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Abstract

This article explores the meta-heuristic approach called tabu search, which is dramatically
changing our ability to solve a host of problems in applied science, business and engineering.
Tabu search has important links to evolutionary and “genetic” methods, often overlooked,
through its intimate connection with scatter search and path relinking — evolutionary
procedures that have recently attracted attention for their ability to facilitate the solution of
complex problems.  The adaptive memory designs of tabu search have also provided useful
alternatives and supplements to the types of memory embodied in neural networks, allowing
enhancements of neural network processes in practical settings.

1. Tabu Search Background and Relevance

Faced with the challenge of solving hard optimization problems that abound in the real world,
classical methods often encounter great difficulty.  Vitally important applications in business,
engineering, economics and science cannot be tackled with any reasonable hope of success,
within practical time horizons, by solution methods that have been the predominant focus of
academic research throughout the past three decades (and which are still the focus of many
textbooks).

The meta-heuristic approach called tabu search (TS) is dramatically changing our ability to
solve problems of practical significance.  Current applications of TS span the realms of
resource planning, telecommunications, VLSI design, financial analysis, scheduling, space
planning, energy distribution, molecular engineering, logistics, pattern classification, flexible
manufacturing, waste management, mineral exploration, biomedical analysis, environmental
conservation and scores of others.  In recent years, journals in a wide variety of fields have
published tutorial articles and computational studies documenting successes by tabu search
in extending the frontier of problems that can be handled effectively — yielding solutions whose
quality often significantly surpasses that obtained by methods previously applied.  Table 1.1
gives a partial catalog of example applications.  A more comprehensive list, including summary
descriptions of gains achieved from practical implementations, can be found in Glover and
Laguna, 1997.  Reports of recent TS implementations can also be found on the web page
http://www.upt.pt/tabusearch.

A distinguishing feature of tabu search is embodied in its exploitation of adaptive forms of
memory, which equips it to penetrate complexities that often confound alternative approaches.
Yet we are only beginning to tap the rich potential of adaptive memory strategies, and the
discoveries that lie ahead promise to be as important and exciting as those made to date.  The
knowledge and principles that have emerged from the TS framework give a foundation to create
practical systems whose capabilities markedly exceed those available earlier.  At the same time,
there are many untried variations that may lead to further advances.  A conspicuous feature of
tabu search is that it is dynamically growing and evolving, drawing on important contributions
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by many researchers.  (The web site previously cited provides links to the work of these
researchers.)

Table 1.1.  Illustrative tabu search applications.

Scheduling
Flow-Time Cell Manufacturing
Heterogeneous Processor Scheduling
Workforce Planning
Classroom Scheduling
Machine Scheduling
Flow Shop Scheduling
Job Shop Scheduling
Sequencing and Batching

Telecommunications
Call Routing
Bandwidth Packing
Hub Facility Location
Path Assignment
Network Design for Services
Customer Discount Planning
Failure Immune Architecture
Synchronous Optical Networks

Design
Computer-Aided Design
Fault Tolerant Networks
Transport Network Design
Architectural Space Planning
Diagram Coherency
Fixed Charge Network Design
Irregular Cutting Problems

Production, Inventory and Investment
Flexible Manufacturing
Just-in-Time Production
Capacitated MRP
Part Selection
Multi-item Inventory Planning
Volume Discount Acquisition
Fixed Mix Investment

Location and Allocation
Multicommodity Location/Allocation
Quadratic Assignment
Quadratic Semi-Assignment
Multilevel Generalized Assignment
Lay-Out Planning

Off-Shore Oil Exploration

Routing
Vehicle Routing
Capacitated Routing
Time Window Routing
Multi-Mode Routing
Mixed Fleet Routing
Traveling Salesman
Traveling Purchaser

Logic and Artificial Intelligence
Maximum Satisfiability
Probabilistic Logic
Clustering
Pattern Recognition/Classification
Data Integrity
Neural Network |Training and Design

Graph Optimization
Graph Partitioning
Graph Coloring
Clique Partitioning
Maximum Clique Problems
Maximum Planner Graphs
P-Median Problems

Technology
Seismic Inversion
Electrical Power Distribution
Engineering Structural Design
Minimum Volume Ellipsoids
Space Station Construction
Circuit Cell Placement

General Combinational Optimization
Zero-One Programming
Fixed Charge Optimization
Nonconvex Nonlinear Programming
All-or-None Networks
Bilevel Programming
General Mixed Integer Optimization
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1.1 General Tenets

The word tabu (or taboo) comes from Tongan, a language of Polynesia, where it was used by the
aborigines of Tonga island to indicate things that cannot be touched because they are sacred.
According to Webster's Dictionary, the word now also means “a prohibition imposed by social
custom as a protective measure" or of something "banned as constituting a risk.”  These
current more pragmatic senses of the word accord well with the theme of tabu search.  The risk
to be avoided in this case is that of following a counter-productive course, including one which
may lead to entrapment without hope of escape.  On the other hand, as in the broader social
context where “protective prohibitions” are capable of being superseded when the occasion
demands, the “tabus” of tabu search are to be overruled when evidence of a preferred
alternative becomes compelling.

The most important association with traditional usage, however, stems from the fact that tabus
as normally conceived are transmitted by means of a social memory which is subject to
modification over time.  This creates the fundamental link to the meaning of "tabu" in tabu
search.  The forbidden elements of tabu search receive their status by reliance on an evolving
memory, which allows this status to shift according to time and circumstance.

More particularly, tabu search is based on the premise that problem solving, in order to qualify
as intelligent, must incorporate adaptive memory and responsive exploration.  The adaptive
memory feature of TS allows the implementation of procedures that are capable of searching
the solution space economically and effectively.  Since local choices are guided by information
collected during the search, TS contrasts with memoryless designs that heavily rely on
semirandom processes that implement a form of sampling.  Examples of memoryless methods
include semigreedy heuristics and the prominent “genetic” and “annealing” approaches
inspired by metaphors of physics and biology.  Adaptive memory also contrasts with rigid
memory designs typical of branch and bound strategies.  (It can be argued that some types of
evolutionary procedures that operate by combining solutions, such as genetic algorithms,
embody a form of implicit memory.  Special links with evolutionary methods, and implications
for establishing more effective variants of them, are discussed in Glover and Laguna (1997).)

The emphasis on responsive exploration in tabu search, whether in a deterministic or
probabilistic implementation, derives from the supposition that a bad strategic choice can yield
more information than a good random choice.  In a system that uses memory, a bad choice
based on strategy can provide useful clues about how the strategy may profitably be changed.
(Even in a space with significant randomness a purposeful design can be more adept at
uncovering the imprint of structure.)

Responsive exploration integrates the basic principles of intelligent search, i.e., exploiting good
solution features while exploring new promising regions.  Tabu search is concerned with
finding new and more effective ways of taking advantage of the mechanisms associated with
both adaptive memory and responsive exploration.  The development of new designs and
strategic mixes makes TS a fertile area for research and empirical study.

1.2 Use of Memory

The memory structures in tabu search operate by reference to four principal dimensions,
consisting of recency, frequency, quality, and influence (Figure 1.1).  Recency-based and
frequency-based based memory complement each other, and have important characteristics we
amplify in later sections.  The quality dimension refers to the ability to differentiate the merit of
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solutions visited during the search.  In this context, memory can be used to identify elements
that are common to good solutions or to paths that lead to such solutions.  Operationally,
quality becomes a foundation for incentive-based learning, where inducements are provided to
reinforce actions that lead to good solutions and penalties are provided to discourage actions
that lead to poor solutions.  The flexibility of these memory structures allows the search to be
guided in a multi-objective environment, where the goodness of a particular search direction
may be determined by more than one function.  The tabu search concept of quality is broader
than the one implicitly used by standard optimization methods.

The fourth dimension, influence, considers the impact of the choices made during the search,
not only on quality but also on structure.  (In a sense, quality may be regarded as a special
form of influence.)  Recording information about the influence of choices on particular solution
elements incorporates an additional level of learning.  By contrast, in branch and bound, for
example, the separation rules are prespecified and the branching directions remain fixed, once
selected, at a given node of a decision tree.  It is clear however that certain decisions have more
influence than others as a function of the neighborhood of moves employed and the way that
this neighborhood is negotiated (e.g., choices near the root of a branch and bound tree are
quite influential when using a depth-first strategy).  The assessment and exploitation of
influence by a memory more flexible than embodied in such tree searches is an important
feature of the TS framework.

The memory used in tabu search is both explicit and attributive.  Explicit memory records
complete solutions, typically consisting of elite solutions visited during the search.  An
extension of this memory records highly attractive but unexplored neighbors of elite solutions.
The memorized elite solutions (or their attractive neighbors) are used to expand the local
search.

Alternatively, TS uses attributive memory for guiding purposes.  This type of memory records
information about solution attributes that change in moving from one solution to another.  For
example, in a graph or network setting, attributes can consist of nodes or arcs that are added,
dropped or repositioned by the moving mechanism.  In production scheduling, the index of jobs
may be used as attributes to inhibit or encourage the method to follow certain search
directions.

Fig. 1.1 Four TS dimensions.

Quality Influence

Recency Frequency

MEMORY STRUCTURES
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1.3 Intensification and Diversification

Two highly important components of tabu search are intensification and diversification
strategies.  Intensification strategies are based on modifying choice rules to encourage move
combinations and solution features historically found good.  They may also initiate a return to
attractive regions to search them more thoroughly.  Since elite solutions must be recorded in
order to examine their immediate neighborhoods, explicit memory is closely related to the
implementation of intensification strategies.  As Figure 1.2 illustrates, the main difference
between intensification and diversification is that during an intensification stage the search
focuses on examining neighbors of elite solutions.

Here the term “neighbors” has a broader meaning than in the usual context of “neighborhood
search.”  That is, in addition to considering solutions that are adjacent or close to elite
solutions by means of standard move mechanisms, intensification strategies generate
“neighbors” by either grafting together components of good solution or by using modified
evaluation strategies that favor the introduction of such components into a current (evolving)
solution.  The diversification stage on the other hand encourages the search process to
examine unvisited regions and to generate solutions that differ in various significant ways from
those seen before.  Again, such an approach can be based on generating subassemblies of
solution components that are then “fleshed out” to produce full solutions, or can rely on
modified evaluations as embodied, for example, in the use of penalty / incentive functions.

Intensification strategies require a means for identifying a set of elite solutions as basis for
incorporating good attributes into newly created solutions.  Membership in the elite set is often
determined by setting a threshold which is connected to the objective function value of the best
solution found during the search.  However, considerations of clustering and “anti-clustering”
are also relevant for generating such a set, and more particularly for generating subsets of
solutions that may be used for specific phases of intensification and diversification.  In the
following sections, we show how the treatment of such concerns can be enhanced by making
use of special memory structures.  The TS notions of intensification and diversification are
beginning to find their way into other meta-heuristics. It is important to keep in mind that
these ideas are somewhat different than the old control theory concepts of “exploitation” and
“exploration,” especially in their implications for developing effective problem solving strategies.

Fig. 1.2 Intensification and diversification.

Unvisited solutions Neighbors of
elite solutions
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2. Tabu Search Foundations and Short Term Memory

Tabu search can be applied directly to verbal or symbolic statements of many kinds of decision
problems, without the need to transform them into mathematical formulations.  Nevertheless,
it is useful to introduce mathematical notation to express a broad class of these problems, as a
basis for describing certain features of tabu search.  We characterize this class of problems as
that of optimizing (minimizing or maximizing) a function f(x) subject to x ∈X , where f(x) may be
linear or nonlinear, and the set X summarizes constraints on the vector of decision variables x.
The constraints may include linear or nonlinear inequalities, and may compel all or some
components of x to receive discrete values.  While this representation is useful for discussing a
number of problem solving considerations, we emphasize again that in many applications of
combinatorial optimization, the problem of interest may not be easily formulated as an
objective function subject to a set of constraints.  The requirement x ∈X , for example, may
specify logical conditions or interconnections that would be cumbersome to formulate
mathematically, but may be better be left as verbal stipulations that can be then coded as
rules.

Tabu search begins in the same way as ordinary local or neighborhood search, proceeding
iteratively from one point (solution) to another until a chosen termination criterion is satisfied.
Each x ∈X  has an associated neighborhood ( )N Xx ⊂ , and each solution ( )′ ∈x xN  is reached

from x by an operation called a move.

As an initial point of departure, we may contrast TS with a simple descent method where the
goal is to minimize f(x) (or a corresponding ascent method where the goal is to maximize f(x)).
Such a method only permits moves to neighbor solutions that improve the current objective
function value and ends when no improving solutions can be found.  A pseudo-code of a
generic descent method is presented in Figure 2.1.  The final x obtained by a descent method is
called a local optimum, since it is at least as good or better than all solutions in its
neighborhood.  The evident shortcoming of a descent method is that such a local optimum in
most cases will not be a global optimum, i.e., it usually will not minimize f(x) over all x ∈X .

The version of a descent method called steepest descent scans the entire neighborhood of x in
search of a neighbor solution ′x  that gives a smallest ( )f x ′  value over ( )′ ∈x xN .  Steepest

descent implementations of some types of solution approaches (such as certain path
augmentation algorithms in networks and matroids) are guaranteed to yield globally optimal
solutions for the problems they are designed to handle, while other forms of descent may
terminate with local optima that are not global optima.  In spite of this attractive feature, in
certain settings steepest descent is sometimes impractical because it is computationally too
expensive, as where N(x) contains many elements or each element is costly to retrieve or

Fig. 2.1  Descent method.

1) Choose x ∈X  to start the process.
2) Find ( )′ ∈x xN  such that ( ) ( )f x f x′ < .

3) If no such ′x  can be found, x is the local
optimum and the method stops.

4) Otherwise, designate ′x  to be the new x and
go to 2).
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evaluate.  Still, it is often valuable to choose an ′x  at each iteration that yields a “good” if not
smallest ( )f x ′  value.

2.1 Candidate List Strategies

The relevance of choosing good solutions from current neighborhoods is magnified when the
guidance mechanisms of tabu search are introduced to go beyond the locally optimal
termination point of a descent method.  Thus, an important first level consideration for tabu
search is to determine an appropriate candidate list strategy for narrowing the examination of
elements of N(x), in order to achieve an effective tradeoff between the quality of x′ and the effort
expended to find it.  Here quality may involve considerations beyond those narrowly reflected
by the value of ( )f x ′ .  If a neighborhood space is totally random, then of course nothing will

work better than a totally random choice.  (In such a case there is no merit in trying to devise
an effective solution procedure.)  Assuming that neighborhoods can be identified that are
reasonably meaningful for a given class of problems, the challenge is to define solution quality
appropriately so that evaluations likewise will have meaning.  By the TS orientation, the ability
to use history in creating such evaluations then becomes important for devising effective
methods.  This is true as well in the use of candidate list strategies.  Several key forms of such
strategies are highlighted in Glover and Laguna (1997).

3. Memory and Tabu Classifications

An important distinction in TS arises by differentiating between short term memory and longer
term memory.  Each type of memory is accompanied by its own special strategies.  However,
the effect of both types of memory may be viewed as modifying the neighborhood N(x) of the
current solution x.  The modified neighborhood, which we denote by N*(x), is the result of
maintaining a selective history of the states encountered during the search.

In the TS strategies based on short term considerations, N*(x) characteristically is a subset of
N(x), and the tabu classification serves to identify elements of N(x) excluded from N*(x).  In TS
strategies that include longer term considerations, N*(x) may also be expanded to include
solutions not ordinarily found in N(x).  Characterized in this way, TS may be viewed as a
dynamic neighborhood method.  This means that the neighborhood of x is not a static set, but
rather a set that can change according to the history of the search.  This feature of a
dynamically changing neighborhood also applies to the consideration of selecting different
component neighborhoods from a compound neighborhood that encompasses multiple types or
levels of moves, and provides an important basis for parallel processing.  Characteristically, a
TS process based strictly on short term strategies may allow a solution x to be visited more
than once, but it is likely that the corresponding reduced neighborhood N*(x) will be different
each time.  With the inclusion of longer term considerations, the likelihood of duplicating a
previous neighborhood upon revisiting a solution, and more generally of making choices that
repeatedly visit only a limited subset of X, is all but nonexistent.  From a practical standpoint,
the method will characteristically identify an optimal or near optimal solution long before a
substantial portion of X is examined.

A crucial aspect of TS involves the choice of an appropriate definition of N*(x).  Due to the
exploitation of memory, N*(x) depends upon the trajectory followed in moving from one solution
to the next (or upon a collection of such trajectories in a parallel processing environment).
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The approach of storing complete solutions (explicit memory) generally is used in a highly
selective manner, because it can consume an enormous amount of space and time when
applied to each solution generated.  A scheme that emulates this approach with limited
memory requirements is given by the use of hash functions.  (Also, explicit memory has a
valuable role when selectively applied in strategies that record and analyze certain “special”
solutions.)  Regardless of the implementation details, short term and long term memory
functions provide important cornerstones of the TS methodology.  These functions
characteristically make use of recency-based memory and frequency-based memory.  For
purposes of illustration, due to the limited space available in this article, we will restrict our
discussion to short term recency-based memory.

3.1 Recency-Based Memory

Recency-based memory, as its name suggests, keeps track of solutions attributes that have
changed during the recent past.  (A liberal definition of “recent” also allows such memory to
have a role in longer term strategies.)

To exploit this memory, selected attributes that occur in solutions recently visited are labeled
tabu-active, and solutions that contain tabu-active elements, or particular combinations of
these attributes, are those that become tabu.  This prevents certain solutions from the recent
past from belonging to N*(x) and hence from being revisited.  Other solutions that share such
tabu-active attributes are also similarly prevented from being visited.  Note that while the tabu
classification strictly refers to solutions that are forbidden to be visited, by virtue of containing
tabu-active attributes (or more generally by violating certain restriction based on these
attributes), we also often refer to moves that lead to such solutions as being tabu.  We
illustrate these points with the following example.

Minimum k-Tree Problem Example

The Minimum k-Tree problem seeks a tree consisting of k edges in a graph so that the sum of
the weights of these edges is minimum (Lokketangen, et al. 1994).  An instance of this problem
is given in Figure 3.1, where nodes are shown as numbered circles, and edges are shown as
lines that join pairs of nodes (the two “endpoint” nodes that determine the edge).  Edge weights
are shown as the numbers attached to these lines.  A tree is a set of edges that contains no
cycles, i.e., that contains no paths that start and end at the same node (without retracing any
edges).

Fig. 3.1 Weighted undirected graph.
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Assume that the move mechanism is defined by edge-swapping, as subsequently described,
and that a greedy procedure is used to find an initial solution.  The greedy construction starts
by choosing the edge (i, j) with the smallest weight in the graph, where i and j are the indexes of
the nodes that are the endpoints of the edge.  The remaining k-1 edges are chosen successively
to minimize the increase in total weight at each step, where the edges considered meet exactly
one node from those that are endpoints of edges previously chosen.  For k = 4, the greedy
construction performs the steps in Table 3.1.

Table 3.1 Greedy construction.

Step Candidates Selection Total Weight

1 (1,2) (1,2) 1

2 (1,4), (2,3) (1,4) 26

3 (2,3), (3,4), (4,6), (4,7) (4,7) 34

4 (2,3), (3,4), (4,6), (6,7), (7,8) (6,7) 40

The construction starts by choosing edge (1,2) with a weight of 1 (the smallest weight of any
edge in the graph).  After this selection, the candidate edges are those that connect the nodes
in the current partial tree with those nodes not in the tree (i.e., edges (1,4) and (2,3)).  Since
edge (1,4) minimizes the weight increase, it is chosen to be part of the partial solution.  The
rest of the selections follow the same logic, and the construction ends when the tree consists of
4 edges (i.e., the value of k).  The initial solution in this particular case has a total weight of 40.

The swap move mechanism, which is used from this point onward, replaces a selected edge in
the tree by another selected edge outside the tree, subject to requiring that the resulting
subgraph is also a tree.  There are actually two types of such edge swaps, one that maintains
the current nodes of the tree unchanged (static) and one that results in replacing a node of the
tree by a new node (dynamic).  Figure 3.2 illustrates the best swap of each type that can be
made starting from the greedy solution.  The added edge in each case is shown by a heavy line
and the dropped edge is shown by a dotted line.

The best move of both types is the static swap of Figure 3.3, where for our present illustration
we are defining best solely in terms of the change on the objective function value.  Since this
best move results in an increase of the total weight of the current solution, the execution of
such move abandons the rules of a descent approach and sets the stage for a tabu search
process.  (The feasibility restriction that requires a tree to be produced at each step is
particular to this illustration, since in general the TS methodology may include search
trajectories that violate various types of feasibility conditions.)
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Given a move mechanism, such as the swap mechanism we have selected for our example, the
next step is to choose the key attributes that will be used for the tabu classification.  Tabu
search is very flexible at this stage of the design.  Problem-specific knowledge can be used as
guidance to settle on a particular design.  In problems where the moves are defined by adding
and deleting elements, the labels of these elements can be used as the attributes for enforcing
tabu status.  Here, in the present example, we can simply refer to the edges as attributes of the
move, since the condition of being in or out of the tree (which is a distinguishing property of the
current solution) may be assumed to always be automatically known by a reasonable solution
representation.

Choosing Tabu Classifications

Tabu classifications do not have to be symmetric, that is, the tabu structure can be designed to
treat added and dropped elements differently.  Suppose for example that after choosing the
static swap of Figure 3.2, which adds edge (4,6) and drops edge (4,7), a tabu status is assigned
to both of these edges.  Then one possibility is to classify both of these edges tabu-active for the
same number of iterations.  The tabu-active status has different meanings depending on
whether the edge is added or dropped.  For an added edge, tabu-active means that this edge is
not allowed to be dropped from the current tree for the number of iterations that defines its
tabu tenure.  For a dropped edge, on the other hand, tabu-active means the edge is not allowed
to be included in the current solution during its tabu tenure.  Since there are many more edges
outside the tree than in the tree, it seems reasonable to implement a tabu structure that keeps
a recently dropped edge tabu-active for a longer period of time than a recently added edge.
Notice also that for this problem the tabu-active period for added edges is bounded by k, since
if no added edge is allowed to be dropped for k iterations, then within k steps all available
moves will be classified tabu.

The concept of creating asymmetric tabu classifications can be readily applied to settings
where add/drop moves are not used.

Fig. 3.2 Swap move types.
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Illustrative Tabu Classifications for the Min k-Tree Problem

As previously remarked, the tabu-active classification may in fact prevent the search from
visiting solutions that have not been examined yet.  We illustrate this phenomenon as follows.
Suppose that in the Min k-Tree problem instance of Figure 3.1, dropped edges are kept tabu-
active for 2 iterations, while added edges are kept tabu-active for only one iteration.  (The
number of iterations an edge is kept tabu-active is called the tabu tenure of the edge.)  Also
assume that we define a swap move to be tabu if either its added or dropped edge is tabu-
active.  If we examine the full neighborhood of available edge swaps at each iteration, and
always choose the best that is not tabu, then the first three moves are as shown in Table 3.2
below (starting from the initial solution found by the greedy construction heuristic).  The move
of iteration 1 is the static swap move previously identified in Figure 2.3.  Diagrams showing the
successive trees generated by these moves, starting with the initial greedy solution, are given in
Figure 3.3.

Table 3.2 TS iterations.

Iteration Tabu-active net tenure Add Drop Weight

1 2

1 (4,6) (4,7) 47

2 (4,6) (4,7) (6,8) (6,7) 57

3 (6,8), (4,7) (6,7) (8,9) (1,2) 63

The net tenure values of 1 and 2 in Table 3.2 for the currently tabu-active edges indicate the
number of iterations that these edges will remain tabu-active (including the current iteration).

At iteration 2, the reversal of the move of iteration 1 (that is, the move that now adds (4,7) and
drops (4,6)) is clearly tabu, since both of its edges are tabu-active at iteration 2.  In addition,
the move that adds (4,7) and drops (6,7) is also classified tabu, because it contains the tabu-

Fig. 3.3 Effects of attributive short term memory.
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active edge (4,7) (with a net tenure of 2).  This move leads to a solution with a total weight of
49, a solution that clearly has not been visited before (see Figure 3.3).  The tabu-active
classification of (4,7) has modified the original neighborhood of the solution at iteration 2, and
has forced the search to choose a move with an inferior objective function value (i.e., the one
with a total weight of 57).  In this case, excluding the solution with a total weight of 49 has
little effect on the quality of the best solution found (since we have already obtained one with a
weight of 40).

In other situations, however, additional precautions must be taken to avoid missing good
solutions.  These strategies are known as aspiration criteria.  Alternative forms of aspiration
criteria are very important in tabu search.  For the moment we observe simply that if the tabu
solution encountered at the current step instead had a weight of 39, which is better than the
best weight of 40 so far seen, then we would allow the tabu classification of this solution to be
overridden and consider the solution admissible to be visited.  The aspiration criterion that
applies in this case is called the improved-best aspiration criterion.  (It is important to keep in
mind that aspiration criteria do not compel particular moves to be selected, but simply make
them available, or alternately rescind evaluation penalties attached to certain tabu
classifications.)

One other comment about tabu classification deserves to be made at this point.  In our
preceding discussion of the Min k-Tree problem we consider a swap move tabu if either its
added edge or its dropped edge is tabu-active.  However, we could instead stipulate that a swap
move is tabu only if both its added and dropped edges are tabu-active.  In general, the tabu
status of a move is a function of the tabu-active attributes of the move (i.e., of the new solution
produced by the move).

3.2 A First Level Tabu Search Approach

We now have on hand enough ingredients for a first level tabu search procedure.  Such a
procedure is sometimes implemented in an initial phase of a TS development to obtain a
preliminary idea of performance and calibration features, or simply to provide a convenient
staged approach for the purpose of debugging solution software.  While this naive form of a TS
method omits a number of important short term memory considerations, and does not yet
incorporate longer term concerns, it nevertheless gives a useful starting point for
demonstrating several basic aspects of tabu search.

We start from the solution with a weight of 63 as shown previously in Figure 3.3, which was
obtained at iteration 3.  At each step we select the least weight non-tabu move from those
available, and use the improved-best aspiration criterion to allow a move to be considered
admissible in spite of leading to a tabu solution.  The reader may verify that the outcome leads
to the series of solutions shown in Table 3.3, which continues from iteration 3, just executed.
For simplicity, we select an arbitrary stopping rule that ends the search at iteration 10.
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Table 3.3 Iterations of a first level TS procedure.

Iteration Tabu-active net tenure Add Drop Move Weight

1 2 Value

3 (6,8), (4,7) (6,7) (8,9) (1,2) 6 63

4 (6,7), (8,9) (1,2) (4,7) (1,4) -17 46

5 (1,2), (4,7) (1,4) (6,7) (4,6) -9 37*

6 (1,4), (6,7) (4,6) (6,9) (6,8) 0 37

7 (4,6), (6,9) (6,8) (8,10) (4,7) 1 38

8 (6,8), (8,10) (4,7) (9,12) (6,7) 3 41

9 (4,7), (9,12) (6,7) (10,11) (6,9) -7 34*

10 (6,7), (10,11) (6,9) (5,9) (9,12) 7 41

The successive solutions identified in Table 3.3 are shown graphically in Figure 3.4 below.  In
addition to identifying the dropped edge at each step as a dotted line, we also identify the
dropped edge from the immediately preceding step as a dotted line which is labeled 2*, to
indicate its current net tabu tenure of 2.  Similarly, we identify the dropped edge from one
further step back by a dotted line which is labeled 1*, to indicate its current net tabu tenure of
1.  Finally, the edge that was added on the immediately preceding step is also labeled 1* to
indicate that it likewise has a current net tabu tenure of 1.  Thus the edges that are labeled
with tabu tenures are those which are currently tabu-active, and which are excluded from
being chosen by a move of the current iteration (unless permitted to be chosen by the
aspiration criterion).

As illustrated in Table 3.3 and Figure 3.4 the method continues to generate different solutions,
and over time the best known solution (denoted by an asterisk) progressively improves.  In fact,
it can be verified for this simple example that the solution obtained at iteration 9 is optimal.
(In general, of course, there is no known way to verify optimality in polynomial time for difficult
discrete optimization problems, i.e., those that fall in the class called NP-hard.  The Min k-Tree
problem is one of these.)
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It may be noted that at iteration 6 the method selected a move with a move value of zero.
Nevertheless, the configuration of the current solution changes after the execution of this
move, as illustrated in Figure 3.4.

The selection of moves with certain move values, such as zero move values, may be
strategically controlled, to limit their selection as added insurance against cycling in special
settings.  We will soon see how considerations beyond this first level implementation can lead
to an improved search trajectory, but the non-monotonic, gradually improving, behavior is
characteristic of TS in general.  Figure 3.5 provides a graphic illustration of this behavior for
the current example.

Fig. 3.4 Graphical representation of TS iterations.

2

1 4 6

87

9

Iteration: 4 Weight: 46

2

1 4 6

87

9

Iteration: 3 Weight: 63

1*
1* 2*

2*

1* 1*

2

1 4 6

87

9

Iteration: 5 Weight: 37

1*

1*

2*

1 4 6

87

9

Iteration: 6 Weight: 37

1*

2*1*

10

4 6

87

9

Iteration: 7 Weight: 38

1*

2*

1*

10

4 6

87

9

Iteration: 8 Weight: 41

2* 1*

12

1*

10

4 6

87

9

Iteration: 9 Weight: 34

1*

1*
12

2*

11

10

4 6

87

9

Iteration: 10 Weight: 41

1* 1*

12

2*
11

5



Tabu Search 15

We have purposely chosen the stopping iteration to be small to illustrate an additional relevant
feature, and to give a foundation for considering certain types of longer term considerations.
One natural way to apply TS is to periodically discontinue its progress, particularly if its rate of
finding new best solutions  falls below a preferred level, and to restart the method by a process
designated to generate a new sequence of solutions.

Classical restarting procedures based on randomization evidently can be used for this purpose,
but TS often derives an advantage by employing more strategic forms of restarting.  We
illustrate a simple instance of such a restarting procedure, which also serves to introduce a
useful memory concept.

Critical Event Memory

Critical Event memory in tabu search, as its name implies, monitors the occurrence of certain
critical events during the search, and establishes a memory that constitutes an aggregate
summary of these events.  For our current example, where we seek to generate a new starting
solution, a critical event that is clearly relevant is the generation of the previous starting
solution.  Correspondingly, if we apply a restarting procedure multiple times, the steps of
generating all preceding starting solutions naturally qualify as critical events.  That is, we
would prefer to depart from these solutions in some significant manner as we generate other
starting solutions.

Different degrees of departure, representing different levels of diversification, can be achieved
by defining solutions that correspond to critical events in different ways (and by activating
critical event memory by different rules).  In the present setting we consider it important that
new starting solutions not only differ from preceding starting solutions, but that they also differ
from other solutions generated during previous passes.  One possibility is to use a blanket
approach that considers each complete solution previously generated to represent a critical
event.  The aggregation of such events by means of critical event memory makes this entirely

Fig. 3.5 TS search trajectory.
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practicable, but often it is quite sufficient (and, sometimes preferable) to isolate a smaller set of
solutions.

For the current example, therefore, we will specify that the critical events of interest consist of
generating not only the starting solution of the previous pass(es), but also each subsequent
solution that represents a “local TS optimum,” i.e. whose objective function value is better (or
no worse) than that of the solution immediately before and after it.  Using this simple definition
we see that four solutions qualify as critical (i.e., are generated by the indicated critical events)
in the first solution pass of our example: the initial solution and the solutions found at
iterations 5, 6 and 9 (with weights of 40, 37, 37 and 34, respectively).

Since the solution at iteration 9 happens to be optimal, we are interested in the effect of
restarting before this solution is found.  Assume we had chosen to restart after iteration 7,
without yet reaching an optimal solution.  Then the solutions that correspond to critical events
are the initial solution and the solutions of iterations 5 and 6.  We treat these three solutions
in aggregate by combining their edges, to create a subgraph that consists of the edges (1,2),
(1,4), (4,7), (6,7), (6,8), (8,9) and (6,9).  (Frequency-based memory refines this representation by
accounting for the number of times each edge appears in the critical solutions, and allows the
inclusion of additional weighting factors.)

To execute a restarting procedure, we penalize the inclusion of the edges of this subgraph at
various steps of constructing the new solution.  It is usually preferable to apply this penalty
process at early steps, implicitly allowing the penalty function to decay rapidly as the number
of steps increases.  It is also sometimes useful to allow one or more intervening steps after
applying such penalties before applying them again.

For our illustration, we will use the memory embodied in the subgraph of penalized edges by
introducing a large penalty that effectively excludes all these edges from consideration on the
first two steps of constructing the new solution.  Then, because the construction involves four
steps in total, we will not activate the critical event memory on subsequent construction steps,
but will allow the method to proceed in its initial form.

Applying this approach, we restart the method by first choosing edge (3,5), which is the
minimum weight edge not in the penalized subgraph.  This choice and the remaining choices
that generate the new starting solution are shown in Table 3.4.

Table 3.4 Restarting procedure.

Step Candidates Selection Total Weight

1 (3,5) (3, 5) 6

2 (2,3), (3,4), (3,6), (5,6), (5,9), (5,12) (5, 9) 22

3 (2,3), (3,4), (3,6), (5,6), (5,12), (6,9), (8,9),

(9,12)

(8, 9) 29

4 (2,3), (3,4), (3,6), (5,6), (5,12), (6,8), (6,9),

(7,8), (8,10), (9,12)

(8, 10) 38

Beginning from the solution constructed in Table 3.4, and applying the first level TS procedure
exactly as it was applied on the first pass, generates the sequence of solutions shown in Table
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3.5 and depicted in Figure 3.6.  (Again, we have arbitrarily limited the total number of
iterations, in this case to 5.)

Table 3.5 TS iterations following restarting.

Iteration Tabu-active net tenure Add Drop Move Weight

1 2 Value

1 (9,12) (3,5) 3 41

2 (9,12) (3,5) (10,11) (5,9) -7 34*

3 (3,5), (10,11) (5,9) (6,8) (9,12) 7 41

4 (5,9), (6,8) (9,12) (6,7) (10,11) -3 38

5 (9,12), (6,7) (10,11) (4,7) (8,10) -1 37

It is interesting to note that the restarting procedure generates a better solution (with a total
weight of 38) than the initial solution generated during the first construction (with a total
weight of 40).  Also, the restarting solution contains 2 “optimal edges” (i.e., edges that appear
in the optimal tree).  This starting solution allows the search trajectory to find the optimal
solution in only two iterations, illustrating the benefits of applying a critical event memory
within a restarting strategy.  Related memory structures can also be valuable for strategies that
drive the search into new regions by “partial restarting” or by directly continuing a current
trajectory (with modified decision rules).

In its complete form, tabu search contains a variety of elements that go beyond these first level
concerns, and that open up possibilities for creating more powerful solution approaches.  An
associated collection of problem-solving principles is emerging that invites fuller exploration as
a basis for exploiting structure in diverse contexts.  The reader may consult Glover and Laguna
(1997) for further information.

Fig. 3.6 Graphical representation of TS iterations after restarting.
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