
Low-level programming

Lecture 1

Introduction

Marcin Radom, Ph.D.
Institute of Computing Science

Faculty of Computing and Telecommunication

Organization
Lecture – rules of evaluation

Literature

Lectures plan

Evaluation rules

• Laboratories

• Exercises take place in laboratory,

• Evaluation is based on projects and tests (or whatever rules the person
responsible for the laboratories establish).

• Lectures are available on page:
http://www.cs.put.poznan.pl/mradom

• Lectures and laboratories are not connected in terms of the
end-evaluation.

• Evaluation of the lectures – in form of a test probably in the last
week.

3

http://www.cs.put.poznan.pl/mradom

Lectures plan

• Lecture I

• Introduction to C: history, identifiers, C alphabet

• Types, constants

• Lecture II

• Instruction if-else

• Instruction switch

• Instruction for, while, do while

• Instructions break, continue

• Preprocessor: #define and macro definitions, conditional compilation

• Lecture III

• Basic operators, bit operators, conditional operators

• Priorities of operators

• Data types transformation

• Input and output operations

• Lecture IV

• One and many-dimensional tables

• String transformation (string.h)

4

Lectures plan

• Lecture V

• Dynamic memory allocation, pointer arrays

• Structures and unions

• Dynamical data structures – lists

• Structure tables, pointers to structures

• Connecting multiple files in a single project, compilation issues

• Static variables

• Lecture VI

• Functions – definitions, arguments

• Structures and tables as function arguments

• Recurrence

• Lecture VII

• Pointers to functions

• Tables of pointers to functions

• I/O operations, files

5

History of C
History, features, popularity

C language history

• Developed in 1969-1973 (UNIX kernel written in 1973).

• Predecessor was the called B language and before that – BCPL
(1966, Martin Richards).

• 1978: The C Programming Language, Brian Kernighan & Dennis
Ritchie.

• Object extension: C++ language (non-object part of the language
has been extended as well).

• In 1983 American National Standardization Institute (ANSI)
created a committee with a task of formulation of C language
specification.

• In 1989 – ANSI standard (i.e. ANSI C) – modern compilers realize
most of the feature of such standard.

7

C language history

• In 1990 C language standard has been written as ISO 9899. This
document modified the ANSI standard. Such languages are
informally called C89.

• Since that time many modifications have been made. The most
important one is 9899:1999, and such language is called C99:

• Changed comment system, comment: //

• New standard functions and header files

• Extended preprocessor

• New keywords, e.g., const, enum, signed, void

• ISO 9899:1999 is not fully support by compilers. But, e.g., GNU C
has most of the aforementioned changes.

8

C language history

• Newest standard: ISO/IEC 9899:2011, known informally as C11. It
introduces:

• Multithreading support

• New header files, e.g., <threads.h>, <srdatomic.h>, <uchar.h>

• Anonymous structures and unions.

• New keywords, e.g., _Generic, _Thread_local, _Alignas

• Unicode signs support, i.e. new types of data independent from
platform: char16_t, char32_t

• Function gets() removed and replaced by gets_s()

• More secure version of fopen: fopen_s

• GCC compiler supports C11 in a limited range. In order to compile
in this standard, an option –std=c11 or –std=iso9899:2011 must
be chosen.

9

C language history

• C (ANSI C) is a structural language, predecessor of currently used
object - oriented languages.

• It is a procedural programming language, with the following
steering orders:

• group of instructions, decisions: if-else

• choosing from a set of cases: switch

• repeating with checking the condition at the beginning (while, for) or at
the end (do) of a loop

• loop interrupting: break

• It is called a low-level programming language, because it deals
with signs, number and addresses, instead of objects.

• It is a general-usage language (i.e., it has not specific task).

• It is not connected strictly with a precise operating system or CPU

10

C language

• Why it is worth knowing:

• The most commonly used programming language.

• It is not that hard to learn.

• Low-level programming allows writing fast programs.

• Most of the currently used programming language has C syntax.

• Cons of C:

• Some of its features go against intuition or (human) logic.

• It is not so good in supporting the programmer in a task of errors finding and
correcting.

11

Programming languages popularity (2018)

http://www.tiobe.com/index.php/content/paperinfo/tpci/index.html

12

http://www.tiobe.com/index.php/content/paperinfo/tpci/index.html

C Programming
Identifiers, types, variables

A simple example

#include <stdio.h>

int main() {

printf ("Hello World!\n");

return 0;

}

• #include <stdio.h> - preprocessor instruction: add standard input / output library:
stdio.h – STanDard Input Output.

• Function main() – the program always starts at the beginning of main(). In the
example the function has no arguments (i.e., empty brackets, however they are
necessary according to the C syntax) – the function not expects any arguments when
called.

• Inside main() we call function printf("Hello World!\n"), which puts the text string on
the screen. \n represents new line.

▪ Sign\ introduces a special character, impossible to write directly. For
example: \t means tabulation, \b reverse the cursor by one position, \\
introduces sign \, \" introduces " (in cannot be directly written in the printf()
braces).

14

Simple example

• Function printf() will not automatically move cursor to the next line. So:
without \n, these three function will print the text in the same line:

printf("Hello ");

printf("World!");

printf("\n");

• Curly brackets surrounds instructions within a function.

• Reminder:

• Variables and constant variables are basic types of object used in a program.

• Declarations introduces necessary variables and specify their type (and the
starting values).

• Operators decide what to do with them.

• Type of variables determine the set of their values and operations which can be
performed on them.

15

C language alphabet

• C alphabet – set of signs which are used to write the programs in C
language.

• The language consists of:

• All signs of 8-bit ASCII code:

• Large letters: A – Z

• Small letters: a – z

• Digits: 0 – 9

• Special signs: ! * + \ " < # (= | { > %) ~ ; } / ^ - [: , ? & _] ' and the space

• C language (precisely: C99) supports writing sign with Unicode
norms (universal standard of signs coding)

• Code will not be compatible with the older versions of ANSI C, which can
reduce code reusability.

• Most commonly used coding standard is UTF-8.

16

Identifiers, orders, types

• The name of the variable can contain letters and digits, however it must start with
either a letter or: _

• In the C language large and small letters are distinguished. So variable and Variable
are two different variable names. Other examples:

alfa Alfa AlfA ALFA
Milk_price TransportCOst

• It is common to write variables with small letters and names of symbolic constants
with large ones.

• Keywords of C are reserved and cannot be used as names of variables:

• auto – old, unused local variable keyword

• double – floating point value, double precision

• int – integer type with sign

• struct – structure declaration

• break – exit from a loop or switch

• else – optional part of if

• long – modifier or type of integer

• switch – instruction for choosing from a set of options

17

Identifiers, orders, types

• case – alternative for switch order

• enum – enumerative type

• register – register variables, old, unused (mostly)

• typedef – for type creation

• char – single byte character

• extern – for global variable declared in different file

• return – instruction for returning from a function

• union – union declaration

• const – constant order

• float – floating point variable, single precision

• short – type modifier or data type

• unsigned – modifier, variable without sign

18

Identifiers, orders, types

• continue – instruction for returning to the beginning of a loop

• for – loop instruction

• signed – modifier: variable with sign

• void – null data type

• default – default alternative in switch – case

• goto – jump instruction

• sizeof – size operator

• volatile – variable always read from memory

• do – part of do – while loop

• if – if – else instruction

• static – value of a variable is saved between consecutive returns to a function; static
variable, local symbol

• while – loop instruction

19

Comments

• Signs after // are considered one-line comments (like in C++)

• E.g.:

instruction; // comment, may be anything

//

• /* and */ opens and closes multi-line comment.

/*

......................

something wise

........................

*/

• Comments cannot be embedded (ANSI C standard).

• They cannot be part of a string or constant statement.

20

Types of integer values

• There are multiple subtypes of integer number type:

• Additionally there are some qualifiers which can be used with
integer types:

• short and long keywords can also be used for modifying the range of
variable values.

21

type signed unsigned bytes

char – 128 , + 127 0 , 255 1

short – 32 768 , + 32767 0 , 65535 2

int,

long

– 2 147 483 648 ,

+ 2 147 483 647

0 ,

4 294 967 295

4

long

long

– 9 223 372 036 854 775 808 ,

+ 9 223 372 036 854 775 807

0 ,

18 446 744 073 709 551 615

8

Types of integer values

• The int type in general represents an integer size dependent on a current
computer architecture.

• Type short often has 2 bytes, long type – 4/8 bytes.

• The compiler can freely choose the real sizes of such variable types,
but with some restrictions::

• Types short and int must be at least 2 bytes in size.

• Type long must have at least 4 bytes.

• Type short cannot be larger than int, and int cannot be longer than long.

• Qualifiers like signed and unsigned can be used with a char type or any
other integer type.

• Variables preceded with unsigned are always positive or equal to 0, they
follow the modulo 2n arithmetic (n – number of bits in a given type), e.g.
variable with a type unsigned char will have a range from 0 to 255.

• char short int long long long signed unsigned

22

Floating-point variables

• To store both integer part and fraction part.

• Type long double introduces a floating-point variable with a single
precision.

• Sizes of variables of such type depend on implementation.

• Types float, double, long double can represent one, two or even
three different sizes of variables.

23

type range bytes

float 3.4*1038 4

double,

long double
1.7*10308 8

Floating-point variables

• Standard for such variables: IEEE 754. It defines two base classes of
binary floating-point numbers:

• 32-bits (single precision)

• 64-bits (double precision)

• Where the pattern which code a number is as follows:

DFP = significand * 2exponent

24

Format Sign byte Exponent bit Significand
bit

32 bity 1 8 23

64 bity 1 11 52

Types float / double

• Floating-point numbers are written with a decimal dot (e.g.
120.4) or with the exponent, e.g., 1e-2 or both.

• Example values:

1.25 0.343 .5 2.
35.56E-12 0.34e2 5e3 17.18E+28

• Type of the number is assumed as follows:

• On the basis of the value (by default: double)

• Given by the number itself

• Letter f or F at the end of the number means float, letter l or L means
long double. E.g.:

12.545f // float
0.2345676543F // float
0.5e-3lf // long double
0.9999998899E456LF // long double

25

Integer values (type int)

• Such type is assumed as follows:

• On the basis of a value (default: int)

• If variable without L on the end is not small enough to fit int int type, it is
assumed to be long. For example:

12 25467 // signed int
34760548093 // signed long long

• Pointed in the number:

• In variable long on the end of number there is l (small L) or L.

• In variable with keyword unsigned on the end of a number value there is
either u or U. Ending like ul or UL means unsigned long.

• For example:

15L 077777l 0xFF4FFFL // signed long
254ll -457LL 0xAB56LL // signed long long
45211u 0xffau // unsigned int
3000000000ul 0xC56AFB44UL // unsigned long
-120ULL 78ull // unsigned long long

26

Character variables

• Integer value can be given also in octal or hexadecimal form:

• 0 (zero) before a number signifies octal numeral system, e.g., 077 is 63 decimal

• Hexadecimal number is proceeded by 0x or 0X, e.g., 0xFF = 0XFF = 255 in
decimal system

• Examples:

12 154555 // decimal
012 03777453 // octal
0xAB 0x5c5d 0xfff45a // hexadecimal

• Character variables (also integer type): char

• Single variable of such a type is an integer which can store values between 0 and
255. Also, a single random character fits in such a type, because it is always
stored in one byte.

• Such a character must be given in apostrophes.

• Char type also stores special signs which are preceded by \ e.g., \n, \t

27

Character variables

• Special signs (e.g., \n, \t and so on) can also be given using octal or
hexadecimal system:

#define VTAB '\013'//ASCII: vertical tabulator
#define BELL '\007'//ASCII: alarm 'sign’
#define VTAB '\xb' //ASCII: vertical tabulator
#define BELL '\x7' //ASCII: alarm 'sign'

• List of special character in C:
\a alarm \\ sign\

\b back sign \? question sign

\f new sign \' apostrophe

\n new line \" quotation mark

\r carriage return (CR)* \ooo octal number

\t horizontal tabulation \xff hex number

\v vertical tabulation

• *CR – carriage return – part of the „enter” \n\r - first sign means new
line, the second reverse the cursor at left side of the page.

28

Strings, character constants

• Example special signs:

'a' '5' '+' '.'

'A' '\071' '\x41' '\x5F’

'\n' '\t' '\r' '\\' '\”'

• '\0' represents an empty sign and is commonly used to mark the end of
the string / sequence of characters in a quotation marks

• Constants:

#define LEAP 1

int tab[31+30+LEAP+28]

• Constant string is a series of characters within a quotation mark,
e.g., "I am a string" or "" (empty string).

• Quotation marks are not part of the string, if we want them to be, we
need to use \" special characters

29

Strings

• Examples:

"Programming in C"
"Result: "
"\tName\tSurname\tAddress\n"
"\x16\x16\x02" // SYN SYN STX
"He looked and said: \"I do not know\"."

• String constant is a table, elements of which are characters.

• Internal representation includes the \0 special character, therefore the
byte size of a string is always one byte longer in memory. E.g. :

"ABC" :

• On the other hand: there is no upper limit for a string size (other than the
size of available computer memory).

30

0x41 0x43 0x000x42

Strings

• Programs in C must read the whole string in order to
determine its length.

• Useful function: strlen(string) – returns the size of the string
(in integer value), but without counting the \0 special sign.

• Function strlen() and many others are declared in <string.h>
; to use it:

#include <string.h>.

• Difference between ' ' and " ":

• 'c' is a single character, one from the ASCII table.

• "c" is an array of characters consisting of c letter and hidden special
sign \0 denoting end of string (table) in memory.

31

Enumeration variables

• Enumeration is a set of (integer!) constants assigned to unique strings:

enum boolean { NO, YES }

i.e., after enum a name is provided, and in braces: unique strings (without quotation
marks!!!)

• If not defined by the programmed, the assigned numbers starts from 0 and are
being incremented: NO – 0, YES – 1.

• Another example:

enum { JAN = 1, FEB, MAR, APR, MAI, JUN, JUL, AUG, SEP, OCT, NOV,
DEC }

JAN has numerical value of 1, then FEB - 2, MAR - 3,, DEC – 12. If for example
JAN had assigned value of 2, then DEC would have 13.

• The string in the enumeration cannot be repeated. Their assigned values
on the other hand – can.

32

Enumeration variables

• Definition:

enum id_type { list_of_constants } variable_id;

• Examples:

enum days {ni, po, wt, sr, cz, pi, so}; /* ni == 0, po == 1, ... , so == 6 */

enum days {ni=1, po, wt, sr, cz, pi, so}; /* ni == 1, po == 2, ... , so == 7 */

days Exam, Good = cz;

Exam = Good ;

//the numerical values can be the same:

enum TW1 {t1, t2, t3 = 0, t4, t5, t6 = 1, t7}; /* t2 == 1 t4 == 1, t5 == 2, t7 == 2 */

enum {A = 0x41, B, C, X = 0x58} sign;

// enumeration variable:

sign = C; // correct

//such variable can be assigned with values which do not have corresponding
//constant strings – and the compiler not necessarily will warn about it!

sign = 0x49; // error

sign = 0x41; // error – cannot convert int to enum; znak = A; - ok

33

Enumeration variables - example

#include <stdlib.h> #include <time.h> #include <conio.h>
enum Science { ASTRONOMY, MATH, PHYSICS, CHEMISTRY, BIOLOGY};
int main(int argc, char* argv[]){

enum Science question;
srand((int)time(0));
question = (enum Science)(rand() % 5); /* random science */
switch (question){

case ASTRONOMY:
printf("Where is the moon during the day? ");
break;

case MATH:
printf("Which are more: integers or floats?");
break;

case PHYSICS:
printf("What generates more gravity: Moon or the Sun? ");
break;

case CHEMISTRY:
printf("Why use moles instead of grams? ");
break;

case BIOLOGY:
printf("Difference between a dove and a dolphin? ");
break;

}

printf("\n\n");
getch();
return 0;

}

34

Variables

• Before using the variables must be declared, i.e., their type must be
specified:

int a, b, c; // declaration example
int a; // as above
int b; // but
int c; // we can comment every single variable

//in single line

• Starting values may be assigned just after the declaration:

int a = 10;
int b = 60;
int c = a; //10, no surprise
float eps = 1.0e-5;

• External variables (globals) and static ones are by default set to 0.

• Local variables (old name: automatic ones) without the starting value
given in a code by the programmer may have random starting values
which may lead to bugs in code execution.

35

Variables

• Data types available in C and their relations between each other:

char signed char

int signed signed int

short short int signed short int

long signed long long int signed long int

long signed long

unsigned char

unsigned int unsigned

unsigned short unsigned short int

unsigned long unsigned long int

unsigned long

float

double

long double

36

Variables

• Example of declarations and definitions of variables:

• The declaration of a variable informs the compiler about the new variable, but does
no reserve the memory – yet. Therefore multiple declarations are possible, e.g., by
using extern int syntax.

• Definition of a variable additionally reserves the memory. So each definition is also a
declaration.

int i;

char a, b, c;

unsigned long long_road;

float dollarPrice;

double mass, density;

int counter = 125, sum = 0;

float accuracy = 0.0005, error = 0.001;

double power = 15e6, loses = 1500;

double alfa = 3.34, beta, jota = 15.15, kappa;

37

Hungarian notation

• To clarify: there is no single notation telling how to name our variables, so these are all good and
bad at the same time:

• type before name WITHIN THE NAME: int_array_size

• "pascal" notation: IntArraySize

• "camel" notation : intArraySize

• Hungarian notation is a way of naming variables, where the first letter of a (random) name specifically
tells us about the type.

38

Prefix Data type Example

b bool bOnceAgain

c char cOptionCode

l long lLongCaliber

n int nCounterFirst

p pointer pAddressOfPriceV

a table anDataTable

s string sSomeString

Pointers

• Pointer, as the name suggest,
points to something. This
„thing” is a specific memory
address where a value of some
other variable is being stored.

• Memory can be treated as a
table of consecutive addresses.

• Pointer itself consists of a group
of bytes which represents some
address in computer memory.

• In the picture a is a pointer,
pointing at the starting address
of some other variable b.

• In 32-bit system pointer has 4
bytes.

39

Pointer variables: declarations

• Examples:

int *pt_i, *pt_j;

double *wsk1, *wsk2;

float pwr1 = 25.7, pwr2, *pointer_pwr = &pwr1;

void *any, *every;

40

25.7

pointer_pwr pwr1

Pointer variables: declarations

• Examples:

int price = 25, *p_price, **p_p_price;

p_price = &price;

p_p_price = &p_price;

int i = 5, j = 7;

int *pt = & i, *pk = & j;

double way, time= 100, *pointer1,
*pointer1 = & way;

41

25

p_p_price p_price price

Pointer addressing operator &

• Unary operator: & gives us an address of a variable.

• For example:

p = &c; // int *p, c;

assigns to pointer p an address of memory, where the variable c is being stored. Now both the pointer and the
c variable can modify/read the value stored there.

• Examples:

int lamps, forks;
int *p_goods;
p_goods= & lamps;
...............
p_goods= & forks;

float Profit = 2.54, *p_float;
long *p_long;
void *p_void;

p_float = & Profit; // OK
p_long = & Profit; // ERROR, WRONG TYPE
p_void = & Profit; // OK (type assigned automatically)

// but to read the value:
// float new_f = *((float*)p_void);

42

Indirection operator: * (asterisk)
AKA: indirect access operator

• Operator: * (asterisk, indirect access operator (because DIRECTLY we would have used the variable itself,
* is for pointers which INDIRECTLY but still point to some value)).

• Used with the pointer gives us the value of the variable to which the pointer... points.

• Examples:

int i = 5, j;
int *ptr = & i;
j = *ptr; // same as: j = i;

int x = 1;
int y = 2;
int *ip; // declaration of pointer for variable type int
ip = &x; // now ip points to the x variable, so indirectly to value 1
y = *ip; // now is equal to 1, same as y = x;
*ip = 0; // now x has value of 0, same as x = 0;

43

ptr 5 i

Pointer variables

• When we use a variable, we directly do something with the value stored
in such a variable:

int x = 0; // assign 0 as value of variable x

• When we use the pointer (but without * operator) we are dealing with
some address of a memory. Therefore assigning a value directly to the
pointer (without using *) is nonsense and it is forbidden:

int *p; // p – pointer to int
p = 10; // ERROR – p is a pointer, a memory address, which we

// don’t know AND WILL NOT KNOW WHEN we are writing
// the code

• So we have to use both * and & when using pointers:

• & - gives us memory address (safely and in a proper way)

• * used with a pointer changes the address into the value stored there

44

Pointer variables

int *p; // pointer for int type
int x = 15; // integer variable x with starting value = 15
p = &x; // assign the address of x to the pointer variable p

p = 5546; // ERROR, the address cannot be assigned directly
p = 0xFA744EA4; // looks legit, still wrong – WE DO NOT AND WILL NOT KNOW

// the address while writing the code

// how to assign new value:

*p = 30; // indirect access (operator *) allows us to assign 30 to x
// using x’s pointer p (because in third line: p = &x;)

x = 30; // directly assign new integer value to x
int y = 0; // new variable y, type int

// again, three lines doing the same thing:

y = *p; // assign the value of x by using its pointer p, to variable y
y = x; // write value of x to variable y directly
y = 30; // or just write the damn number in the code without this

// whole pointer mess :)

45

Pointer variables – again, one last time...

• Summary:

int x = 10;
int *ip;
ip = &x; // now ip points to x, so it has access

// to its (x) value

• So from this moment if we want to do something with the
value of x, we can use pointer ip and the operator *:

// two lines, same thing:
*ip = *ip + 10;
x = x + 10;

46

References

• Reference in C is like a nickname for a variable. We can have access to the
same value with two or more different names – but without this
troublesome pointers syntax.

• Every operation done with a reference of a variable is equal in terms of
final effects as the operations done with the variable itself.

• Examples:

int price;
int &ref_k = price; // this can be done only once (the
connection)
ref_k = 1254; // same as: price = 1254;

long a, b, &ref_a = a;
ref_a = 12; // same as: a = 12;
b = ref_a; // same as: b = a;

float moc_x, &ref_x = moc_x, *wsk_x;
wsk_x = & ref_x; // same as: wsk_x = & moc_x
wsk_x = ref_x; // ERROR, similar as e.g.: wsk_x = moc_x;

47

Constant „variables” – const

• Qualifier const can be added to the declaration of almost any variable.

• Variable declared with this keyword informs the compiler, that it is now
forbidden to assign any value to this variable again (even the same as the
current one stored).

const float pi = 3.14;
const double e = 2.71828182845905;

• Keyword const can be used in tables declaration, so no cell of such a table
can be modified after assigning the starting values:

const char msg[] = "Attention: ";
int function(const int[]);

• Constant variables can be declared with comma:

const int days = 7, weeks = 52;
const float pi = 3.14159, e = 2.71828;
const double Avogadro = 6.022E23;

48

Questions?

