provide additional
name for the existing type.

• General formula:

typedef type new_identifier

• Examples:

typedef char* string;
string S1, S2, S3 = "text";

typedef int num;
num k;
int l = 5;
k = l; // type num is „equal” to type int

typedef long BIG;
unsigned BIG ww; // error: long in type is really signed long

47

Input / output data operations
Functions putchar, getchar, printf, scanf

Output function: putchar

• Function from stdio.h , declared as:

int putchar (int c) ;

• Sends sign c on standard output (stdout), in default state: PC monitor.

• Returns the value of the sign if everything went well, returns EOF code if there was
any error / problem.

• Example:

char cc = 'R’;
putchar (cc); // 'R' on screen

• Results can be redirected to the file using sign >. If program uses function putchar,
then:

prog > outfile

forces program prog to write its results to outfile, and not on the standard output.

• Using putchar(c) is equivalent to putc(c, stdout).

49

Output function: puts

• Function from stdio.h , declaration:

int puts (char *text);

• Writes text in table text and the new line sign on the standard output: by
default: on screen.

• Return positive value or EOF when there was an error.

• Example:

#include <stdio.h>
int main()
{

char *nn = "Some text";
puts(nn);
return 0;

}

50

Output function: printf

• Function from stdio.h, declaration:

int printf (const char *format, statement, statement,
...);

• Function printf transforms its argument according to the rules
defined by special statement in format block. Then it sends the
formatted text to the standard output. It also returns the number
of written signs.

• Inside format block there are both signs to send into stdout and so
called conversion patterns.

• Each conversion pattern starts with %, ends with some
characteristic sign for a given pattern (number, letter, etc.)

51

Output function: printf

• Example:

int colors = 256;
printf("%d", colors);
double size = 15.72;
printf("%lf", size);
char *Text= "Documentation.";
printf ("%s", Text);

• Conversion pattern:

% [description] [length] [.precision] [prefix] conversion_sign

• Between % and some end sign there may be:

• Description:

• - (minus) – order to move the argument to the left end of a field (or add spaces from the right side).

• + (plus) – sign of a number e.g. +35

• space – space sign instead of minus e.g. 35

• Length:

• Number describing the minimal size of a field. Converted argument will be written into a field of a size at least length.
If necessary, field will be extended to the full required size from the left (or from the right if ordered, e.g. by minus
sign).

52

Output function: printf

• Length of a field can be replaced by *, what means that the required value
must be calculated using another argument (must be type int), e.g.

printf ("Width trick: %*d \n", 5, 10);

// Width trick: 10

• Precision:

• dot separates length of a field from precision

• number defining precision – e.g. number of digits for the decimal fraction,
maximal number of signs for a text, or minimal number of digits for an
integer (zeroes will be added if necessary).

• Prefix:

• letter h if an integer argument must be written as short (s is reserved for
string – sequence of signs), letter l – if variable is type long.

• Example:
printf ("Enter number in different systems: %d %x %o %#x %#o \n", 100, 100, 100, 100, 100);
// 100 64 144 0x64 0144
printf ("Add spaces to the beginning: %5d \n", 1977);
// _1977

53

Output function: printf

• Examples:

int Alfa = 5;

float Beta = 12.45;

printf ("Result: \n Alfa = %d,\t Beta = %f\n", Alfa, Beta + 500);

// Result: Alfa = 5, Beta = 512.450000

char option = 'X’;

char *Text = "Program description.";

printf("Selected option: %c : %31s", option, Text);

// Selected option: X : Program description.

int cats= 2, *wsk_k = & cats;

float test = 23.345678;

double sum = -0.01234567;

printf("Number of cats: %d", *wsk_k);

// Number of cats: 2

printf("\nTest result = %12.3f\n Sum = %.5lf\n", test + 5, sum);

// Test result = 28.345

// Sum = -0.01234

54

Output function: printf

void main () {

int alfa = 105000;

printf("%d", alfa);

//%hd – short -> overflow, negative

printf("\n\n");

float result = 187.457f;

printf("\nResult: %f\n\n", result); // round up

long long a = 3111222333ll;

int i = 3111222333;

printf("\nLong Long data: a = %lld\nInt data : i = %d\n", a, i);

// overflow, negative

double power = 125.4567890123456;

printf("%lf", power); // .2 , 12.2 – additional spaces

printf("\n............\n\n");

55

Output function: printf

// conversion pattern in table of signs

long a = 5, b = 7;

int i = 1, j = 3;

char Pattern[] = "\nLong data : a = %ld\tb = %ld"

"\nInt data: i = %d\tj = %d\n";

printf(Pattern, a, b, i, j);

// text formatting in printf, example:

printf("\nTable of numbers\n\n"

" ------------------------\n"

"| 1. One %10.4lf |\n"

"| 2. Two %10.4lf |\n"

"| 3. Three %10.4lf |\n"

" ------------------------\n\n",

0.0234, 1272.23, 15432.2349321);

}

56

Output function: printf

• Precision can be replaced by *, what means that the
necessary value must be taken from the next argument
(must be type int), e.g.:

printf ("%.*s", max, s);

writes down maximally max signs from chains 's'

57

Output function: printf

• Declaration of printf in library stdio.h have pattern:

int printf(char *fmt, …);

• … (three dots) means unprecise number of arguments (their number and types are
unknown) – they can be places only as the last arguments of a function.

• Library stdarg.h has macros allowing the creation of functions with unspecified
number of arguments.

• Macro va_start initiates a variable (ap in example) for pointing on the first unspecified
argument from a list …

• Another variable must be created: va_list to call the unspecified arguments of such a
function

// ap – pointer for arguments

va_list ap; // points unspecified arguments, one by one

• Macro va_start as a first argument takes variable va_list, and as a second – last
specified argument, in our case it is fmt.

va_start(ap, fmt) // points 1-st unspecified argument

58

Output function: printf

• Each calling of macro va_arg gives one argument and moves ap on the next va_arg(ap, <type>).

• Name of the type is necessary to identify the searched value and the size of a step (i.e., how much ap must be moved). E.g.:

va_arg(ap, int);

• After all calling, macro va_end must be used, it will clear all variables connected with the calls (must be used before ending of a function).

• Example of simple my_printf:

#include <stdarg.h> /* minimal printf with unspecified arguments */
void minprintf(char *fmt, …){

va_list ap; /* points each unspecified argument one by one */
char *p, *sval;|
int ival;
float dval;
/* ap point 1, unspecified argument; fmt – last specified argument */
va_start(ap, fmt);
for (p = fmt; *p; p++) {

// search in fmt the begging of conversion pattern
if (*p != '%') {

// sign outside of a pattern will be put on screen
putchar(*p);
continue;

}

59

Output function: printf

switch (*++p) {

case 'd’: // unspecified argument is type int

ival = va_arg(ap, int); // takes the argument

printf("%d", ival);

break;

case 'f’: // unspecified argument is type float

dval = va_arg(ap, float); // takes the argument

printf("%f", dval);

break;

case 's': // writes text sign by sign

for (sval = va_arg(ap, char *) ; *sval; sval++)

putchar(*sval);

break;

default:

putchar(*p);

break;

}

}

va_end(ap); /* clear all in the end */

}

60

//the C library macro void va_end(va_list ap) allows a function with variable arguments which used the
//va_start macro to return. If va_end is not called before returning from the function, the result is
undefined

Input function - getchar

• Function from the library stdio.h , declaration:

int getchar(void);

• This function reads sign by sign from the standard input (default: keyboard),
returning each time the sign from input or symbolic constant EOF as int.

• Reading signs ends when special sign code EOF (End Of File) is reached.
Usually it has value -1, but all equations should be done with EOF

if (getchar() != EOF) { /* … */ }

better than:

if (getchar() != -1) { /* … */ }

• In many environment keyboard can be replaced by file using sign <, e.g.:

prog < infile

means prog will read sign from file infile, and not from a keyboard.

61

Input functions – getch, getche

• Function from a library conio.h , declaration:

int getch();

• Non-standard function, apart from reading a sign from keyboard it also
allows to read a code of a pressed key.

• Reads from buffer if there is something in it, if it is empty calls from
getchar. Without echo.

• Returns ASCII code or 0.

• Example:

char new_one;
new_one = getch();

• getche

• As getch + echo (return sign (sign code) taken from keyboard buffer)

62

Input function - scanf

• Function from a library stdio.h , declaration:

int scanf(const char *format, pointer, pointer, ...);

• Syntax as in printf, but this function reads from the standard input (e.g.
keyboard). Interprets read signs with the patterns given in format and
remembers the results in memory areas given by pointers. Therefore every
argument must be a pointer.

• Stops when reads all given data in format / pointers or when a given value
does not match conversion patter in format.

• Returns the number of successfully read data.

• Further calling of scanf starts the reading from the next unread sign by
previous scanf.

• Reads all signs from stdin.

• Format defines conversion pattern.

63

Input function - scanf

64

Argument type Conversion sign

char %c

short %hd

int %d, %i

long %ld

long long %lld

float %f, %e

double %lf, %le

long double %Lf, %Le

char* %s

Input function - scanf

• Examples:

int number_of_pieces;

scanf ("%d", & number_of_pieces);

double length;

scanf("%lf", & length);

scanf("%lf%d", & length, & number_of_pieces);

int lamps, chairs, *wsk = &chairs;

float temp;

double price;

char option;

scanf("%d%d%f%lf", &lamps, wsk, &temp, &price);

// We write: 1 5 SP 3 4 7 Enter - 2 5 . 4 Enter

// 3 . 9 9 Enter

// Results: lamps == 15 chairs == 347 temp == -25.4 price == 3.99

65

Input function - scanf

// reading single signs

fflush(stdin); // cleaning keyboard buffer

scanf("%c", &option);

// A Enter

// option== 'A'

// reading texts

char Text[16]; // 16-element table

scanf ("%15s", Text); // reads all sign TO SPACE SIGN or max. 15 signs

// A l f a Enter

// Text == "Alfa"

scanf ("%15[-~]", text); // reads text separated by spaces

// A l a SP m a SP k o t a . Enter

// Text == "Ala ma kota."

66

Input function - scanf

• Examples:
int main () {

int alfa1 = 10;
scanf("%f", &alfa1); // error

char znak1, znak2;
int alfa;
scanf("%d", &alfa); // correct

// fflush(stdin);

// znak2 = getch(); // reads sign after ENTER
scanf("%c", &znak1); // reads space / new line sign
// better: scanf("%1s", &znak1);
int alfa2 = 3, *wsk_alfa2 = & alfa2;

scanf("%d", wsk_alfa2); // ok
double metric = 5.5;
scanf("%f", &metric); // %lf
int a = 5;
char NN[5];
// scanf("%s", NN); // does not check memory size
scanf("%4s", NN);
return 0;

}

67

Questions?

