
Pattern-based clustering and classification
of XML data

Maciej Piernik

A dissertation submitted to

the Council of the Faculty of Computing

in partial fulfillment of the requirements for the degree of Doctor of Philosophy

Supervisor: Prof. Tadeusz Morzy, Ph. D. Dr. Habil.

Poznan, Poland
2015

This dissertation is dedicated to my parents.

Acknowledgements

First of all, I would like to thank my supervisor, Professor Tadeusz Morzy, for

his invaluable guidance and tremendous support. Throughout the last �ve years,

Professor Morzy has o�ered me much more of his time than I could ever ask for.

He has been my mentor and has directed me both in terms of my professional as

well as personal development. This work, most de�nitely, would not be possible

without his guidance. Thank you, Professor.

I am also very thankful to my research colleague and my dearest friend, Dariusz

Brzezinski, who has collaborated on a substantial part of this work. He is one of

the best people I know and has always inspired me to be a better researcher and

a better person. I would also like to thank Doctor Mateusz Pawlik and Professor

Nikolaus Augsten for their valuable insight into the development of partial tree-

edit distance measure.

Furthermore, I would like to thank my family, for their constant support and

unconditional love throughout my life. I am especially thankful to my parents, for

always making sure that I have nothing to worry about and supporting me in my

every undertaking. Mother, Father � my every achievement has your names on

it. I would also like to thank my younger sister, whose devotion to studying and

hunger for life has always been a great inspiration for me. I direct special thanks

to my grandfather Tadeusz, for encouraging me to pursue a career in science,

helping me on every level of my education, and always believing in me. Last but

not least, I want to thank my �ance, for her love, support, and patience. Thank

you all.

Finally, I acknowledge the support of the Polish National Science Center under

grant no. DEC-2011/01/B/ST6/05169.

Contents

Acknowledgements iii

1 Introduction 1
1.1 Applications of XML clustering and classi�cation 3

1.2 Open challenges in XML mining 4

1.3 Research assumptions . 6

1.4 Research objectives . 7

1.5 Thesis structure . 8

2 XML Mining 11
2.1 Representing XML documents . 11

2.2 Measuring similarity . 16

2.3 Clustering . 21

2.4 Classi�cation . 25

2.5 Performance evaluation . 27

2.6 Conclusions . 30

3 State of the art 33
3.1 Clustering . 33

3.2 Classi�cation . 36

3.3 Approximate subtree matching . 38

3.4 Conclusions . 39

4 XPattern — a framework for clustering XML data by patterns 41
4.1 Conceptual description . 41

4.2 Formal de�nition . 43

4.3 Generic algorithm . 45

4.4 Conclusions . 45

5 XCleaner2 — a tree-based instance of the XPattern framework 47
5.1 Algorithm . 47

vi Contents

5.2 Example . 50

5.3 Experimental evaluation . 52

5.3.1 Datasets and experimental setup 52

5.3.2 Parametrization . 53

5.3.3 Comparative analysis . 53

5.4 Conclusions . 54

6 PathXP — a path-based instance of the XPattern framework 57
6.1 Algorithm . 57

6.2 Example . 60

6.3 Parametrization . 62

6.4 Experimental evaluation . 65

6.4.1 Datasets and experimental setup 65

6.4.2 Alternative pattern de�nitions 66

6.4.3 Component analysis . 68

6.4.4 Parametrization . 71

6.4.5 Comparative analysis . 75

6.5 Conclusions . 76

7 Partial tree-edit distance 77
7.1 Preliminaries . 78

7.2 Conceptual description . 79

7.3 Formal de�nition . 80

7.4 Dynamic algorithm . 84

7.5 Experimental evaluation . 85

7.5.1 Datasets and experimental setup 86

7.5.2 Combining PTED with a rule-based classi�er 86

7.6 Conclusions . 87

8 K-nearest patterns algorithm for pattern-based XML classification 89
8.1 Training . 89

8.2 Classi�cation . 92

8.3 Example . 94

8.4 Experimental evaluation . 96

8.4.1 Datasets and experimental setup 96

8.4.2 Component analysis . 97

8.4.3 Parametrization . 101

8.4.4 Comparative analysis . 103

8.5 Conclusions . 104

9 Final conclusions and future work 107

A Subtree Matching Algorithm 113

Bibliography 117

Index 129

1
Introduction

In year 2012, there was around 2.5 EB of data created every day [LXJZ14]. This

rate has grown so rapidly, that 90% of data in the world today has been produced

in the last two years. Such a vast amount of information poses an important

challenge to the data processing community � a challenge commonly referred to

as big data.

Usually, when discussing big data, three main components are distinguished:

volume, velocity, and variety. Volume concerns both the rate at which data is

created and its amount, e.g., 12 TB of Tweets are created every day. Velocity

adds a time constraint on the processing of data, e.g., 5 million trade events have

to be analyzed on the �y every day in order to detect potentially fraudulent trans-

actions. The �nal dimension of big data is the variety of data types caused by

the diversity of domains of their origin. Database records, text documents, image

collections, social networks, websites, graphs, sensor data, are only a few types

which require dedicated processing methods. Given that big data contains infor-

mation of potentially high value, there is a strong need to address these challenges

and design automated methods for discovering knowledge in such environments.

Knowledge discovery is a complex process of converting raw data into useful

information. It consists of several steps, such as data selection, preprocessing,

transformation, data mining, and evaluation, all of which have grown to consti-

tute separate research areas. Among these, the core task is data mining, where

statistical models, machine learning algorithms, and other methods are applied

in order to discover previously unseen and nontrivial patterns in data. Because

of the variety of data types, these methods often need to be designed speci�cally

for a particular format. One of the most prominently used data formats across

various domains is XML.

XML (eXtensible Markup Language) became an o�cial W3C [W3C95] rec-

ommendation in 1998 [BPSM98]. Its main purpose was to �ll the gap between

simple, presentation-oriented HTML and complex SGML. It was designed speci�-

cally for exchanging data over the Internet in both human- and machine-readable

form, while also being general enough to remain domain and platform indepen-

2 1 Introduction

dent. Since then, it has gained great popularity in nearly every domain which

involves exchanging information. Its applicability spans from data integration

and collecting sensor data, to encoding chemical compounds and mathematical

equations.

XML document is a data structure, in which named elements are linked to-

gether to form hierarchies of metadata which contain the actual data. The meta-

data, i.e., elements, attributes, and relations between them, form the structure

of a document, while the actual data forms its content . Consequently, XML pro-

cessing can be carried out according to three di�erent scenarios: analyzing only

the content of documents, using both content and structure, or focusing solely

on the structure. In the �rst approach, well established text mining methods can

be applied [SW03, KSC02]. The two latter cases require dedicated methods for

dealing with the structure.

Structure of XML documents can be modeled in many di�erent ways, de-

pending on the required information granularity and e�ciency of the process.

Generally, the larger the information pieces, the more time-consuming the solu-

tion. Since the structure of XML documents forms a hierarchy, the most natural

and complete representation for such data is a tree, as it allows for modeling all

the information in the documents. However, tree processing is very costly and

methods based on this representation can be unfeasible when larger datasets are

to be analyzed. Moreover, some applications require a certain level of generality,

in which cases using too detailed representation can lead to unexpected results.

In such cases, when faster and more general methods are needed, representations

based on document decomposition can be used. Depending on the necessity, such

a decomposition can be accompanied by either a slight information loss (e.g., de-

composing a tree into a set of subtrees), a signi�cant information reduction (e.g.,

representing a document by the number of its elements), or anything in between.

In general, choosing a particular representation will have a substantial impact on

the result of the applied method and, therefore, even though is one of the �rst

decisions to make, should be carried out carefully, with the expected end result

in mind. This dissertation focuses on the structural information in XML docu-

ments and discusses it in the context of two core data mining tasks: clustering

and classi�cation.

Clustering is a data mining technique which aims at grouping together similar

objects. Since there is no ground truth about the dataset and the analysis is

performed solely based on the intrinsic characteristics of the data, clustering be-

longs to the category of unsupervised learning problems. In classi�cation, on the

other hand, the goal is to predict classes of new, previously unseen data, based

on the model created during the training process. In order to train a classi�er,

classi�cation process requires the knowledge about the ground truth, so it belongs

to the category of supervised learning problems.

In the context of XML, both clustering and classi�cation have gained much

attention in the data mining research community and have been intensively stud-

ied during the last several years [PBML14, AMNS11, But04, TCY09]. Such an

interest in this particular area can be attributed to the popularity of the XML

1.1 Applications of XML clustering and classi�cation 3

format and wide applicability of these methods across many di�erent domains.

The use of these methods spans from such domains as biology � to �nd groups

of similar genes, through geography � to identify tourist travel patterns, to data

integration � to automatically identify data sources. Let us now exhibit the

relevance of the discussed subject by presenting a more detailed overview of the

applications of structural clustering and classi�cation of XML data.

1.1 Applications of XML clustering and classification

Data integration

Thanks to its �exibility and human-readable form, XML is one of the most popular

formats for exchanging data and making it available through the Internet. If one

wishes to integrate such data it is essential to translate the documents into a

common schema to identify the corresponding pieces of information. Identifying

di�erent data sources is a good way to start since documents originating from the

same source are likely to share a common schema. This can be achieved by XML

clustering [VMB08], where di�erent pieces of the same information encapsulated

in the same structures can be found. Afterwards, documents can be integrated

at the semantic level.

Query processing

When storing large collections of XML documents, their physical arrangement

can play an important part in the e�ciency of their later retrieval. One way of

achieving such an arrangement is to cluster the documents prior to them being

saved. Later, when the database is queried, accessing the data on the cluster

level can reduce the query execution time by skipping the irrelevant parts of the

dataset. Such a work has been performed for path queries and was shown to

improve the native XML data storage [CMK07].

Web mining

Clustering of XML documents may be used not only before the documents are

stored (like in the query processing example) but also on demand or to create

indexes, in cases when we have no in�uence on their physical arrangement. A

good example of such a case is web mining, where clustering can be performed to

discover groups of resources that have a related content [VPD04]. Since XML is a

popular format for data annotation, clustering does not even have to be restricted

to web pages. Images, movies, user sessions on web servers, all can be included

in a comprehensive web search, given they are properly annotated.

4 1 Introduction

DTD extraction

Several tools for extracting DTDs from sets of XML data are in use. These tools

generate a single schema based on a given document collection. Therefore, if the

dataset consists of documents of several or unknown origins, it is imperative to

identify structurally similar groups within these documents prior to schema ex-

traction. This way, it is possible to �nd the actual DTDs on which the documents

are based, rather than creating a new schema re�ecting the whole document col-

lection. This task can be achieved using structural XML clustering.

Bioinformatics

Structural XML clustering can also �nd various applications in many bioinfor-

matics tasks. One of such tasks is �nding sets of proteins sharing a similar struc-

ture [AAWS09]. A di�erent example of biological application of XML clustering

is gene clustering. Similarities among gene structures can account for common

functions or a common transcriptional mechanism. A relatively high applica-

bility of XML mining methods in bioinformatics can be attributed to a large

collection of available standards based on the XML format, e.g., BSML [BSM97],

ProML [HZL02], PDBML [WIN+05], SBML [HFS+03], CML [CML95].

Spatial data management

Another domain which bene�ts from the solutions developed within the �eld of

XML clustering is spatial data management. Thanks to the popular geographical

XML standard GML [Pos09] and the ability of modern cameras to automatically

tag photos according to their location, XML clustering can be performed for sev-

eral reasons. Collections of GML encoded areas can be grouped in order to identify

similarities among regions, e.g., forests with lakes [ZJS10]. Geo-tagged photos, on

the other hand, can help identify popular tourist travel patterns [ZLZC11]. Such

a knowledge is of high value for touristic industries and would be di�cult and

expensive to obtain otherwise.

1.2 Open challenges in XML mining

Even though XML clustering and classi�cation have been extensively studied

throughout the last several years, there still remain some open issues within the

developed solutions. Some of those issues are generic and relate to XML mining

in general, some are speci�c to either clustering or classi�cation, while others

concern only particular approaches. In the next few paragraphs we will brie�y

discuss the main problems with the existing solutions.

1.2 Open challenges in XML mining 5

Information type

One of the factors that in�uence the result of data mining algorithms the most is

the type of information they use. Two cases can be considered here: using local

or global information. Local information is obtained by analyzing only a fraction

of the dataset through direct object similarity. In general, approaches using this

information rely on comparing all objects with each other and making a decision

about each of them based on the most similar object. In the case of clustering

and classi�cation, this decision concerns cluster and class assignment, respectively.

On the other hand, global information is obtained through analyzing the global

characteristics of the dataset. Approaches using this information usually rely

on extracting common features among the objects in the dataset and making a

decision about each of them based on the features they contain.

In XML clustering, nearly all of the existing methods are based on the same,

local-information-oriented framework [AMNS11]. As a result, these methods are

often sensitive to individual characteristics of particular documents and do not

capture the global characteristics of the dataset. Moreover, no such framework is

available for approaches relying on global information. In XML classi�cation, on

the other hand, we can observe more algorithms relying on global information.

However, such classi�ers often manifest poor dataset coverage or make predictions

based on arbitrary calls because their classi�cation model is too general. As it is

not always clear which type to choose, designing a �exible method able to blend

both types of information would be highly desirable.

Interpretability

Data mining is an interactive process and as such should not only give an answer

to the stated problem, but also provide an insight into the underlying structure

of the solution and allow for better understanding of the analyzed data. Many

methods miss out on this important feature, providing only an answer but lacking

in the interpretability of the obtained result. In clustering, each group is usually

described by a single value (e.g., k-means) which does not re�ect the structural

characteristics of the documents, by a single document (e.g., k-medoids) which

often displays individual rather than common features, or is not described at

all (e.g., agglomerative hierarchical clustering). Even though this drawback can

be attributed mainly to clustering, some classi�cation algorithms also have this

property (e.g., k-nearest neighbors). That is why, generating self-descriptive and

easily interpretable results is a desirable feature of a useful data mining solution.

Parametrization

When applying any data mining algorithm to a real problem, another critical

issue arises � what parameters should be used to achieve the best results. In

classi�cation, when the ground truth is given and a model can be tested, tuning

the parameters can be performed in a methodical manner. However, in clustering,

where no particular outcome is expected, this issue becomes more relevant and

6 1 Introduction

di�cult to approach. In particular, most clustering algorithms require that the

number of clusters is given a priori [PBML14]. However, such a requirement can

disqualify an algorithm in many real-world scenarios where no prior knowledge

about the underlying structure of the dataset is given. That is why, it is essential

to develop parameterless approaches or at least provide a good approximation for

the initial parameter values.

Data distribution

A separate subject that needs to be considered when either developing or applying

a data mining algorithm is data distribution. This issue is particularly problem-

atic since highly imbalanced datasets can signi�cantly distort the outcome of an

algorithm yet remain undetected by many evaluation measures. This issue can

also be attributed to both of the discussed data mining methods. In clustering,

often large groups of objects tend to absorb smaller ones, while in classi�cation,

it is generally more favorable to assign objects to the majority class in terms of

the average accuracy. Therefore, data distribution is another important issue to

consider when designing a new data mining method.

Data homogeneity

Another important factor that should be taken into account, particularly when

choosing a representation for XML documents, is the character of the dataset

to be analyzed. Two cases can be considered here: documents originating from

the same or from di�erent sources, i.e., homogeneous and heterogeneous data,

respectively. This distinction has a major in�uence on the problem's complexity.

Documents originating from heterogeneous data sources are generally less di�-

cult to analyze due to easily identi�able di�erences in tag labels. In such cases,

lightweight document representations, such as tag or edge vectors, are likely to

be su�cient. Homogeneous datasets, on the other hand, often share the same tag

vocabulary. In such cases, more complex representations like paths or trees are

more appropriate.

1.3 Research assumptions

Taking into account the popularity of XML format and a wide applicability of

XML mining methods (as evidenced in Section 1.1), we argue that the problems

stated in the previous section are relevant and worth pursuing. Let us summarize

the most important issues which will allow us to formulate the main assumptions

of this thesis.

Even though XML clustering methods based on global information exist, there

is no formal methodology (framework) describing this process, whereas such a

framework is available for local-information-based methods (see Section 2.3).

Moreover, most of the existing approaches o�er poor result interpretability, as

1.4 Research objectives 7

clusters constructed using direct document similarity do not summarize their con-

tent in an easily understandable way.

In the XML classi�cation domain, the commonly used rule-based approach

(de�ned around global information) faces an important issue, namely, what to

do when a given document does not match any rule in the classi�cation model.

This commonly occurring case is usually dealt with a so called default rule (see

Section 2.4). However, since this leads to a somewhat arbitrary class assignment,

such a situation should be avoided. It can be addressed by using a kind of simi-

larity measure able to provide the information about the degree in which a rule

matches a given document. This information would allow to blend some local

information into the global-information-oriented algorithm and could also help

organizing the ranking of the rules. Such a measure, however, is unavailable for

objects de�ned as tree structures, as is the case with XML documents.

Apart from balancing the use of local and global information in XML clus-

tering and classi�cation approaches, another common issue is parametrization.

Extracting patterns from XML datasets requires de�ning a threshold of minimal

number of documents in which a given piece of information (e.g., a subtree) needs

to appear in order to call it a pattern. This parameter is highly dependent on

the characteristics of a given dataset and usually di�cult to acquire, especially

in the case of clustering. Additionally, most of the existing clustering approaches

require the number of clusters to be known a priori. However, such an assumption

can discard the use of an algorithm in real-world applications, where the number

of clusters is often unavailable.

Based on the above, we can formulate the main assumptions of the thesis:

• The existing XML clustering algorithms based on local information do not

guarantee su�ciently interpretable results, what undermines their usefulness

in real-world applications.

• There is no formal methodology for clustering XML documents by patterns

which would systematically guarantee easily interpretable results.

• Classi�cation of XML documents using the rule-based approach su�ers from

an unaddressed problem of default rule usage.

• There is no measure capable of accurately determining the degree of con-

tainment of one tree in another.

1.4 Research objectives

Given the above assumptions, the aim of this dissertation is to address the de-

scribed issues by proposing new methods for XML clustering and classi�cation

based on the notion of patterns. Using patterns will allow for incorporating global

information into the mining process, while introducing a pattern-document simi-

larity measure should improve the dataset coverage and allow for blending in some

8 1 Introduction

local information. The choice of proper parameter values for the proposed solu-

tions should be experimentally evaluated and discussed. The work should also

contain an in-depth analysis of several pattern de�nitions suitable for di�erent

dataset characteristics. Moreover, the results produced by the proposed methods

should be self-descriptive and easy to interpret. Addressing the aforementioned

problems should not diminish the quality of the achieved results, so the devel-

oped methods should produce results of quality at least as good as the current

state-of-the-art approaches.

The main result in the XML clustering domain will be a pattern-based XML

clustering framework and a working instance of this framework. The algorithm

will be based on frequent paths and in addition to the main result will also pro-

vide an easily interpretable summary of each cluster. Moreover, a method for

automatic number of clusters detection will be discussed.

The main result in the XML classi�cation domain will be an algorithm based

on both global information � expressed via patterns (subtrees) and local infor-

mation � available through pattern-document similarity. In order to estimate

the pattern-document similarity, a measure capable of assessing the degree of

containment of one tree in another will be discussed. Furthermore, a dynamic

programming algorithm, capable of calculating the measure e�ciently, will be

conceived.

The discussed methods will be experimentally evaluated in order to assess

their quality, parameter sensitivity, and compare them against the current state-

of-the-art approaches in their respective domains.

To sum up, the main objectives of this thesis are as follows.

• Proposing and formalizing a generic pattern-based framework for XML clus-

tering.

• Validating the framework with a working example algorithm.

• Analyzing alternative pattern de�nitions in terms of their applicability to

di�erent types of datasets.

• Proposing and validating a pattern-based algorithm for XML classi�cation.

• Proposing a measure for evaluating similarity between pattern trees and

document trees.

• Analyzing the parametrization of the proposed approaches.

1.5 Thesis structure

The remainder of this thesis is organized as follows. In Chapter 2, we will present

the core concepts regarding clustering and classi�cation of XML data. First, we

will discuss various document representations and applicable similarity measures.

Next, we will introduce the basic notions regarding clustering an classi�cation.

Finally, we will analyze how to evaluate the performance of these methods. In the

1.5 Thesis structure 9

end, we will present a sample dataset which will be used throughout the thesis to

illustrate the proposed algorithms.

Chapter 3 will summarize the most relevant and characteristic algorithms in

the discussed structural XML mining domains. The literature analysis will encom-

pass the two main �elds of inquiry, i.e., XML clustering and XML classi�cation.

Additionally, since this work also tackles the issue of subtree similarity, the ap-

proximate subtree matching area will be reviewed. By doing so, we will try to

showcase that the problems stated in this work are still relevant.

Afterwards, we will dive into the �rst main �eld of study � XML clustering.

In Chapter 4, we will discuss a new framework for clustering XML documents,

called XPattern, which focuses on using global information expressed by patterns.

We will begin by describing the intuition behind this approach, presenting its con-

ceptual description, and comparing it with the existing local-information-oriented

framework. After highlighting the main di�erences between the two approaches,

XPattern will be formally de�ned.

In the two following chapters, we will discuss two example algorithms based

on the proposed framework. Chapter 5 will discuss a tree-based instantiation of

XPattern, called XCleaner2, which de�nes patterns as maximal frequent subtrees.

We will describe how each component of the framework is speci�ed in the de�ned

algorithm and illustrate how it operates on a simple example. The proposed

approach will be tested on both synthetic and real datasets for clustering quality

and parameter sensitivity and compared against the state-of-the-art algorithm.

The second XPattern instance, called PathXP, will be discussed in Chapter 6.

Analogously to XCleaner2, we will examine how each component of the framework

is instantiated in the algorithm and illustrate its operation with the same clus-

tering example. With the help of PathXP, we will also discuss possible heuristics

for automatic detection of the number of clusters. In addition to the standard

quality and parameter sensitivity tests, we will also experimentally evaluate what

impact does each of the algorithm's components have on the clustering quality.

Furthermore, we will explore several alternative pattern de�nitions and discuss

their applicability to di�erent types of datasets. The evaluation will be �nalized

with an experimental comparison of PathXP with its main competitors.

After presenting the XML clustering framework and its two instances, we

will shift to the second �eld of study � XML classi�cation. In Chapter 7, we

will focus on the problem of default rule usage in the rule-based XML classi�er

by proposing a measure able to assess the degree of containment of one tree

in another. First, the proposed measure, called partial tree-edit distance, will

be conceptually described and formally de�ned. Afterwards, we will discuss a

dynamic programming algorithm which will enable us to compute the measure in

an e�cient way. In this chapter, we will also illustrate the gravity of the default

rule usage problem with a simple experiment and verify if partial tree-edit distance

is able to address it.

In Chapter 8, we will extend the ideas from the previous chapters, i.e., pat-

terns and pattern-document distance measure, into the XML classi�cation domain

by proposing a new pattern-based algorithm, called k-nearest patterns. In addi-

10 1 Introduction

tion to the formal de�nition, the algorithm's operation will be illustrated with a

simple example. Several variations regarding the algorithm's components will be

discussed and experimentally evaluated. Finally, the proposed approach will be

tested for quality and parameter sensitivity, and compared with the state-of-the-

art algorithm.

After discussing the pattern-based XML classi�er, we will arrive at �nal con-

clusions. In Chapter 9, we will summarize the thesis, confront its �ndings with

the stated research objectives and draw lines of future research.

2
XML Mining

Mining in semistructural documents has been a hot topic in the last several years.

As a result, numerous approaches and subdisciplines emerged from this research

area. This chapter will summarize the most relevant �ndings in the XML mining

domain. First, the two most important subproblems, common to all methods and

applications, will be discussed: Section 2.1 will present the most popular represen-

tations for XML documents while Section 2.2 will discuss applicable measures for

evaluating similarity between them. Afterwards, Sections 2.3 and 2.4 will focus

on two data mining methods which gained the most attention in the XML mining

research community, namely, clustering and classi�cation. Finally, in Section 2.5,

measures for evaluating the results of the applied methods will be analyzed.

2.1 Representing XML documents

Before applying any structural data processing task to a collection of XML doc-

uments, one needs to decide on how to represent the structure of the documents.

This decision has a huge impact on the whole process as it determines the infor-

mation available to other tasks after the transformation and, therefore, limits the

possible processing methods to apply. That is why, it is very important to choose

the right representation for a given problem. This section will summarize the

most popular structural representations for XML documents and analyze their

strengths and weaknesses.

XML structure

In order to analyze the available structural representations, �rst, we need to es-

tablish what the XML structure actually is and what information it contains.

The most basic unit of any XML document is element . It consists of a name,

an ordered or unordered set of elements, and a set of attributes and textual val-

12 2 XML Mining

ues. Attribute is a key-value pair, where the key is the attribute's name and

the value contains some textual information. XML document is a document

containing exactly one main element which can contain other elements (subele-

ments), attributes, etc.. The nesting of elements within a document is illustrated

by an opening <element_name> and a closing </element_name> tag. Removing all

textual values from an XML document reveals its structure, example of which is

illustrated in Figure 2.1. In the presented structure, inbook is an example of an

element while year is an example of an attribute.

<paper>
<editors>

<person />
<person />
<person />

</editors >
<publisher />
<inbook year volume >

<title />
</inbook>
<note />

</paper>

Figure 2.1: Example XML structure

The structure of XML documents carries two kinds of information which can

be described as explicit and implicit. Explicit information consists of element

and attribute labels, i.e., their names. Implicit information is constituted by

di�erent types of relationships between the elements. Since the structure of an

XML document forms a hierarchy, we can distinguish two types of relationships:

vertical , i.e., relationships that occur along the document hierarchy, and hori-

zontal , i.e., relationships that occur across the document hierarchy. The ver-

tical relationships are: parent-child relationships between elements and their

direct subelements/attributes, and ancestor-descendant relationships between

elements and their direct or indirect subelements/attributes. The horizontal rela-

tionships are: sibling relationships between the subelements of the same element,

and precedence relationships among siblings, constituted by their order. All of

the described types of information are presented in Figure 2.2 under the direct

category, as they can be obtained from XML documents without any additional

processing. The indirect category represents the information obtained by process-

ing the direct information (e.g., statistics, plots, etc.).

Di�erent representations can use these information types to a varied extent,

e.g., one can use a subset of direct information or create new information (indi-

rect). The next subsections will present various structural XML representations

which will use both of these strategies. Since all of the presented approaches treat

attributes and elements equivalently, for convenience, hereinafter we will refer to

both elements and attributes by elements.

2.1 Representing XML documents 13

Types of informatin in the structure
of XML documents

Direct Indirect
(e.g., tree height,

number of elements)

Explicit
Labels of elements/attributes

Implicit
Relationships

Vertical Horizontal

Parent-child Ancestor-descendant Siblings Element order

Figure 2.2: Information types available in the structure of XML documents.

Tree

The most natural representation for an XML document is a rooted, ordered,

labeled tree, as it encapsulates all of the document's direct information. A tree t

is a connected graph with |t| nodes and |t|−1 edges. A tree t is rooted if all edges

in t are directed away from one designated node, called root . A rooted tree |t| is
ordered if there exists a total order among all nodes in t. The fact that a node

x appears in a tree before a node y is expressed by x < y. A tree |t| is labeled if

every node x in this tree x ∈ t has a label � symbolized by l(x) � assigned to

it from a �nite alphabet. For convenience, hereinafter, a rooted, ordered, labeled

tree will be referred to as tree . Figure 2.3 illustrates the structure of the example

XML document from Figure 2.1 represented as a tree.

paper

editors inbook

personperson person title volumeyear

notepublisher

Figure 2.3: Structure of an XML document represented as a tree.

The main advantage of this representation is the fact that it carries all possible

information encapsulated in XML documents. In this regard, it is the best one

to choose when very detailed processing is required (e.g., when trying to identify

di�erences within highly homogeneous data). However, when the emphasis is on

e�ciency, tree representation is usually too complex to process.

Set

In cases when both, complex processing and e�ciency are required, a good solu-

tion is to represent an XML document as a decomposed tree in a form of a set

14 2 XML Mining

(or a multiset) of its parts. As trees can be decomposed to a varied extent, this

representation can be �exibly adapted to a given problem when more information

saturation or better performance is needed. Therefore, the decomposition can be

drastic (e.g., set of labels, where only explicit information is preserved) or more

subtle (e.g., set of subtrees, where only some relationships between the elements

are lost). A tree s whose nodes and edges form subsets of nodes and edges of

another tree t is called a subtree of t. The fact that s is a subtree of t will be

symbolized by s ⊆ t.
It is worth noting, that there are other possible de�nitions of a subtree. The

subtree de�ned as presented above is often referred to as induced subtree . Al-

ternatively, one can analyze embedded subtrees. A tree s is called an embedded

subtree of a tree t if: i) nodes in s form a subset of nodes in t and ii) for any pair

of nodes x, y ∈ s, if x is an ancestor of y in t then x is an ancestor of y in s, and

iii) for any pair of nodes x, y ∈ s, if x < y in t then x < y in s. The di�erence

between the two de�nitions is that induced subtrees preserve all information from

the original tree, including parent-child relationships, while embedded subtrees

do not preserve the parent-child relationships, only the ancestor-descendant. As

this work focuses on induced subtrees, when there is no ambiguity, we will refer

to induced subtrees by subtrees.

Apart from labels and subtrees, a particularly popular decomposition unit is

a path, or even more so � a full path , i.e., a path running from the root of

a document to one of its leafs. The example XML document from Figure 2.1

represented as a multiset of full paths is shown in Figure 2.4.

d = { paper/editors/person,
paper/editors/person,

paper/editors/person,

paper/publisher,

paper/inbook/title,

paper/inbook/year,

paper/inbook/volume

paper/note}

Figure 2.4: Structure of an XML document represented as a multiset of full
paths.

It is worth noting that even though the document is decomposed, complex

structural processing can still be performed to the extent allowed by the chosen

granularity level (e.g., a comparison of two documents represented as sets of paths

can be performed down to the path-similarity level). Another important remark

concerns the document's parts. It is very common to restrict the set representation

to use only these parts which are frequent. A piece of information i is frequent

2.1 Representing XML documents 15

in a dataset D if it appears in at least minsup percent of documents in D:

frequent(i,D)⇔ ∃D′⊆D∀d′∈D′i ∈ d′ ∧ |D
′|
|D|
≥ minsup, (2.1)

where minsup is a user-de�ned minimum support parameter and i ∈ d denotes

that document d contains information i.

By adding the frequency restriction, we are reducing both the implicit and

the explicit information. Consequently, there may be a need for a certain amount

of preprocessing before transforming the documents into the set representation.

Such is the case with frequent sets. It is thus important to realize, that this

preprocessing may take a considerable amount of time, depending on the chosen

decomposition level. For example, mining for frequent labels can be performed in

linear time but mining for frequent subtrees yields exponential complexity.

Vector

Taking the information reduction a step further, one can decide to process XML

documents encoded as vectors. In vector representation, similarly as in the set

representation, a document is decomposed into several uniform pieces (e.g., labels,

paths, subtrees). Here however, these pieces are encoded into a vector and only

their presence or quantity is preserved. Concretely, each unique piece of document

is assigned a position in a vector. The value at each position indicates either the

presence(1)/absence(0) of the corresponding piece of the document or the quantity

of that piece in the document. This representation is most commonly generalized

to store the entire dataset as an n×mmatrix, where n is the number of documents

and m is the number of documents' parts unique across the whole dataset. The

example document from Figure 8.1 represented as a binary vector encoding the

presence/absence of document's labels is given in Table 2.1. It is important to

note that the document is illustrated in the context of a larger dataset (labels

authors and journal do not appear in the document). Otherwise, each value in

the vector would be equal to 1.

Table 2.1: Structure of an XML document represented as a binary vector of labels.

Label Presence

paper 1
editors 1
authors 0
person 1
publisher 1
inbook 1
journal 0
year 1
volume 1
title 1
note 1

Similarly as with the set representation, one may choose to limit the parts

16 2 XML Mining

encoded in a vector only to those which are frequent. In such a case, the same

amount of preprocessing is required. However, unlike the set representation, after

the encoding, the vector representation does not need any methods dedicated for

XML or text in the further processing as simple linear algebra can be applied.

On the other hand, this means that even though the processing will be faster, the

results may not be as satisfying as with the set representation.

Another important remark is that the set representation is a generalization of

the vector representation. In fact, encoding documents represented as sets into

vectors is a common practice, however, in vector representation the information

about the structures that correspond to the positions in the vector is lost while

in the set representation, even encoded as a vector, this information is preserved.

Other

Of the representations covered so far, the tree and the vector are the most com-

monly used ones. However, there are other notable examples which we will now

brie�y describe. Taking the information reduction to the extreme level, one can

choose to represent XML documents as single numbers summarizing the docu-

ments' structures. Such a representation completely neglects the direct informa-

tion in the documents and focuses only on the indirect, computed information.

Examples of such representations are: number of elements in a document, number

of distinct elements, height of the document tree, average number of subelements

of each element, etc.. These features also can be combined in the form of a vec-

tor. While such a representation most certainly is not suitable for more complex

datasets, it is very e�cient and can be used to cope with very simple data (see

Section 6.4.2).

Among many other examples (compressed XML �les [HAB12], elements with

tree level information [Nay08], graphs [LCMY04]) probably the most creative one

is the time series [FMM+05]. This representation relies solely on the depth of

the elements and their order in the document. When reading an XML document

element by element, each consecutive tag marks the time tick while the depth of

the element it represents marks its value. This can be visualized by rotating an

XML document by 90 degrees counterclockwise and drawing a line which follows

its indentation. Figure 2.5 illustrates the process of transforming the example

XML document from Figure 2.1 into the time series representation.

2.2 Measuring similarity

The most common XML processing task is similarity computation. It can be

used either as a standalone technique, like in data integration, or as a part of a

more complex process, e.g., clustering. That is why it has been the most studied

sub�eld in the XML mining research community [But04, GMS07, TCY09]. As a

result, there is a wide variety of measures available. However, as described in the

previous section, similarity computation can be applied only after transforming

2.2 Measuring similarity 17

<paper>
 <editors>
 <person />
 <person />
 <person />
 </editors>
 <publisher />
 <inbook>
 <year />
 <volume />
 <title />
 </inbook>
 <note />
</paper>

<paper>
 <editors>
 <person />
 <person />
 <person />
 </editors>
 <publisher />
 <inbook>
 <year />
 <volume />
 <title />
 </inbook>
 <note />
</paper>

a) b) c)

1 2 3 5 64 7 8 9 1110 12 13

1

2

Time

Level

d)

Figure 2.5: Process of creating a time series from an XML document.

the documents into a chosen representation. Consequently, the similarity can be

measured only as accurately as the information delivered by the representation

allows for. Since, usually, similarity computation is the actual task to perform,

not the document transformation, a measure is chosen �rst and the choice of a

compatible representation follows. This section will present the most popular

structural XML similarity measures and match them with their corresponding

representations.

Tree-edit distance

A measure which utilizes the full capabilities of the tree representation is tree-edit

distance (TED). This measure was proposed long before the invention of XML

and was dedicated for trees. The idea is based on a popular Levenshtein distance

measure for sequences. A distance between two sequences can be computed as

the minimal number of edit operations required to transform one sequence into

another. These edit operations are: removing an element from the sequence;

inserting an element into the sequence; renaming an element in the sequence. In

the case of trees, the basic idea remains exactly the same, only the edit operations

are rede�ned as follows. By inserting a node x into a tree t at a node y, x becomes

a child of the parent of y, taking y's place in the sibling order, while y becomes

a child of x. When deleting a node x from a tree t, all children of x become the

children of the parent of x. Relabeling a node x to y means changing a label of

x to l(y).

18 2 XML Mining

Tree-edit sequence between two trees t1 and t2 is a sequence of insert, delete,

and relabel operations which transforms t1 into t2. Assuming that each of these

operations has an associated cost, the cost c(s) of a tree-edit sequence s is the

total cost of all operations in s. Tree-edit distance ∆(t1, t2) between two trees

t1 and t2 is the minimal cost of all possible tree-edit sequences between t1 and t2.

∆(t1, t2) = min{c(s) : s is a tree-edit sequence between t1 and t2} (2.2)

Equation 2.2 presents the basic form of the tree-edit distance measure which

was proposed by Tai [Tai79] for trees. However, after XML was introduced,

several other versions have been proposed. The �rst version dedicated for XML

was put forward by Chawathe [Cha99]. In this measure, the insertion and deletion

were restricted and could be performed only on the leaf nodes of a tree. Such a

limitation was due to the fact that � as the author claimed � in the context

of XML, inserting or deleting inner nodes is somewhat arti�cial because many

relationships may be altered in the process. These restrictions highly reduced the

complexity of the measure, allowing the author to propose an algorithm with an

O(|t1||t2|) = O(n2) time complexity.

Another take on tree-edit distance was done by Nierman and Jagadish [NJ02].

The authors proposed a more complex yet more accurate version of the measure.

In their solution, the insert and delete operations were also restricted, however,

they could be performed on the whole subtrees1. The measure was tested on

the clustering task and the proposed modi�cation allowed the authors to achieve

results of better quality than Chawathe.

Most recently, Wang et al. [WWZ+15] proposed a new version of tree-edit

distance which adds two new tree operations: reverse and map. The reverse

operation exchanges a parent node with one of its children while the map operation

maps a path to an edge. The improvements proposed by the authors aim at

facilitating the similarity join on XML documents.

The research concerning tree-edit distance can be conducted in two main ar-

eas: alternative measure de�nitions (like the ones presented in the previous para-

graphs) or algorithm e�ciency. Let us now focus on the second aspect. In order

to present the basic tree-edit distance algorithm, we need to introduce some ad-

ditional de�nitions.

A forest is an ordered set of trees. A tree t rooted at a node x is denoted by

tx while the root node of a tree t is denoted by rt. A forest F containing trees

rooted at all children nodes of a node x is denoted by Fx. The rightmost tree of

a forest F is denoted by ~F , a forest F without the rightmost tree is denoted by

F − ~F and a forest F without the root of the rightmost tree is denoted by F −r ~F .
The basic formula for calculating tree-edit distance is given in Equations 2.3

1The authors used a di�erent de�nition of a subtree than the one used in this dissertation.
In their paper, the leafs of a subtree had to align with the leafs of the original tree.

2.2 Measuring similarity 19

and 2.4 and operates on two forests G and H:

∆ (∅, ∅) = 0

∆ (G, ∅) = ∆
(
G− r ~G, ∅

)
+ cd(r

~G)

∆ (∅, H) = ∆
(
∅, H − r ~H

)
+ ci(r

~H)

(2.3)

∆ (G,H) = min


∆
(
G− r ~G, H

)
+ cd(r

~G)

∆
(
G,H − r ~H

)
+ ci(r

~H)

∆
(
G− ~G,H − ~H

)
+ ∆

(
F
r ~G
, F

r ~H

)
+ cr(r

~G, r
~H)

(2.4)

where cd, ci, and cr are the cost functions for deletion, insertion, and relabeling,

respectively.

Equation 2.4 de�nes the main recursive formula of the measure. In each

recursive step, three cases are considered:

1. Removing the root of the rightmost tree from the left forest.

2. Removing the root of the rightmost tree from the right forest (equivalent

with inserting a new root node to the rightmost tree in the left forest.)

3. Relabeling the root of the rightmost tree in the left forest to the the root of

the rightmost tree from the right forest.

Following these three steps recursively will eventually lead to meeting one of the

boundary conditions from Equation 2.3. The �rst boundary condition states that

an empty forest can be transformed into an empty forest at a zero cost while the

second and the third conditions state that transforming any forest into an empty

forest (or the other way around) is done at a cost of removing all of the nodes

from that forest.

The presented formula was implemented by Zhang and Shasha[ZS89] with a

dynamic programming algorithm. The authors noticed that there is no need to

compute separate dynamic tables for all pairs of subtrees in both trees, as some of

the results can be obtained as a byproduct. That is why, they used only a subset

of subtrees rooted at the keyroots.

keyroots(t) = {rt} ∪ {x ∈ t : x has a left sibling}

Based on this fact, the authors were able to slightly reduce the complexity of the

proposed algorithm to O(|t1||t2||keyroots(t1)||keyroots(t2)|) = O(n4).

In the algorithm proposed by Zhang and Shasha, the recursion always takes

place on the right side of the forests. However, Klein [Kle98] found that altering

the recursion direction between right and left sides reduces the number of the

keyroots and, thus, the overall complexity. Concretely, the algorithm recurrences

to the left if the size of the leftmost tree is less or equal to the size of the rightmost

tree and to the right, otherwise. The author showed, that this allows to reduce

the complexity of the dynamic algorithm to O(|t1|2|t2| log |t2|) = O(n3 log n).

20 2 XML Mining

Klein's idea was further improved by Demaine et al. [DMRW09] where the

authors also alter between left- and right-side recursion. However, Klein only

applies this strategy to the left forest which means that for example ∆(G,H)

can be calculated faster than ∆(H,G). Demaine et al. addressed this issue and

proposed an algorithm which has the optimal time complexity of O(n3).

Most recently, Pawlik and Augsten [PA11] proposed yet another improvement.

Despite the fact that the O(n3) time complexity is optimal, the authors pointed

out that the worst case actually takes place fairly often. Thus, the proposed

improvement aims at matching the complexity and, additionally, assuring the

choice of the optimal strategy when the worst case occurs.

Vector-based measures

The second most popular group of similarity measures is the one based on the

vector representation. In this case, several measures are available, all of which are

general and nonspeci�c to XML processing.

When two XML documents are encoded with binary vectors v1 and v2, the

following measure can be applied:

Sim(v1, v2) =
vT1 v2

(v1 ⊕ v2)T (v1 ⊕ v2)

where ⊕ is a bitwise or operator. This measure illustrates the percentage of

documents' parts which are common between the documents.

When two XML documents are encoded with vectors v1 and v2 representing

real values (e.g., quantities of labels), the most popular measure is the Euclidean

distance, de�ned as:

Dist(v1, v2) =

√√√√ n∑
i=1

(v1[i]− v2[i])2

where vx[i] represents the i-th position in a vector vx and n is the length of the

vectors. This measure illustrates the geometric distance between the vectors in

n-dimensional space.

The Euclidean distance is a popular choice thanks to its straightforward in-

terpretation. However, the more dimensional the space, the more ambiguous the

result. Furthermore, given that in the context of XML the values in the vectors

often represent part quantities, penalizing the similarity equally for the di�erences

in the quantities of the same parts as for the di�erences in the parts themselves

can be inappropriate. In such cases, one can use the cosine distance, de�ned as:

Dist(v1, v2) =
v1 · v2

||v1||||v2||

It measures the angle between the vectors in n-dimensional space. This way, the

information about the part quantities is preserved yet it has a smaller impact on

the total outcome of the measure.

2.3 Clustering 21

Other

Since trees and vectors are the most popular XML representations, as one would

expect, tree- and vector-related similarity measures are among the most preva-

lent. Nevertheless, other representations also have their corresponding similarity

measures. Examples of such measures are:

• normalized compression distance � for documents represented as com-

pressed �les [HAB12];

• weighted number of co-occurrences of the document parts at corresponding

levels � for decomposed document with the information about the level of

each part in the document tree [Nay08];

• modi�ed discrete fourier transform � when encoding XML documents as

time series [FMM+05];

• pq-gram distance � for documents represented as pq-grams [ABG05].

Looking at the described XML similarity measures one can notice a signi�cant

disproportion in the amount of research put into tree-edit distance and other

areas. Several factors contribute to this situation. Firstly, tree-edit distance is not

strictly an XML-speci�c problem and was analyzed long before XML was proposed

(however, the same concerns vector-based measures). Secondly, tree-edit distance

is the most accurate measure and as such attracts the most attention. Finally, as a

consequence of its precision it is also largely complex and it took several research

teams and many years to �nally arrive at the optimal algorithm. In contrast,

vector-based representations use well established and relatively simple similarity

measures, so no new methods were necessary. As far as other representations

are concerned, they are usually either much simpler than trees or are designed

speci�cally to solve certain problems.

2.3 Clustering

Clustering is a machine learning technique which aims at partitioning a dataset

of objects into subsets, called clusters, which posses a desired property. It is

easy to notice that this de�nition is rather �technically shallow� and only speci�es

that the subsets have to be created in a somewhat meaningful manner. Such a

de�nition is clearly open to interpretation on what this �meaningfulness� implies.

The most popular specialization of this de�nition states that clustering aims at

creating clusters for which the inter-cluster object similarity is maximized and

the intra-cluster object similarity is minimized. Most of the existing methods

are designed around this de�nition. This section will describe the most popular

clustering techniques used in the context of XML. It is worth noting that because

clustering is de�ned around object similarity, most of these methods will be non-

XML-speci�c. As a consequence, the XML-speci�c part is resolved by the applied

similarity measure and its outcome can be fed to a generic algorithm.

22 2 XML Mining

Typically, the XML clustering task is divided into three main steps which

form a general framework, presented in Figure 2.6. In the �rst step, the docu-

ments are transformed into a chosen representation, as described in Section 2.1.

In the second step, the documents are compared with one another to determine

their similarity according to a chosen measure. A description of XML similarity

evaluation was given in Section 2.2. Finally, the similarity information is fed to a

clustering algorithm which groups the documents accordingly. Additionally, the

framework contains a feedback loop, which allows for similarity recalculation, as

some algorithms use quality evaluation measures to re�ne the clusters. Appli-

cable measures fur automatic quality evaluation as well as overall performance

evaluation measures will be presented in Section 2.5.

Documents

Clusters

Data
representation

Similarity
computation

Clustering

Evaluation

Figure 2.6: Traditional XML clustering framework.

Out of several di�erent clustering techniques, two groups of approaches are

used in the context of XML most frequently: hierarchical and partition-based

methods. These algorithms are typically used as the third step of the general

XML clustering framework presented in Figure 2.6.

Hierarchical

Hierarchical clustering algorithms generally appear in two variants: agglomerative

(bottom-up) and divisive (top-down). In agglomerative hierarchical clustering

(AHC), sets of objects are iteratively grouped together, one pair at a time. The

process starts with all objects forming separate clusters and ends with a single

cluster containing all objects. At each intermediate step, the two most similar

clusters are grouped together. As a result, we obtain a so called dendrogram �

a structure depicting the order in which the clusters were formed (optionally with

the similarity of each grouping). An example of such a dendrogram is given in

Figure 2.7. If the desired number of clusters k is given by a user, we can simply

select a cut-o� point at the corresponding level in the dendrogram, as illustrated

in Figure 2.7 with a red, dotted line. If, on the other hand, the number of clusters

is unknown, we can manually or automatically select it analyzing the similarities

used to group clusters in each iteration.

In contrast to the agglomerative algorithm, the divisive approach relies on

iterative splitting of clusters. It begins with a single cluster containing all objects

and ends with each object in a separate cluster. The division performed at each

step optimizes a selected criterion, e.g., maximizes a distance between the result-

ing clusters, maximizes the Gini index, or minimizes the Entropy of the division.

2.3 Clustering 23

A B C D E F G

C
B

A

D
E

F G

Figure 2.7: Example dendrogram illustrating the process of agglomerative
hierarchical clustering.

Similarly to the agglomerative approach, as a result we obtain a dendrogram from

which we can select the number of clusters analogously.

In both of the described variants of hierarchical clustering, there appears a

common notion which needs to be speci�ed, namely, cluster similarity. When two

clusters contain a single object each, their similarity is simply evaluated using the

distance between these objects. However, when more objects are present, there are

several ways to deal with this issue. The most common solutions in this case are

single-link, complete-link, and average-link similarity. In the single-link cluster

similarity, the distance between two clusters is evaluated as the distance between

the two closest objects in these clusters while in the complete-link approach, the

inter-cluster distance is equal to the distance between the two furthest objects

in the clusters. The �rst approach allows to �nd more oddly shaped clusters,

however, is prone to the cluster chaining anomaly, to which the second approach

is immune. A method which lies in between these two is the average-link approach,

where the inter-cluster distance is evaluated as the average distance between all

pairs of objects from both clusters.

Hierarchical clustering algorithms are generally prone to local optima, as the

splits or joins of the clusters are irreversible and optimized at each step. The

agglomerative approach is much more prone to this problem because it begins with

local information about pairwise object similarity neglecting the global structure

of the data. The divisive approach, on the other hand, starts with complete

information about the global distribution, therefore, can produce more accurate

results. This advantage, however, results in a much higher cost of the top-down

strategy, which has a O(2n) time complexity, compared to a O(n3) complexity of

the bottom-up approach. As a result, the agglomerative hierarchical clustering

algorithm is considerably more popular than the divisive approach, also in the

context of XML.

Partition-based

Partition-based clustering algorithms require the number of clusters k to be known

a priori. They rely on splitting the dataset into k initial clusters and iteratively

re�ning these clusters by relocating the objects between them. This procedure is

24 2 XML Mining

carried out until a stop condition is met, e.g., no objects are relocated between

two consecutive iterations or a certain number of iterations is reached.

The most popular representative of the partition-based methods is the k-means

algorithm. In this approach, the initial partitioning is based on k randomly cho-

sen points in the object space, called centroids, which mark the center points

of clusters. All objects are assigned to the clusters based on their nearest cen-

troids which are later recalculated as new center points of the clusters. Example

execution of the k-means clustering is presented in Figure 2.8.

C
B

A

D
E

F G

C
B

A

D
E

F G

C
B

A

D
E

F G

C
B

A

D
E

F G

a) b)

c) d)

Figure 2.8: Example of the k-means algorithm execution.

It is worth noting, that even if the procedure naturally converges, there is

no guarantee that the globally optimal solution has been found. Therefore, the

algorithm is prone to local optima. Moreover, as the initial points are chosen

at random, running k-means several times on the same dataset may result in

di�erent clusters. Finally, this approach is sensitive to outliers, as a single object

far out in the object space can signi�cantly shift the center of a cluster. This

problem, however, can be solved using a variation of the k-means algorithm,

called k-medoids. The basic procedure remains the same. The only di�erence lies

in the de�nition of a centroid, which instead of being a center point of a cluster

is an object nearest the center point of a cluster.

It is worth noting, that partition-based methods form �at results, as opposed

to hierarchical approaches, which additionally provide the dendrogram. As a

result, hierarchical approaches are more suitable in cases when the number of

clusters is unknown and a deeper understanding of the underlying structure of

the dataset is needed. Moreover, partition-based methods tend to form spheri-

cally shaped clusters because objects are grouped around a single center point.

However, these methods are generally less complex than hierarchical approaches

2.4 Classi�cation 25

(e.g., k-means has a O(kni) time complexity, where n is the size of the dataset

and i � the number of iterations). Finally, partition-based algorithms have the

advantage of being able to relocate objects between clusters in each iteration.

Such an action is impossible in hierarchical algorithms as cluster assignments are

�nal. In this sense, these families of methods are somewhat complementary and

can be chained together to compensate for each others' weaknesses. For example,

one can start with an agglomerative algorithm to form k initial clusters and next,

apply several iterations of k-means to re�ne the result. Another approach would

be to �rst run a partition-based algorithm for k′ > k to form small and highly

cohesive groups of objects and later group them to form k �nal clusters using

AHC. A similar approach was proposed for XML clustering where the authors

�rst form k′ > k clusters iteratively and later join them into k �nal groups in a

hierarchical fashion [TNB07, KTNL07].

2.4 Classification

Classi�cation is a machine learning task which aims at predicting classes of

new, previously unseen objects, based on previous observations for which the

classes are known. These objects which help to make the decision are called

training examples and all together constitute a training dataset . They are

also frequently referred to as labeled data, as opposed to the objects for which

the classes are unknown, called unlabeled . The class prediction of unlabeled data

is performed by a classi�cation model � also called a classi�er � which is

created based on training data in a process called training . In classi�cation, the

target value of the prediction is a discrete set of classes. Prediction of a continuous

target value is performed by regression and is out of the scope of this dissertation.

Classi�cation is a much less popular �eld than clustering in the context of

XML processing. Although no formal XML classi�cation framework is de�ned,

the previously described representations (Section 2.1) as well as some similarity

measures (Section 2.2) are still widely applicable. Similarly to clustering, the al-

gorithms used for classi�cation are mostly adoptions of general techniques. Below,

the two most characteristic examples of classi�cation methods used in the context

of XML will be presented, namely, rule-based and nearest neighbor classi�er.

Rule-based classifier

In rule-based classi�cation, the classi�cation model is composed of rules arranged

into a ranking. Each rule has the following structure: F → c, where F is a

set of features and c is a class. In market basket analysis, where rule-based

classi�cation originates, features are de�ned as frequent items appearing in the

baskets (transactions). In general however, they can be any pieces of information

obtainable from the analyzed objects which are frequent across the dataset (see

Equation 2.1). For example, in the context of XML they can be frequent labels,

paths, or subtrees. After obtaining the rules, they are ordered according to the

26 2 XML Mining

precedence relation ≺. Before de�ning this relation, we need to introduce some

additional de�nitions.

Support of a rule F → c is measured as a frequency of the feature set F

within the training examples with class c.

supp(F → c) =
|{o ∈ Dc : ∀f∈F f ∈ o}|

|Dc|
,

where Dc are the training examples with class c. Con�dence of a rule F → c is

measured as a relative support of the rule in its class to the support of this rule

in all classes in the training dataset.

conf(F → c) =
supp(F → c)∑
c′∈C supp(F → c′)

Size of a rule F → c is measured as a number of features in the feature set F .

size(F → c) = |F |

Based on the above, rule r1 precedes rule r2, symbolized as r1 ≺ r2:

1. if conf(r1) > conf(r2)

2. else if conf(r1) = conf(r2) ∧ supp(r1) > supp(r2)

3. else if conf(r1) = conf(r2) ∧ supp(r1) = supp(r2) ∧ size(r1) > size(r2)

Once the ranking is created, classi�cation is performed as follows. Each new,

unlabeled object is assigned to the class indicated by the �rst rule (according to

the ranking) for which the object contains all of the features:

Rule-based classi�er bene�ts from using the global information, i.e., informa-

tion obtained by analyzing the whole dataset (see Section 1.2). This allows the

algorithm to ignore the individual characteristics of each object and focus on the

features which are common in a group of objects with a speci�c class. This is

particularly useful in the XML classi�cation scenario, as the feature set (elements,

attributes, relationships) is not completely de�ned and new features may appear

after the classi�er is trained. However, concentrating only on global information

can be problematic, especially in the described scenario of new features appear-

ing after the training. If a rule-based classi�er is asked for a class prediction of a

previously unseen object with many new features or with features which were not

common in the training dataset, there may not be any rule matching this object.

In such cases, classi�er makes predictions based on a default rule , i.e., a special

rule which always points to a single class, regardless of the features present in

the classi�ed object. The most commonly adopted strategy in this scenario is to

point to the majority class in the training dataset. Based on the above, it is clear

that this assignment is somewhat arbitrary and should be avoided.

Despite the default rule problem, the rule-based classi�er is a good and intu-

itive solution for XML classi�cation task. Thanks to a compact model, it is easy

to analyze why each object was assigned to a certain class. Moreover, the model

can also give an insight into the underlying structure of the training dataset.

2.5 Performance evaluation 27

Nearest neighbor classifier

An approach contrasting with the rule-based algorithm is the k-nearest neighbors

classi�er (kNN). In kNN, the classi�cation model is composed of all documents

in the training dataset. The class prediction of a new object ox is performed by

selecting the k most similar objects from the training dataset, called k nearest

neighbors, to the object being classi�ed and assigning ox to the majority class

among those k objects. Formally, having an unlabeled object ox and a set of its

k nearest neighbors given as follows:

kNN(ox,D) = Dk ⊆ D : |Dk| = k ∧ ∀o∈Dk
[
Sim(ox, o) ≥ max

o′∈D/Dk

(
Sim(o′, o)

)]
where Sim(o1, o2) is some similarity measure between objects o1 and o2, the class

prediction cx for object ox is performed as follows:

cx = arg max
c∈D

(|kNN(ox,D)c|)

where kNN(ox,D)c is a subset of the k nearest neighbors of ox with class c.

The kNN algorithm bene�ts from using local information, i.e., information

available by analyzing pairwise similarity between objects in the dataset (see

Section 1.2). By doing so, it is able to make an informed prediction regarding

any object without the necessity of using a default class, as was the case with

the rule-based method. Furthermore, no training phase is required as all training

examples form a classi�cation model. Such methods are often referred to as

lazy . The laziness of kNN, however, translates to a costly prediction, because,

theoretically, �nding the nearest neighbor requires measuring similarity with all

objects in the dataset. This problem, however, can be solved by using a distance

metric or an index over the training data, both of which allow to �nd the nearest

neighbors much more e�ciently.

The use of local information also has its downsides. Firstly, the algorithm

misses out on the global characteristics of the data what makes is susceptible to

outliers. Secondly, the algorithm is sensitive w.r.t. the k parameter (which is user-

de�ned) especially when dealing with homogeneous datasets, which is often the

case with XML classi�cation, where similarity is measured with tree-edit distance.

2.5 Performance evaluation

After performing a desired task, either clustering or training a classi�er, the result-

ing model should be validated in order to verify if it is of acceptable quality and

if further processing is needed. In case of classi�cation, this is carried out using

external measures, i.e., measures using external knowledge provided by labeled

test datasets or via cross-validation on the training data. In clustering, labeled

datasets are not always available. In such cases, internal measures, i.e., measures

28 2 XML Mining

relying solely on internal properties of objects without the external knowledge,

have to be used.

External measures

External measures (also called external indices or supervised measures) verify how

well does the constructed model re�ect the ground truth given in test data. These

measures use labeled datasets which contain objects already assigned to classes

or clusters and evaluate how accurate the model is based on this information.

The �rst set of measures treats each class/cluster assignment as a separate

decision made about each object. In such cases, a true positive (TP) decision

correctly assigns an object to the positive class or two similar objects to the same

cluster, whereas a true negative (TN) decision correctly assigns an object to the

negative class or two dissimilar objects to di�erent clusters. Analogously, false

positive (FP) and false negative (FN) decisions incorrectly assign an object

to the positive class or two similar objects to di�erent clusters and an object to

the negative class or two dissimilar objects to the same cluster, respectively.

Many measures are designed based on these four simple notions. Arguably,

the most popular ones are Precision and Recall, which are somewhat complemen-

tary. Precision describes how many of the positively marked cases were actually

positive while Recall describes how many of the positive cases were positively

marked:

Precision =
TP

TP + FP
,

Recall =
TP

TP + FN
.

In order to balance the penalization between between false positive and false

negative decisions in a single measure, the F-score [BR99] indicy, which penalizes

false negatives according to a user-speci�ed factor β > 0, can be used:

Fβ =
(β2 + 1)PrecisionRecall

β2Precision+Recall
.

Speci�cally in classi�cation, two other measures are commonly used, namely,

Sensitivity and Speci�city. Sensitivity is de�ned exactly the same as Precision,

so describes how well the classi�er recognizes positive class, while Speci�city

describes how well it recognizes the negative class:

Sensitivity =
TP

TP + FP
,

Specificity =
TN

TN + FN
.

Another measure typically used in classi�cation is Accuracy :

Accuracy =
|Dtest|
|D|

(2.5)

2.5 Performance evaluation 29

where Dtest is the set of correctly classi�ed documents and D is the set of all

documents. This version of Accuracy, also referred to as proportional , favors

larger classes. To compensate for this fact when class imbalance occurs (see

Section 1.2), an equal variation is recommended:

Accuracye =
∑
c∈C

(
1

|C|
· |D

test
c |
|Dc|

)
(2.6)

where Dtestc is the set of documents correctly assigned to class c and Dc is the set
of all documents from class c.

One of the simplest external indices dedicated for clustering is the Purity

measure [ZK02], which evaluates the degree in which a cluster contains documents

from a single category. For a given cluster ci and a set of possible clusters C, the
Purity of ci is calculated as:

Purity(ci) =
1

|ci|
max
c∈C

(cci)

where cci represents the number of documents from cluster ci assigned to category

c. The overall Purity of a clustering is de�ned as:

Purity(C) =
∑
c∈C

|c|
|D|

Purity(c).

Furthermore, when interpreting each cluster assignment as a separate decision,

the Rand Index (RI) [Ran71] was proposed as:

RI =
TP + TN

TP + FP + FN + TN
.

Internal measures

Internal measures (also called internal indices or unsupervised measures) measure

the quality of clusters without the use of any external information about the way

in which the analyzed objects should be clustered. Unsupervised measures are

divided into measures of cluster cohesion, which determine the compactness of

objects within a cluster, and cluster isolation, which determine how well a cluster

is separated from other clusters [TSK05].

One of the most popular internal indices is the Sum of squared errors

(SSE), a cohesion measure based on some distance metric dist(), calculated as:

SSE =
∑
c∈C

1

2|c|
∑
ox∈c

∑
oy∈c

dist(ox, oy)
2.

The most popular separation measure is theBetween group sum of squares

(SSB), calculated as the sum of squared distances of cluster centroids cc to the

30 2 XML Mining

overall mean c̃ of all the objects:

SSB =
∑
cc∈C
|cc|dist(cc, c̃)2.

Cohesion and separation are often combined to ensure high intra-cluster and

low inter-cluster similarity. An example of such a combination is the Silhouette

coe�cient [Rou87]. For an object o, the Silhouette coe�cient is computed as:

Silhouette(o) =
b(o)− a(o)

max{a(o), b(o)}
,

where a(o) is the average dissimilarity of o with all other data within the same

cluster and b(o) is the minimal of average distances between o and any cluster

that does not contain o. The value of the Silhouette coe�cient varies between -1

and 1, with 1 being the most desirable value.

External indices provide a transparent comparison between the algorithm's out-

put and the desired outcome. Moreover, they allow to di�erentiate the importance

of false positive and false negative errors. Unfortunately, in many clustering sce-

narios labeled datasets are unavailable. For this reason, clustering algorithms de-

signed to tackle large datasets will most probably require unsupervised validation

measures. In the �eld of XML mining by structure, the most popular universal

evaluation methods are Precision and Recall. Additionally, Accuracy is commonly

used in classi�cation while SSE and SSB are used in real-world clustering, when

the analyzed documents are unlabeled.

2.6 Conclusions

In this chapter, we have presented the core concepts regarding clustering and

classi�cation of XML data. We discussed various document representations and

applicable similarity measures, introduced basic notions regarding clustering an

classi�cation, and tackled the issue of performance evaluation. In the next chap-

ter, we will examine the state-of-the-art methods for XML clustering, classi�ca-

tion, and approximate subtree matching.

When illustrating how the algorithms discussed in the further chapters of

the thesis operate, we will use a sample dataset consisting of 8 XML documents

presented in Table 2.2. Documents d1− d4 correspond with DTD1 and represent

a class of book chapters c1, while documents d5 − d8 correspond with DTD2 and

represent a class of journal papers c2. This dataset will be used when discussing

both clustering and classi�cation. To better illustrate the tackled problems, the

DTDs of the example documents are provided in Table 2.3. In reality, DTDs are

usually unavailable during the clustering or classi�cation process so it is important

to stress that all of the approaches which will be described in the further chapters

do not depend on DTDs. They are provided solely for illustrative purposes.

Table 2.2: Example training dataset created based on the DTDs from Table 2.3.

DTD1 � class c1
d1 d2 d3 d4
<paper> <paper> <paper> <paper>

<authors> <authors> <authors> <editors>
<person /> <person /> <person /> <person />

</authors > </authors > <person /> <person />
<publisher /> <publisher /> </authors > </editors >
<inbook> <inbook> <inbook> <inbook>

<title /> <title /> <title /> <title />
<year /> </inbook> <number /> <year />
<volume /> <note /> </inbook> <volume />

</inbook> </paper> </paper> </inbook>
</paper> </paper>

DTD2 � class c2
d5 d6 d7 d8
<paper> <paper> <paper> <paper>

<authors> <authors> <authors> <authors>
<person /> <person /> <person /> <person />

</authors> </authors> <person /> <person />
<journal> <journal> </authors> </authors>

<title /> <title /> <journal> <journal>
<year /> <year /> <title /> <title />
<volume /> </journal> <year /> <year />

</journal> <note /> <volume /> <volume />
</paper> </paper> </journal> </journal>

<pages /> </paper>
</paper>

Table 2.3: Example DTDs.

DTD1 DTD2

<!ELEMENT paper (authors|editors, <!ELEMENT paper (authors,
publisher, inbook, note?, pages?)> journal, note?, pages?)>

<!ELEMENT authors (person+)> <!ELEMENT authors (person+)>
<!ELEMENT person (#PCDATA)> <!ELEMENT person (#PCDATA)>
<!ELEMENT inbook (title, year?, <!ELEMENT journal (title, year,

volume?, number?)> volume, number?)>
<!ELEMENT title (#PCDATA)> <!ELEMENT title (#PCDATA)>
<!ELEMENT year (#PCDATA)> <!ELEMENT year (#PCDATA)>
<!ELEMENT volume (#PCDATA)> <!ELEMENT volume (#PCDATA)>
<!ELEMENT number (#PCDATA)> <!ELEMENT number (#PCDATA)>
<!ELEMENT note (#PCDATA)> <!ELEMENT note (#PCDATA)>
<!ELEMENT pages (#PCDATA)> <!ELEMENT pages (#PCDATA)>
<!ELEMENT editors (person+)>
<!ELEMENT publisher (#PCDATA)>

3
State of the art

The available document representations and similarity measures in conjunction

with clustering and classi�cation methods open many opportunities to create

structural XML processing algorithms. Throughout the last years, several solu-

tions utilizing the discussed methods have been proposed. This chapter will sum-

marize the most relevant and characteristic algorithms in the discussed structural

XML mining domains. By doing so, we will try to showcase that the problems

stated in this work are still relevant.

It is worth noting, that there is a substantial disproportion in the quantity

of available approaches, as XML clustering has been much more intensively stud-

ied than classi�cation. This is due to the simple fact that XML clustering is

much wider applied in practice, as evidenced in the introduction of this thesis.

Apart from these two groups of algorithms, some of the approaches related to

approximate subtree matching will also be reviewed, as further in the thesis, in

the context of XML classi�cation, a new measure designed to solve this problem

will be proposed.

3.1 Clustering

According to our recent survey [PBML14], structural XML clustering algorithms

can be categorized into four main groups: tree-edit distance, substructural sim-

ilarity, level similarity, and other approaches. Below, the main approaches from

each category will be summarized. It is worth noting, that nearly all of these

algorithms share the clustering framework described in Section 2.3.

The �rst category is constituted by approaches relying on the tree-edit distance

measure. Out of several algorithms based on this notion [Sel77, ZS89, CRGW96,

Cha99] Nierman and Jagadish [NJ02] put forward an algorithm designed specif-

ically for XML documents. As described in Section 2.2, the authors represent

documents as trees and propose a slightly modi�ed version of tree-edit distance

34 3 State of the art

which allows for deleting or inserting whole subtrees. Using the proposed mea-

sure, the authors calculate distances between XML documents and cluster them

using the agglomerative hierarchical algorithm (AHC, see Section 2.3). A similar

approach was proposed by Tekli and Chbeirb [TC12], where subtree operations

are also permitted. However, the subtrees found in the compared documents do

not need to be identical. This way, when a subtree operation is performed, its cost

is proportional to the similarity of the analyzed subtrees. The proposed measure

was used with a single-link hierarchical method.

The tree-edit distance methods described so far operate on document trees

in their complete, unmodi�ed form. Dalamagas et al. [DCWS06] proposed to

summarize XML trees into structures similar to dataguide [GW97]. The authors

later compare the summarized documents using the tree-edit distance algorithm

proposed by Chawate [Cha99] and cluster them with a single-link hierarchical

method. Another approach based on processed trees was put forward by Yang

et al. [YKT05]. The authors propose to transform each XML document into

a structure called normalized binary tree, encode it in a vector and calculate

the distance between two documents by subtracting the values at corresponding

positions in their vectors. The authors proved that binary branch distance forms

a lower bound for tree-edit distance. In contrast to tree-edit distance, the binary

branch distance can be calculated in linear time and is one of the most e�cient

ways of comparing full tree structures.

The second category consists of methods based on tree decomposition. These

methods o�er a compromise between fast tag algorithms and accurate edit dis-

tance approaches. Interestingly, almost all of these approaches use path-oriented

similarity measures. Vercoustre et al. [VFGL05] proposed several path-based rep-

resentations. In each of them, paths are encoded into vectors of term frequencies

scaled with TF-IDF [SB88] and clustered with the k-means algorithm (see Sec-

tion 2.3), with centroids computed as a sum of all vectors in a given cluster

and similarity evaluated using the Euclidean distance. Other approaches using

quantity-based similarity include Leung et al. [LCCL05], Ra�ei et al. [RMS06],

and Costa et al. [CMOT04]. All three of these methods evaluate similarity using

the number or percentage of common paths and cluster the documents using the

AHC algorithm. The di�erences between them concern the paths they use: Leung

et al. [LCCL05] use only maximal frequent full paths, Ra�ei et al. [RMS06] use

all paths starting at the root node, while Costa et al. [CMOT04] allow for any

types of paths. Additionally, in the last algorithm, the inter-cluster similarity is

evaluated using each cluster's representative (i.e., a tree which has the lowest dis-

tance from all trees in the cluster) while the two former approaches use single-link

similarity.

A di�erent approach was proposed by Lian et al. [LCMY04], where docu-

ments are summarized into graphs by removing repeating nodes and encoded as

binary edge vectors. These vectors are later compared based on the percentage of

common edges between them and clustered using the ROCK algorithm [GRS00].

Similarly, Aïtelhadj et al. [ABMS12] presented a method where documents are

summarized by merging all repeating elements appearing at each tree level and

3.1 Clustering 35

further decomposed into sets of full paths compared using a weighted sum of

similarities between all of the paths. The authors, however, do not rely on any

existing clustering algorithm but propose an original iterative procedure for con-

structing clusters. Each consecutive document is either assigned to one of the

existing clusters if it satis�es a given similarity threshold with its representative,

or constitutes a new one. The cluster representative is chosen as the document

with the highest similarity with all other documents in this cluster. A very similar

algorithm was proposed by Tran et al. [TNB07] and Kutty et al. [KTNL07]. The

authors utilize a two-phase approach with each document represented as a set

of full paths and a set of subtrees, respectively. The �rst phase is the same as

in Aïtelhadj et al. [ABMS12] approach, however, the authors further merge the

clusters according to their similarity, until they form the user-speci�ed number of

clusters. For similarity evaluation, Kutty et al. [KTNL07] use the Jaccard coe�-

cient, while Tran et al. [TNB07] propose an original measure which calculates the

joint similarity of all paths in both documents.

Finally, Aggarwal et al. [ATW+07] proposed an approach based on the notion

of patterns de�ned as frequent edges. These patterns serve as centroids in the

k-means algorithm used by the authors to cluster the documents. The initial

partition is random and the distance between documents and centroids is de�ned

as a fraction of common edges.

Methods in the third category take the tree decomposition one step further and

use simple tag- and edge-based representations with the additional information

about the level at which these substructures appear in the document tree. This

approach was �rst proposed by Nayak [Nay08] and later enhanced by Alishahi

et al. [ANA10]. In this method, each document is represented as a vector in

which cells correspond to consecutive levels in the document tree. Each cell

contains another vector encoding distinct tags which appear in the document

at the corresponding level. Using this representation, documents are iteratively

assigned to clusters which contain the most similar documents, where similarity is

evaluated based on the weighted number of common tags at corresponding levels.

A complementary approach was presented by Antonelli et al. [AMT08], where

instead of tags, the authors use edges and encode them in the same level structure.

However, in contrast to Nayak [Nay08] and Alishahi et al. [ANA10], the authors

use the k-means algorithm, with centroids encoded with the same structure as

documents � each level contains all distinct edges in the corresponding levels of

all documents in a given cluster.

The �nal group consists of methods which cannot be unambiguously assigned

to any particular category, as each of them presents a very unique approach. For

example, Candillier et al. [CTT05] proposed yet another vector-based algorithm,

however, the positions in this vector do not represent the same type of objects.

Instead, they can represent the frequencies of parent-child relations, sibling re-

lations, paths, tags, and absolute node positions. As such representations can

grow fairly large, the authors propose to perform feature selection and cluster

the documents using the Expectation-maximization algorithm [Moo96]. Another

interesting method proposed by Hagenbuchner et al. [HST+05] is based on Ko-

36 3 State of the art

honen's Self Organizing Maps (SOM) [Koh89]. In this approach, each document

is mapped on the SOM neuron grid, one tree node at a time. The idea is that

afterwards, similar documents should appear at close coordinates on the neuron

grid and can be clustered accordingly.

Possibly, the two most creative approaches to dealing with the XML clustering

task were presented by Flesca et al. [FMM+05] and Helmer et al. [Hel07, HAB12].

Both of these proposals are highly e�cient and can be used with any similarity-

based clustering algorithm. The authors of the �rst approach [FMM+05] propose

to model XML documents as time series, where the depth of an element represents

the strength of a signal in time given by the order in which it appears in the doc-

ument (see Section 2.1). Given such a representation, documents are compared

using the Discrete Fourier Transform. In the second approach [Hel07, HAB12],

the structures of the documents are compressed with some �le compression algo-

rithm and the di�erence in the length of the compressed �les serves as a distance

measure.

As apparent in the abundance of approaches, clustering has been the most

intensively studied subject in the context of XML. As a result, several reviews

related to this task are available. The most recent survey of structural XML clus-

tering algorithms covers 23 state-of-the-art approaches and highlights the main

open issues in this domain [PBML14]. Another exhaustive survey covering the

entire XML clustering process discusses both structure- and content-based meth-

ods [AMNS11]. Currently, the most cited survey related to XML clustering by

structure [But04] concentrates on similarity computation. Other reviews limited

to similarity computation include [GMS07], where eight measures are discussed,

not all of which are XML-speci�c, and [TCY09] which concentrates on tree-edit

distance measures also for schema comparison and content-based information re-

trieval. Finally, several reviews are limited to speci�c application �elds. For

example, [VPA07] and [HPRS07] focus on general clustering methods for Web

documents.

Despite a tremendous e�ort put into the XML clustering research, the prob-

lems addressed in this thesis are still open. All of the described approaches are

de�ned around local information and all except one require the number of clusters

to be known a priori. Moreover, only a few methods tackle the issue of cluster in-

terpretability. Finally, all of the above presented algorithms, except for Aggarwal

et al. [ATW+07], follow the same clustering framework described in Section 2.3,

while no such framework has been proposed for pattern-based approaches.

3.2 Classification

As mentioned earlier, XML classi�cation has not been studied as intensively as

XML clustering. However, several approaches have been proposed [NVK+09,

VNK+10] and will be described in this section. Candillier et al. [CTT05] pro-

posed a modi�cation of their earlier described clustering algorithm based on the

3.2 Classi�cation 37

EM algorithm. Importantly, the authors address the same issue as one of the

issues stated in this thesis, i.e., producing easily interpretable results, by gener-

ating a decision tree in addition to the actual result. As a consequence, each

cluster and class assignment can be summarized by a series of decisions. Garboni

et al. [GMT05] proposed an approach where XML documents are represented

as sequences and clustered in the training phase. For the classi�cation phase,

the authors propose several document-cluster similarity measures used to predict

classes of new documents based on the cluster classes. Yang and Wang [YW09]

proposed a method where XML documents are mined for closed frequent subtress,

represented in a vector space model, and classi�ed with SVM.

The most popular nearest neighbor approach (see Section 2.4) in XML clas-

si�cation was proposed by Bouchachia and Hassler [BH07]. In this approach,

documents are represented as trees and classi�ed based on k nearest training doc-

uments according to tree-edit distance. The authors analyzed both content and

structure and arrived at a conclusion that structure is a more valuable source of

information for XML classi�cation purposes than content.

Regarding rule-based XML classi�ers (see Section 2.4), an algorithm consid-

ered to be the state-of-the-art approach is XRules, proposed by Zaki and Aggar-

wal [ZA06]. The authors use an original mining algorithm to search for frequent

embedded subtrees. These subtrees, along with their corresponding classes, form

a set of rules, ranked according to their con�dence, support, size, and lexicograph-

ical order. New documents are classi�ed according to the �rst matching rule with

the highest ranking.

Recently, a similar approach was proposed by Costa et al. [COR13] in an algo-

rithm called X-Class. The authors also rely on an associative classi�er, however,

their proposal is generic and can incorporate any type of substructural features,

such as element labels, paths, or subtrees. Moreover, unlike XRules, the training

in X-Class does not produce rules with single-element antecedents. Instead, it

treats each document as a transaction and �nds common sets of frequent sub-

structures. As a result, it is able to produce more powerful and discriminative

rules, as evidenced by high quality results achieved in the experiments.

Each of the presented algorithms tackles some of the challenges stated in this

dissertation, however, neither algorithm addresses them all. The closest approach

is the one proposed by Zaki and Aggarwal [ZA06], however, it is prone to the

default rule overuse problem as it concentrates solely on global information.

In addition to the above described structural approaches, several other XML

classi�ers have been proposed [TSW03, DG04, ZWB+11, LSG14]. However, they

are designed for structure and content analysis and are, therefore, out of the scope

of this thesis.

38 3 State of the art

3.3 Approximate subtree matching

Tree-edit distance, along with many related problems, has been studied for many

years now [Bil05, Tai79]. One of such related problems is approximate subtree

matching, which is tackled in this thesis in the context of XML classi�cation.

One of the �rst attempts at solving this problem was proposed by Zhang and

Shasha [ZS89]. The authors present a generalization of tree-edit distance, which

can be stated as follows. Given trees t1 and t2, what is the minimum distance

between t1 and t2 when zero or more subtrees can be removed from t2 at no

cost. This problem is similar to the question stated in this thesis, however, it

works closely only when the root node of t1 is mapped to the root node of t2.

Furthermore, it allows for all edit operations to appear in both trees. Given

the XML classi�cation motivation, the measure should be capable of identifying

subtrees anywhere in the hierarchy of a tree and only by modifying a pattern tree

in the least invasive way.

Tekli et al. [TCY07] proposed a new XML structural similarity measure based

on tree-edit distance. In this measure, the authors introduce the notion of subtree

commonalities to additionally account for the subtrees which appear multiple

times in the compared trees. Although the authors also tackle the problem of

subtree similarity, the overall goal and use of this information is di�erent, as

they focus on tree similarity while the measure presented in this thesis aims at

measuring the degree of tree containment.

Another problem, similar to the one stated in this dissertation, was explored

by Augsten et al. [ABBP10]. The problem concerned �nding the best k matches

of a small query tree in a large document tree. The authors propose a fast

and scalable solution by focusing on e�cient pruning. The algorithm prunes all

excessive subtrees in a single post-order scan of a document tree, thus presenting

linear complexity. This approach, however, is also unsuited for the stated problem

because it focuses on subtrees spanning to the bottom of a document tree (leaf

nodes) while for the purposes of XML classi�cation the measure needs to identify

subtrees of any shape and depth.

Recently, Cohen and Or [CO14] proposed a framework for solving the subtree

similarity-search problem, along with an indexing structure to enhance the e�-

ciency of the searching [Coh13]. Their solution is generic and allows for a wide

variety of similarity measures to be used. However, the aim and scope of the

framework is di�erent to the problem addressed in this thesis. The authors focus

on �nding several similar subtrees using some subtree similarity measure while

this work focuses on the sole problem of how to measure the subtree similarity.

Therefore, the scopes of our work are di�erent, nevertheless, complementary.

Much e�ort have also been put into XML tree patterns and tree pattern match-

ing, which is a more general problem than the one stated in this thesis [HD13]. An

interesting approach to tree pattern matching, called tree pattern relaxation, was

proposed by Amer-Yahia et al. [ACS02]. The authors propose four relaxations of

pattern constraints which allow for approximate pattern matching. This method

3.4 Conclusions 39

is dedicated for XML tree querying and, thanks to the applied relaxations, pro-

vides a ranking of results. However, it requires speci�cally constructed weighted

patterns, while the patterns used in the classi�cation algorithm proposed in this

thesis are simple trees.

Another pattern matching related problem is approximate tree matching with

variable length don't cares [ZSW94]. Zhang et al. adopted the idea of VLDC's

from string matching to tree matching. Originally, a VLDC is a symbol repre-

sented by �*� which may appear anywhere in a string pattern and may substitute

any substring of a data string. For example, given a pattern �te*is�, the �*� symbol

can substitute for �nn� in a word �tennis� or for �tr� in a word �tetris�. Zhang et

al. generalized this approach to tree matching by introducing two VLDC symbols

in tree patterns: a path-VLDC �|� � a substitute for a path, and an umbrella-

VLDC �∧� � a substitute for a path and all of its emerging subtrees. Finally,

the authors expanded this approach to approximate tree matching by calculating

tree-edit distance between pattern and document tree, given that substitution of

a VLDC is performed at zero cost. This approach, similarly to tree pattern re-

laxation, requires patterns of a speci�c structure, which makes it unusable in this

instance.

3.4 Conclusions

In this chapter, we have summarized the most relevant and characteristic algo-

rithms in the discussed structural XML mining domains. The literature analysis

concerned the two main �elds of inquiry, i.e., XML clustering and XML classi-

�cation, as well as the side issue of approximate subtree matching. All of the

analyzed solutions tackle similar issues to the ones stated in this thesis, however,

their detailed characteristics showcase that they do not resolve all of them.

Firstly, there is no generic methodology for clustering XML documents using

global information while a local-information-based framework exists. Moreover,

the issues of result interpretability and automatic number of clusters detection,

which are of very high practical importance, are almost universally neglected. In

the �eld of XML classi�cation, either solely global- or local-information-oriented

approaches have been proposed while the issue of default rule usage has not been

addressed. An attempt to address this issue by exploring edit-distance-based

subtree similarity measures reveals, that their detailed characteristics showcase

that they are unsuited for this particular problem.

In the chapters to follow, we will systematically try to address these issues. We

will begin by proposing a framework for clustering XML documents by patterns

in the next chapter.

4
XPattern — a framework for clustering

XML data by patterns

The previous chapter shows a tremendous e�ort put into developing new ap-

proaches in the XML clustering domain, evidenced by a large number of algo-

rithms created in this �eld. In these approaches, various representations, sim-

ilarity measures, and clustering algorithms have been explored and combined

using the traditional framework described in Section 2.3. However, as highlighted

before, this framework is based on direct document similarity and as such is fo-

cused primarily on using local information. Although it can incorporate global

information, as shown for example by Aggarwal et al. [ATW+07], how such an

incorporation should be accomplished is not de�ned within the framework and

must be dealt with independently.

In this chapter, an alternative approach is proposed, focused on using global

information expressed by patterns. It describes a pattern-based framework for

clustering XML documents, called XPattern, which was presented in [PBM15].

First, an intuition and a conceptual description of the framework will be discussed

in Section 4.1. In Section 4.2, the framework will be formalized. Finally, a generic

algorithm will be presented in Section 4.3.

4.1 Conceptual description

The XPattern framework is based on a real-world observation that objects �

for instance people � di�er from each other in many details. Thus, we say that

each person is unique. But if we omit the characteristic features, we can see that

people manifest similar patterns of behavior that allow us to classify them into a

limited amount of pro�les (for example extroverts and introverts).

Following this analogy, we have to de�ne what kind of patterns we are looking

for, e.g., decide if we want to group people according to their behavior or maybe

their appearance. Next, we have to identify all the patterns which appear in a

given dataset. Since we do not know how many patterns we will �nd and there can

42 4 XPattern � a framework for clustering XML data by patterns

be even more patterns than people, we have to group the patterns into pro�les.

Once we have formed the desired number of pro�les we can simply assign each

person to the pro�le she/he �ts best.

According to these observations, the XPattern framework is de�ned around

four main steps:

1. Data transformation

2. Pattern mining

3. Pattern clustering

4. Document assignment

Let us now discuss each step of this framework in more detail.

Step 1 Data transformation

The purpose of the �rst step is to transform input data into a representation

that allows for e�cient pattern mining according to a chosen pattern de�nition.

The framework is independent of any particular representation and thus, XML

documents can be transformed into any of the data structures discussed in Section

2.1, such as trees or sets of tags.

Step 2 Pattern mining

In the pattern mining step, the transformed input dataset is mined for patterns.

A pattern can be de�ned as any piece of information obtainable from a single

document that has a user-speci�ed property, e.g., appears frequently across the

dataset. Typical structural patterns include frequent subtrees and tags, but fea-

tures like tag counts, paths, or statistical measures can be used as well. As we

are describing an abstract framework, we will not use any concrete pattern de�-

nition in the remainder of this section and discuss the consequences of particular

de�nitions in Section 6.4.

A pattern de�nition implies a method which needs to be employed for pattern

mining, e.g., patterns de�ned as frequent subtrees require a computationally ex-

pensive frequent subtree mining algorithm, while patterns de�ned as distinct tag

counts require a simple dataset scan. Since in the discussed framework patterns

serve as cluster representatives, the mining algorithm has to produce at least

as many patterns as there are expected clusters. That is why, if there are less

patterns than expected clusters, we have to restart the pattern mining step and

search for new patterns.

Step 3 Pattern clustering

In the third step of XPattern, patterns are clustered into groups, called pro�les.

The framework does not de�ne any pattern similarity measure necessary for clus-

tering. Two basic approaches arise: i) similarity measures that compare pattern

structures and ii) similarity measures that compare patterns by the number of

the documents they co-occur in.

4.2 Formal de�nition 43

The �rst approach promotes structurally cohesive pro�les and takes into ac-

count relations between patterns rather than between documents. The second

approach promotes pro�les with commonly co-occurring patterns and, thus, in-

directly uses inter-document relationships. Additionally, the second approach

requires less processing. Comparing pattern structures would require calculating

similarity between each pair of patterns, while all information needed for clus-

tering using document co-occurrences can be gathered during the pattern mining

step. That is why, we propose to use the second approach.

Step 4 Document assignment

After patterns are grouped into pro�les, in the �nal step of the framework we

have to assign all documents to the clusters represented by these pro�les. This

is carried out by testing each document against each pro�le to check how well

the patterns in that pro�le describe that particular document. A document is

assigned to the cluster for which this test produces the best result. In this step,

similarly as in the third step, we can use the earlier acquired information about

the occurrences of patterns in documents. Therefore, we do not need to check

whether a document contains a pattern. It is also worth noticing that some doc-

uments may not contain any pattern and, thus, may be left unassigned. This

feature relates to the problem of outlier detection, as documents without corre-

sponding patterns naturally form a set of outliers.

Let us now focus on the main di�erences between the steps of XPattern and

the earlier mentioned typical clustering methodology [AMNS11]. Although, the

�rst step of both methodologies transforms objects into a chosen representation,

in the traditional approach this is done to compare documents with each other,

while in our approach it facilitates the process of pattern mining. Pattern mining

and pattern clustering are steps distinctive for our framework. In these steps we

aim at tackling the challenge of creating easily interpretable cluster representa-

tives in the form of pro�les. The �nal step of our framework iteratively assigns all

documents to pro�les, incrementally creating clusters in the process. This di�ers

from the traditional approach where the last step consists of clustering by direct

document similarity, which uses only local information and usually cannot be per-

formed incrementally. Finally, it is worth noticing that the XPattern framework

facilitates outlier treatment, as it naturally captures documents which do not �t

into any pro�le.

4.2 Formal definition

Let us now formalize the discussed framework. The �rst step aims at transform-

ing all documents from a dataset D into a representation that permits the chosen

type of feature extraction. Since data transformation is performed at the very

beginning of the clustering process and all further operations concern the trans-

44 4 XPattern � a framework for clustering XML data by patterns

formed documents, for convenience and clarity of notation, we will use the same

symbol D to denote a dataset both before and after the transformation.

De�nition 1 A feature f is any piece of information that can be extracted or

calculated from an XML document, e.g., a subtree, element label, or total number

of elements. We denote the set of all features by F .

De�nition 2 A document d ∈ D contains a feature f if f can be obtained from

its transformed representation. We denote the containment relation by f ∈ d and

the number of occurrences of f in d by m(f, d).

De�nition 3 A feature f is called a pattern if it ful�lls a user-speci�ed predicate

pattern(f). We denote a single pattern by p and a set of all patterns by P:

P = {f ∈ F : pattern(f)}

The second step of the framework mines all available patterns P from the

dataset, preserving the information about all document-pattern containment re-

lations.

De�nition 4 A set of pro�les Πk is a set of k sets of patterns de�ned as follows:

Πk = {π1, π2, ..., πk : ∀i=1..kπi 6= ∅ ∧ πi ⊆ P ∧ ∀j=1..k;j 6=iπi ∩ πj = ∅}

De�nition 5 A pro�le πi is an element of a set of pro�les Πk that represents a

cluster ci.

In the third step of the XPattern framework patterns P are grouped into a

set of k pro�les Πk. One can use any algorithm or similarity measure to create

the pro�les (see Sections 2.2 and 2.3) � they are only restricted by the de�nition

of a pro�le and a pro�le set (De�nitions 4 and 5).

De�nition 6 A document d is connected with a pro�le πi if it contains at least

one pattern from that pro�le:

d ∼ πi ⇔ ∃p∈πip ∈ d

De�nition 7 The degree in which a document and a pro�le are connected with

each other (document-pro�le similarity) is measured by the connection strength

function str, de�ned as follows:

str : D ×Πk → R+
0

De�nition 8 A document d is assigned to a cluster ci if it has the highest con-

nection strength with pro�le πi:

ci = {d ∈ D : arg max
π∈Πk

str(d, π) = πi}

4.4 Conclusions 45

In the last step of the framework each document is assigned to a cluster accord-

ing to De�nition 8, and the process is complete. As a result, we obtain documents

organized into k groups, each summarized with a separate pro�le.

4.3 Generic algorithm

Based on the presented de�nition of the XPattern framework, we can outline a

simple, generic algorithm for clustering XML documents by patterns, which is

presented in Algorithm 1. The algorithm takes a set of XML documents as an in-

put and outputs a set of k clusters. Nominally, the number of clusters is a required

parameter of the algorithm. However, some approaches may require additional

parameters or no parameters at all, as will be shown in the next sections.

Algorithm 1 The XPattern generic clustering algorithm

Require: set of XML documents D, number of clusters k
Ensure: set of k clusters C
1: D ← TransformDocuments(D)
2: P ← GetPatterns(D, k);
3: Πk ← GroupPatterns(P, k);
4: C ← k empty clusters each de�ned by one pro�le πc ∈ Πk;
5: for all d ∈ D do

6: c = arg max
c∈C

(str(d, πc))

7: add d to cluster c;
8: end for

The �rst step of the framework is the document transformation, carried out

in line 1. Secondly, in line 2 the transformed documents are mined for patterns

according to De�nition 3. Thirdly, in line 3 the patterns are grouped together

into pro�les as de�ned in De�nition 5. Finally, in lines 4�8 the documents are

assigned to their respective pro�les. Each document is tested against every pro�le

for connection strength (De�nition 7) and added to the respective cluster of the

pro�le with the highest value (lines 6�7). After processing all of the documents

in this manner, the algorithm terminates.

4.4 Conclusions

In this chapter, we have de�ned and motivated the XPattern framework for clus-

tering XML documents by patterns. As it is a generic solution, there are parts

which need to be further speci�ed in order to create a complete, working algo-

rithm. One can use any document representation, pattern de�nition, pattern

similarity measure, and pattern clustering method to create an algorithm tailored

to a speci�c problem.

46 4 XPattern � a framework for clustering XML data by patterns

In the next two chapters, two such algorithms will be described and experi-

mentally evaluated. In Chapter 5 we will discuss a tree-based instance of XPattern

while Chapter 6 will introduce a path-based approach.

5
XCleaner2 — a tree-based instance

of the XPattern framework

This chapter presents the �rst instance of the XPattern framework. The algo-

rithm is called XCleaner2 and was presented in [BLMP11]. It is based on a tree

representation with features de�ned as subtrees and patterns de�ned as maximal

frequent subtrees. First, in Section 5.1 we will describe the proposed algorithm.

Section 5.2 will illustrate how XCleaner2 operates with a simple example. Finally,

in Section 5.3, we will empirically evaluate the proposed algorithm.

5.1 Algorithm

XCleaner2 uses a tree-based document representation proposed by Zaki [Zak02].

This representation relies on mapping the set of all XML tags in the dataset into

integers uniquely identifying labels (label ids) and then encoding each document

tree as a string. The encoding is carried out by adding label ids to the string in

a depth-�rst pre-order traversal and adding a -1 symbol whenever backtracking

from a child to its parent. For example, the tree in Figure 5.1 would be encoded

as: 0 1 -1 2 2 2 -1 -1 -1 4 3 -1 3 -1 -1. The numbers in brackets next to tree nodes

show the depth-�rst pre-order traversal.

1 2

32 3

0[1]

[2]

[8]

[3]

[4] [7]

4[6]

2[5]

Figure 5.1: Tree representation of an XML document.

48 5 XCleaner2 � a tree-based instance of the XPattern framework

In XCleaner2, features are de�ned as subtrees. A feature f is called a pattern

if it is a maximal frequent subtree. Let us recall the de�nition of frequency from

Equation 2.1. A feature f is frequent if it is contained in at leastminsup percent

of documents in the dataset D, where minsup is a user-de�ned minimum support

parameter:

frequent(f,D)⇔ ∃D′⊆D∀d′∈D′f ∈ d′ ∧ |D
′|
|D|
≥ minsup (5.1)

A feature f is maximal if it is not contained in any other feature. In this case,

if it is not a frequent subtree of any other frequent subtree found in the dataset.

pattern(f,D)⇔ frequent(f,D) ∧ ¬∃f ′∈F
(
frequent(f ′,D) ∧ f ⊂ f ′

)
(5.2)

We propose to use only maximal frequent subtrees so as to limit the number

of patterns to a minimum. To �nd patterns de�ned as maximal frequent subtrees,

CMTreeMiner algorithm proposed by Chi et al. [CXYM05] was used. CMTreeM-

iner discovers maximal frequent subtrees in a database of rooted, ordered, labeled

trees by traversing an enumeration tree. An enumeration tree systematically enu-

merates all subtrees of an XML document. CMTreeMiner prunes the branches

of the enumeration tree that do not correspond to maximal frequent subtrees,

therefore rejecting groups of infrequent substructures rather than checking each

substructure independently.

After obtaining the patterns, they are grouped according to their similarity. In

this instance, we propose a pattern similarity measure based on document-pattern

connections. The similarity between two patterns is directly proportional to the

number of documents they share and is calculated according to the following

formula:

sim(p1, p2) =
|{d ∈ D : p1 ∈ d ∧ p2 ∈ d}|
|{d ∈ D : p1 ∈ d ∨ p2 ∈ d}|

(5.3)

After calculating the similarity between all pairs of patterns, the results are stored

in a similarity matrix and fed to the complete-link agglomerative hierarchical

clustering algorithm (AHC, see Section 2.3) for clustering.

Once the pro�les are obtained, we can start the document assignment process.

Following the XPattern framework, we have to de�ne how to measure the con-

nection strength between documents and pro�les (De�nition 7). In XCleaner2,

we propose to use the percentage of patterns in a pro�le contained in a given

document:

str(d, πi) =
|{p ∈ πi : p ∈ d}|

|πi|
(5.4)

Connection strength is the �nal component required by the framework. Table 5.1

summarizes how each component of XPattern is de�ned in XCleaner2.

With all components de�ned, we can combine them into a complete, working

solution. The pseudocode for XCleaner2 is listed in Algorithm 2.

The algorithm begins with encoding XML documents with the described string

representation (line 1). In line 2, the algorithm mines for maximal frequent sub-

trees (see Equation 5.2) in the whole set of documents with support greater than

5.1 Algorithm 49

Table 5.1: XPattern components de�ned in XCleaner2.

XPattern component XCleaner2 de�nition

Document representation Tree (string-encoded)

Pattern de�nition Maximal frequent subtrees

Pattern clustering algorithm Complete-link AHC

Pattern similarity: sim(p1, p2) |{d∈D:p1∈d∧p2∈d}|
|{d∈D:p1∈d∨p2∈d}|

Connection strength: str (d, πi) |{p∈πi:p∈d}|
|πi|(document-pro�le similarity)

Algorithm 2 XCleaner2 algorithm

Require: set of XML documents D, number of clusters k, minimal support
minsup

Ensure: set of k clusters C
1: Encode(D)
2: P ← TreeMiner(D,minsup);
3: Πk ← AHC (P, k);
4: C ← k empty clusters each de�ned by one pro�le πc ∈ Πk;
5: for all d ∈ D do

6: bestCluster ← the �rst cluster;
7: bestMatchCount← 0;
8: for all c ∈ C do
9: matchCount← str(d, πc); //Equation 5.4

10: if matchCount > bestMatchCount then
11: bestMatchCount← matchCount;
12: bestCluster ← c;
13: end if

14: end for

15: add d to bestCluster;
16: end for

or equal to minsup. As we can see, minsup is an additional parameter, absent

in the generic algorithm. Afterwards, the patterns are compared with each other

according to the measure de�ned in Equation 5.3 and clustered into k groups

with a complete-link AHC algorithm (line 3). Finally, the documents are as-

signed to clusters based on the document-pro�le connection strength de�ned in

Equation 5.4 (lines 4�16).

Before illustrating how XCleaner2 operates with a simple example, one more

issue needs to be discussed. Namely, the CMTreeMiner algorithm used for pattern

mining does not preserve the information about which patterns appear in which

documents. In order to model this feature in our experiments, we proposed a

subtree matching algorithm for string-encoded trees. However, as this algorithm

is not an inherent part of the proposed clustering solution, for the clarity of

presentation, it is described in Appendix A.

50 5 XCleaner2 � a tree-based instance of the XPattern framework

5.2 Example

Now, let us analyze a complete clustering example using the XCleaner2 algorithm.

The clustering will be performed on 8 documents presented in Figure 2.2. We will

cluster these documents into 2 groups and we will use minsup = 0.5 for pattern

mining.

Step 1 Data transformation

In the �rst step, the documents are depth-�rst traversed and encoded as strings.

The outcome of this process is illustrated in Tables 5.2 and 5.3. Table 5.2 presents

the mapping of labels to label ids while Table 5.3 presents the string-encoded

documents.

Table 5.2: Mapping of labels to label ids.

Label Label id

paper 1
authors 2
person 3
publisher 4
inbook 5
title 6
year 7
volume 8
note 9
editors 10
journal 11

Table 5.3: String-encoded documents.

Document id Representation

d1 0 1 2 -1 -1 3 -1 4 5 -1 6 -1 7 -1 -1 -1
d2 0 1 2 -1 -1 3 -1 4 5 -1 -1 8 -1 -1
d3 0 1 2 -1 2 -1 -1 4 5 -1 9 -1 -1 -1
d4 0 10 2 -1 2 -1 -1 4 5 -1 6 -1 7 -1 -1 -1
d5 0 1 2 -1 -1 11 5 -1 6 -1 7 -1 -1 -1
d6 0 1 2 -1 -1 11 5 -1 6 -1 -1 8 -1 -1
d7 0 1 2 -1 2 -1 -1 11 5 -1 6 -1 7 -1 -1 12 -1 -1
d8 0 1 2 -1 2 -1 -1 11 5 -1 6 -1 7 -1 -1 -1

Step 2 Pattern mining

In the second step, the CMTreeMiner algorithm is applied to obtain patterns.

With minsup = 0.5, the algorithm �nds 3 patterns presented along with their

occurrences in documents in Table 5.4.

5.2 Example 51

Table 5.4: Patterns and their occurrences in the documents.

Pattern id Pattern Documents

p1 0 1 2 -1 -1 11 5 -1 6 -1 -1 -1 d5, d6, d7, d8

p2 0 4 5 -1 -1 -1 d1, d2, d3, d4

p3 7 -1 d1, d4, d5, d7, d8

Step 3 Pattern clustering

In order to create pro�les, we need to calculate the similarities between each pair

of patterns. For example, patterns p2 and p3 together cover seven documents, two

of which are common. Therefore, according to the formula in Equation 5.3, the

similarity between p2 and p3 equals 2/7 ≈ 0.29. Performing analogous calculations

for each pair results in a similarity matrix presented in Table 5.5.

Table 5.5: Pattern similarity matrix.

p1 p2 p3

p1 0.00 0.50
p2 0.29
p3

Once the similarity matrix is computed, the patterns are clustered into pro�les

using the complete-link AHC algorithm. Since the number of clusters k is 2, the

AHC algorithm only needs one iteration in which two closest patterns will be

grouped. According to the similarity matrix, patterns p1 and p3 are the most

similar, so the pro�les will have the following structure: π1 = {p2} and π2 =

{p1, p3}.

Step 4 Document assignment

The �nal step assigns each document to one of the clusters based on the pro�le

with which it has the highest connection strength. For example, document d1

shares one pattern with pro�le π1 and another one with pro�le π2. However, as

π2 has two patterns while π1 contains only one, the connection between d1 and

π1 is stronger. According to Equation 5.4, the connection strength between d1

and π1 equals 1, while for π2 it is only 0.5. Table 5.5 presents the connection

strengths for all documents and pro�les.

Table 5.6: The connection strength between documents and pro�les.

d1 d2 d3 d4 d5 d6 d7 d8

π1 1.0 1.0 1.0 1.0 0.0 0.0 0.0 0.0
π2 0.5 0.0 0.0 0.5 1.0 0.5 1.0 1.0

According to Table 5.6, the documents will be clustered into two groups: one

containing documents d1 � d4 and the second one containing documents d5 �

d8. This concludes the algorithm and judging by the DTDs from Table 2.3, the

outcome is correct.

52 5 XCleaner2 � a tree-based instance of the XPattern framework

5.3 Experimental evaluation

The proposed approach was experimentally evaluated on both real and syn-

thetic data. XCleaner2 was compared with XProj [ATW+07], the tag-only ap-

proach [DA02] and the edge-only approach, where documents were represented as

edge vectors (see Section 2.1). We also performed a sensitivity test w.r.t. minsup

parameter. During the tests we used one real and three synthetic datasets. Un-

fortunately, we were unable to acquire the source code for XProj, so we decided

to use the same datasets to make the comparison possible. We took the same real

dataset, which is the XML SIGMOD database, and for generating the synthetic

datasets we used the same software [BMKL02] and DTDs. For the evaluation

of tag-only and edge-only approaches we used our own implementations with the

complete-link AHC algorithm for clustering and the cosine distance for similarity

evaluation (see Section 2.2).

5.3.1 Datasets and experimental setup

The XCleaner2 algorithm was implemented in the C# language and used a C++

implementation of the CMTreeMiner, which served for maximal frequent subtree

mining. The experiments took place on a machine equipped with an Intel Pentium

Dual Core E2140 @ 1,60 GHz processor and 3,00 GB of RAM.

The real dataset, denoted by sig, consists of 140 documents from the SIGMOD

Record [SIG11]. The documents correspond to two DTDs: IndexTermsPage.dtd

and OrdinaryIssuePage.dtd (70 XML documents for each DTD). The DTDs

were naturally not used by the clustering algorithm, as this would render the task

trivial.

Three synthetic datasets were used: one homogeneous and two heterogeneous.

To generate these sets we used the ToXgene framework [BMKL02] and the same

DTDs as Aggarwal et al. [ATW+07]. The homogeneous set, denoted by hom,

contained 300 documents generated from 3 similar DTDs, 100 documents for each

DTD. The MaxRepeats parameter, determining the maximum number of times

a node will appear as a child of its parent node, was set to 3 for this dataset. The

heterogeneous datasets, denoted by het3 and het6, both contained 1000 XML

documents and were generated from 10 real DTDs, each of which was used to

generate 100 documents. The MaxRepeats parameter was set to 3 for het3 and

6 for het6.

To evaluate the presented clustering method we used the Precision and Recall

measures (see Section 2.5), de�ned as follows:

Precision =

∑
i si∑

i si +
∑

i vi
, Recall =

∑
i si∑

i si +
∑

imi
, i = 1..k

where k is the number of clusters, si is the number of documents correctly as-

signed to cluster ci, vi the number of documents incorrectly assigned to ci and mi

the number of documents which should be, but were not assigned to ci. Each doc-

5.3 Experimental evaluation 53

ument in every dataset has a label which indicates its corresponding DTD. Each

cluster is identi�ed by one, uniquely assigned DTD label. To assign a label to a

cluster it should be the most frequent document label in that cluster and no other

unassigned cluster should have more documents with that label. A document is

correctly assigned to a cluster if they share the same label.

5.3.2 Parametrization

The selection of the minsup value is not an easy task because it highly depends

on the dataset, in particular its homogeneity and distribution. However, if the

number of clusters is given a priori (this is one of the assumptions of the algorithm)

and the number of documents in clusters is suspected to be uniformly distributed,

we suggest to set theminsup value to 1
k , where k is the number of clusters. Before

comparing XCleaner2 with other algorithms let us �rst analyze what impact does

the minsup parameter have on the clustering quality.

To perform theminsup sensitivity analysis, we used the homogeneous dataset,

as it is the most di�cult one. Table 5.7 contains the results for minsup changing

from 0.33 (1
k) to 0.8.

Table 5.7: Sensitivity test for minsup parameter (Precision, Recall and time).

minsup Precision Recall Time [s]

0.33 1.00 1.00 0.91
0.40 0.62 0.62 0.70
0.50 0.67 0.67 0.33
0.60 0.67 0.67 0.16
0.70 0.37 0.37 0.09
0.80 0.42 0.42 0.03

The results clearly indicate that minsup has a big in�uence on both clustering

time and quality of the results. When the parameter value rises, the clustering

quality decreases but the algorithm runs faster. The quality drop is expected,

because higher minsup means fewer and more general patterns, which in conse-

quence leads to creating highly overlapping clusters. On the other hand, it also

means that infrequent subtrees are cut more often, so the pattern mining time is

signi�cantly reduced.

5.3.3 Comparative analysis

XCleaner2 was compared with three other methods: XProj [ATW+07] (see Sec-

tion 3.1) � the state-of-the-art algorithm and the tag-only [DA02] and edge-only

approaches � two basic methods concentrated on e�ciency. The two latter algo-

rithms use the vector representation described in Section 2.1, the cosine distance

measure described in Section 2.2, and the complete-link AHC algorithm described

in Section 2.3. As explained in the previous section, for mining patterns in each

dataset, we setminsup to 1
k , where k is the desired number of clusters in a dataset.

Table 5.8 presents the clustering results for each method.

54 5 XCleaner2 � a tree-based instance of the XPattern framework

Table 5.8: Precision and Recall for real and synthetic datasets.

Algorithm Tag-only Edge-only XProj XCleaner2

Dataset Precision

sig 1.00 1.00 1.00 1.00

het3 0.56 1.00 1.00 1.00

het6 0.52 1.00 1.00 1.00

hom 0.51 0.70 1.00 1.00

Recall

sig 1.00 1.00 - 1.00

het3 0.56 1.00 1.00 1.00

het6 0.52 1.00 1.00 1.00

hom 0.51 0.70 1.00 1.00

As the results show, all compared algorithms present the same quality in

grouping data from the SIGMOD record. This illustrates the simplicity of this

dataset, but also, more importantly, that some datasets simply do not require

complex methods, as even an approach as basic as tag-only was able to produce

perfect clusters. For the heterogeneous datasets, edge-only, XProj, and XCleaner2

still present high clustering quality, while the tag-only approach achieves results

below 60%. These datasets were a bit more challenging, as the DTDs used to

generate them had some common labels. As a result, the tag-only approach,

based solely on these labels, was unable to detect the di�erences. However, adding

only the information about parent-child relationships (edge-only) was su�cient

to identify the groups �awlessly. Finally, the experiment involving homogeneous

data illustrates that adding parent-child relationships may still be insu�cient,

as the edge-only approach achieved only 70% quality. This result con�rms the

intuition that data homogeneity highly in�uences the clustering outcome and the

more homogeneous the data the more complex the methods are required.

The comparison between XProj and XCleaner2 is inconclusive, as both ap-

proaches present the same quality on all analyzed datasets. However, this result

shows that the XPattern framework, which is a foundation for the XCleaner2

algorithm, is a valid alternative to the traditional framework which additionally

systematically addresses the main problem of its rival, i.e., result interpretability.

5.4 Conclusions

In this chapter, we have discussed a tree-based instantiation of the XPattern

framework, called XCleaner2. Thanks to using maximal frequent subtrees, the

algorithm is capable of producing results of the highest quality even for more

di�cult datasets. The sensitivity tests showed that XCleaner2 is highly but pre-

dictably sensitive w.r.t. the minimum support parameter � the lower the value

the better the result, in general.

5.4 Conclusions 55

Using complex patterns, such as frequent subtrees, allows to analyze docu-

ments with high precision, however, demands costly, time-consuming computa-

tions. As we will learn in the next chapter, such structures may be even too

complex when large collections of wide documents are being processed. That

is why, in the following chapter we will discuss another instance of the XPat-

tern framework, capable of processing larger datasets. We will also examine the

important issue of automatic approximation of the number of clusters.

6
PathXP — a path-based instance of

the XPattern framework

This chapter presents the second instantiation of the XPattern framework � the

PathXP algorithm � which was presented in [PBM15]. This approach is based on

paths with patterns de�ned as maximal frequent subpaths. Section 6.1 describes

the algorithm in detail while Section 6.2 illustrates it with a simple example.

Section 6.3 discusses the problem of parametrization and describes methods for

automatic number of clusters detection. Finally, in Section 6.4 the algorithm is

experimentally evaluated.

6.1 Algorithm

In PathXP, a feature is de�ned as a subpath and a pattern is de�ned as a maximal

frequent subpath (Equation 5.2). In accordance with the XPattern framework,

the documents are �rst transformed into a chosen representation to facilitate the

pattern mining process. PathXP relies on documents represented as multisets of

full paths.

In order to discover frequent subpaths in the dataset, PathXP uses the Apriori

algorithm [AS94] known from the market basket analysis. In this approach, doc-

uments serve as transactions and node labels serve as items. The only di�erence

between our approach and the original is that when mining for frequent paths the

order of items matters while in the classical algorithm it is irrelevant.

After obtaining the patterns, they are grouped together according to their

similarity. In PathXP, as was the case in XCleaner2, pattern similarity is based

on document-pattern connections. Therefore, the similarity between two patterns

is directly proportional to the number of documents they share. Here however, the

measure incorporates the information about the same pattern appearing several

times in one document. The di�erence between these approaches will be discussed

and experimentally evaluated in Section 6.4. Pattern similarity is calculated ac-

58 6 PathXP � a path-based instance of the XPattern framework

cording to the following formula:

sim(p1, p2) =

∑
d∈D

min {m(p1, d),m(p2, d)}∑
d∈D

m(p1, d) +m(p2, d)−min {m(p1, d),m(p2, d)}
, (6.1)

where m(p, d) is the number of occurrences of pattern p in document d (De�ni-

tion 2).

After calculating the similarity between all pairs of patterns, just like in

XCleaner2, the results are stored in a similarity matrix and fed to the complete-

link agglomerative hierarchical clustering algorithm (AHC, see Section 2.3) for

pro�le creation.

Once the pro�les are formed, the �nal phase of document assignment begins.

Following the XPattern framework, a measure to calculate the connection strength

between documents and pro�les needs to be de�ned. In PathXP, connection

strength is de�ned as the number of patterns contained in a document d which

are present in a pro�le πi, divided by the size of πi:

str (d, πi) =

∑
p∈πi

m(p, d)

|πi|
(6.2)

Dividing by the pro�le's size is used to eliminate the e�ect of promoting large pro-

�les. It is also worth noting that unlike in XCleaner2, in PathXP the connection

strength is not a normalized percentage of common patterns, as it can exceed 1

due to incorporating the information about patterns appearing several times in

the same documents.

As an instance of XPattern, PathXP de�nes all of the components required

by the framework, which are summarized in Table 6.1.

Table 6.1: XPattern components de�ned in PathXP.

XPattern component PathXP de�nition

Document representation Multiset of full paths

Pattern de�nition Maximal frequent subpaths

Pattern clustering algorithm Complete-link AHC

Pattern similarity: sim(p1, p2)

∑
d∈D

min{m(p1,d),m(p2,d)}∑
d∈D

m(p1,d)+m(p2,d)−min{m(p1,d),m(p2,d)}

Connection strength: str (d, πi)
∑
p∈πi

m(p,d)

|πi|(document-pro�le similarity)

The complete algorithm for PathXP is listed in Algorithm 3. It begins with

setting the initial value of minsup to 1/k (the value 1/k will be discussed in detail

in Section 6.3), where k is the number of expected clusters (line 1). Next, the

input dataset D is mined for maximal frequent paths (line 2). Until the number

of discovered paths is greater than or equal to the number of expected clusters,

minsup is divided by 2 and the mining process is restarted (lines 3-6). This is

6.1 Algorithm 59

simply due to the fact that there need to be at least k patterns to form k clusters

(at least one pattern per pro�le). The obtained set of patterns P is later grouped

into k pro�les using complete-link AHC algorithm with pattern similarity de�ned

in Equation 6.1 (line 7). Finally, each document is assigned to a cluster with the

highest document-pro�le connection strength de�ned in Equation 6.2 (lines 8�20).

Algorithm 3 The PathXP clustering algorithm

Require: set of XML documents D, number of clusters k
Ensure: set of k clusters C
1: minsup← 1

k ;
2: P ← AprioriPaths(D,minsup);
3: while |P| < k do
4: minsup← minsup/2;
5: P ← AprioriPaths(D,minsup);
6: end while

7: Πk ← AHC (P, k);
8: C ← k empty clusters each de�ned by one pro�le πc ∈ Πk;
9: for all d ∈ D do

10: bestCluster ← the �rst pro�le;
11: bestMatchCount← 0;
12: for all c ∈ C do
13: matchCount← str(d, πc); //Equation 6.2
14: if matchCount > bestMatchCount then
15: bestMatchCount← matchCount;
16: bestCluster ← c;
17: end if

18: end for

19: add d to bestCluster;
20: end for

Let us now analyze the worst-case complexity of the PathXP algorithm. The

problem of mining frequent itemsets is known to be NP-Hard [Yan04]. The the-

oretical cost of mining frequent paths from a dataset of n documents with m

distinct tags is O(2mn). The pattern clustering step uses AHC, hence for p pat-

terns and k expected clusters the complexity of this step is O(k · p2). Finally,

the document assignment step searches for all occurrences of each pattern in each

document. A single search for pattern occurrences in a document requires O(v)

operations, where v is the number of vertices in the document. Thus, the pes-

simistic complexity of the document assignment step is O(p · n ·max(v)), where

max(v) is the number of vertices in the longest document in the dataset. Given

the above, the overall worst-case complexity of PathXP equals O(2mn). Since the

number of distinct labels m is usually bounded and n is the number of documents

in a dataset, this shows that our algorithm can in practice scale linearly up to

very large datasets (as evidenced by the scalability test performed in Section 6.4).

Furthermore, since the most costly operation takes place in the pattern mining

step, this solution should prove particularly e�ective in incremental clustering

scenarios, where new documents are added to existing clusters.

60 6 PathXP � a path-based instance of the XPattern framework

6.2 Example

Just as with XCleaner2, let us now analyze a complete clustering example using

the PathXP algorithm. Once again, we will cluster 8 documents presented in

Figure 2.2 into two groups.

Step 1 Data transformation

First, the documents are transformed into multisets of full paths. The result of

this transformation is illustrated in Figure 6.1.

d1 = { d2 = { d3 = {
paper/authors/person, paper/authors/person, paper/authors/person,
paper/publisher, paper/publisher, paper/authors/person,
paper/inbook/title, paper/inbook/title, paper/inbook/title,
paper/inbook/year, paper/note} paper/inbook/number}
paper/inbook/volume}
d4 = { d5 = { d6 = {
paper/editors/person, paper/authors/person, paper/authors/person,
paper/editors/person, paper/journal/title, paper/journal/title,
paper/inbook/title, paper/journal/year, paper/journal/year,
paper/inbook/year, paper/journal/volume} paper/note}
paper/inbook/volume}
d7 = { d8 = {
paper/authors/person, paper/authors/person,
paper/authors/person, paper/authors/person,
paper/journal/title, paper/journal/title,
paper/journal/year, paper/journal/year,
paper/journal/volume, paper/journal/volume}
paper/pages}

Figure 6.1: Documents represented as multisets of full paths.

Step 2 Pattern mining

After transforming the documents, the initial value of minsup is calculated. For

the expected number of clusters k = 2, minimum support is set to 0.5. This means

that for a dataset of 8 documents, a feature must occur in at least 4 documents

to be considered frequent. Table 6.2 presents maximal frequent paths (patterns)

found in the example dataset. The third column indicates the documents in which

a given pattern occurs and how often. Since the number of obtained patterns is

greater than the number of expected clusters, it is not necessary to decrease

minsup and restart the frequent path mining process.

6.2 Example 61

Table 6.2: Patterns and their occurrences in the documents.

Pattern id Pattern Documents

p1 volume d1, d4, d5, d7, d8

p2 paper/authors/person d1, d2, d3(2), d5, d6, d7(2), d8(2)
p3 paper/inbook/title d1, d2, d3, d4

p4 paper/journal/title d5, d6, d7, d8

p5 paper/journal/year d5, d6, d7, d8

Step 3 Pattern clustering

In the third step, the similarities between all patterns are computed and repre-

sented as a similarity matrix. Let us consider two example patterns p2 and p3.

According to the formula in Equation 6.1:

sim(p2, p3) =
1 + 1 + 1 + 0 + 0 + 0 + 0 + 0

1 + 1 + 2 + 1 + 1 + 1 + 2 + 2
= 3/11 ≈ 0.27.

Performing analogous calculations for each pair of patterns results in a similarity

matrix presented in Table 6.3.

Table 6.3: Pattern similarity matrix.

p1 p2 p3 p4 p5

p1 0.36 0.29 0.50 0.50
p2 0.27 0.40 0.40
p3 0.00 0.00
p4 1.00
p5

After obtaining the similarity matrix, it is fed to the complete-link AHC al-

gorithm for pattern clustering. Since the number of clusters k is 2, the algorithm

will output two pro�les: the �rst one (π1) will contain pattern p3 while the second

one (π2) � patterns p1, p2, p4 and p5. A dendrogram illustrating the clustering

process is given in Figure 6.2.

p1 p2 p3 p4 p5

k=2

Figure 6.2: A dendrogram illustrating the process of pattern clustering.

62 6 PathXP � a path-based instance of the XPattern framework

Step 4 Document assignment

Finally, the documents are assigned to the pro�les. Each document is assigned to

the pro�le with which it has the highest connection strength (see Equation 6.2).

As Table 6.4 shows, according to the number of pattern-document co-occurrences,

documents d1, d2, d3 and d4 are assigned to the cluster represented by pro�le π1,

while documents d5, d6, d7 and d8 are assigned to the cluster represented by pro�le

π2. This concludes the algorithm.

Table 6.4: The connection strength between documents and pro�les.

d1 d2 d3 d4 d5 d6 d7 d8

π1 1.00 1.00 1.00 1.00 0.00 0.00 0.00 0.00
π2 0.50 0.25 0.50 0.25 1.00 0.75 1.25 1.25

6.3 Parametrization

As stated in the introduction of this thesis, parametrization is an important issue,

particularly in the clustering task. Having a possibility of manual parameter tun-

ing may be desirable when a clear vision about the outcome is formed. However,

as will be stressed later in this section, this usually is not the case with real-world

clustering problems. Let us consider three possible scenarios of parametrization:

i) k is given and minsup is unknown, ii) minsup is given and k is unknown, iii)

both parameters are unknown. In this section, we will examine how this problem

can be addressed in all of the above scenarios with the XPattern framework on

the example of the PathXP algorithm.

Finding minsup

Choosing a proper minimum support threshold can be a problematic task. That is

why, in PathXP we only require user to provide the number of clusters and we set

the minimum support threshold automatically. Given the number of clusters k,

similarly as in XCleaner2, we propose to set the minimum support parameter to

1/k. The assumption behind this approach is that documents in each cluster share

common patterns, therefore, assuming a uniform document distribution among

clusters, the 1/k value should allow the algorithm for discovering these patterns.

However, it is important to note that this approach may not be su�cient for

highly imbalanced datasets.

Finding k

The requirement of knowing the number of clusters a priori is commonly assumed

in most XML clustering algorithms. Recent XML clustering surveys [AMNS11,

PBML14] reveal, that nearly all of the approaches proposed so far rely on this

assumption. However, such a requirement may discredit the algorithm in many

6.3 Parametrization 63

real-world applications. To address this problem, we will propose two heuristics

which automatically detect both minsup and the number of clusters. First how-

ever, let us consider a case when the number of clusters is unknown, but the

correct value of minsup is given.

When the minimum support threshold is given, the number of clusters can

be determined by analyzing the dendrogram obtained in the pattern clustering

process. Givenm patterns found in the dataset, the AHC algorithm requiresm−1

steps to group them into one cluster. At each of these steps, two most similar

clusters are merged. After creating the entire dendrogram, we can calculate the

standard deviation σ of dissimilarities between the merged clusters. Analyzing all

merge operations bottom-up, the �rst one that involves merging clusters based

on a dissimilarity larger than 3σ is chosen as the cut-o� point.

This approach is based on the 3σ rule [BMAD06], common in outlier detection.

However, this rule needs to be slightly adapted to the conditions of our problem,

because (as opposed to the outlier treatment problem) we have to �nd at least

one cut-o� point. Therefore, if no such point is found, we are iteratively altering

the 3σ threshold using bisection, until obtaining at least one cut-o� point, which

produces the same value of k in two consecutive iterations.

Finding k and minsup

When neither k nor minsup are known, two approaches can be considered. The

�rst approach interchangeably alters the values of both parameters using the σ

threshold described above. The stopping condition is de�ned in terms of �nding a

certain number of patterns. First, we run the pattern mining algorithm with the

minsup value equal 50%. If it does not �nd at least |D| ·1% patterns, where |D| is
the number of documents, minsup is iteratively altered using bisection, until ob-

taining the required number of patterns, identical in two consecutive iterations.

Secondly, the number of clusters k is determined, as described in the previous

paragraph, by using the provided patterns. Lastly, if the previously processed

minsup value is greater than 1/k, we set its value to 1/k, run the pattern mining

step again, and process further with the pattern clustering into k clusters. How-

ever, if minsup was lower or equal 1/k we use the previously acquired pattern

clusters at the processed cut-o� point and proceed with the document assignment.

The outline of this approach is given in Algorithm 4.

It is easy to notice, that the described heuristic relies on an arti�cial threshold

of 1% which was selected experimentally. This solution seems to exchange one pa-

rameter (minsup) for another (number of patterns), however, de�ning how many

patterns we would like to obtain may be easier than de�ning their minimal fre-

quency in the dataset. Nevertheless, the proposed 1% threshold is, undoubtedly,

dataset-dependent. To address this issue, we propose another variant, de�ned

around a di�erent stopping condition, namely, �nding an empty cluster. This

approach iterates over consecutive values of k, triggering PathXP, and converges

after �nding an empty cluster. Such a solution is dataset-independent and allows

to detect the number of clusters in a methodical rather than parametrical manner.

64 6 PathXP � a path-based instance of the XPattern framework

Algorithm 4 Parameterless version of PathXP � quantity stop.

Require: set of XML documents D
Ensure: set of clusters C
1: minsup← 1

2 ;
2: P ← AprioriPaths(D,minsup);
3: if |P| < |D| · 1% then

4: prevCount = −1
5: while |P| < |D| · 1% or prevCount 6= |P| do
6: minsup bisection;
7: prevCount = |P|;
8: P ← AprioriPaths(D,minsup);
9: end while

10: end if

11: dendrogram← clustering of P;
12: σ ← standard deviation of distances between the merged clusters;
13: threshold = 3σ;
14: k ←CutO�Clusters(dendrogram, threshold);
15: if k == 1 then
16: prevk = −1
17: while k == 1 or prevk 6= k do
18: threshold bisection;
19: prevk = k;
20: k ←CutO�Clusters(dendrogram, threshold);
21: end while

22: end if

23: if minsup > 1
k then

24: minsup← 1
k ;

25: P ← AprioriPaths(D,minsup);
26: end if

27: C ← PathXP (D, k); //Algorithm 3 without the �rst two lines

The pseudocode of this heuristic is illustrated in Algorithm 5.

This approach consists of two phases. In the �rst phase (lines 1-9), we deter-

mine the number of clusters by incrementally iterating through consecutive values

of k and triggering our basic PathXP algorithm for each of these values. Once

PathXP returns a result with at least one of the clusters empty, the iteration stops

and we assume that the previous value of k was the correct number of clusters.

After obtaining k, in the second phase (line 10) we simply use this information to

cluster the dataset with PathXP.

This approach is based on an intuition that after reaching a certain number

of clusters, pro�les start to disintegrate and the connection strength between

documents and these pro�les weakens. This disintegration means, that the most

unsuited patterns of the weakest pro�le form a separate pro�le. This pro�le

should, eventually, get overwhelmed by other, more cohesive pro�les, and be left

with no documents assigned. This means that this pro�le is too weak to stand

on its own and should be a part of another pro�le, thus, the number of clusters

should be decreased.

6.4 Experimental evaluation 65

Algorithm 5 Parameterless version of PathXP � empty cluster stop.

Require: set of XML documents D
Ensure: set of clusters C
1: k ← 1;
2: while k < |D| do
3: C ← PathXP (D, k); //Algorithm 3
4: if C contains an empty cluster then
5: k ← k − 1;
6: break;
7: end if

8: k ← k + 1;
9: end while

10: C ← PathXP (D, k); //Algorithm 3

The experiments show that the unparametrized versions of PathXP can pro-

duce results of similar quality to the parametrized version, however, they do not

always accurately predict k with more di�cult datasets. Details will be discussed

in the next section.

6.4 Experimental evaluation

The proposed algorithm was evaluated in several experiments to inspect its prop-

erties and compare it with competitive approaches. In the following subsections,

we will describe all of the used datasets, discuss experimental setup, and analyze

the obtained results. In addition to the standard algorithm evaluation, we will

also discuss alternative pattern de�nitions, test each major component of PathXP

separately and analyze the number of clusters detectors.

6.4.1 Datasets and experimental setup

The proposed algorithm was tested against 5 real and 2 synthetic datasets which

are summarized in Table 6.5. For real data, one heterogeneous dataset from

the SIGMOD Record [SIG11] (sig) and four homogeneous datasets from the

2005/2006 INEX competition (dbX, X = 0..3) were used. The dbX datasets

were drawn from the IMDB movie database and ranked according to their dif-

�culty � the higher the X, the more overlap there is between the classes. To

generate synthetic datasets we used the ToXgene framework [BMKL02] with two

sets of schemas: one containing 10 di�erent DTDs for generating a heterogeneous

dataset (het), second containing 3 similar DTDs for generating a homogeneous

dataset (hom). The MaxRepeats parameter, indicating the maximal number of

times that a node can appear as a child of its parent node, was set to 4 for all of

the synthetic datasets.

All of the compared algorithms were implemented in the C# programming

language. We also used a C++ implementation of the CMTreeMiner [Zak02]

66 6 PathXP � a path-based instance of the XPattern framework

Table 6.5: Characteristics of datasets.

Dataset Classes
Number of Avg Avg Avg Distinct
documents size width height labels

sig 2 140 82.66 32.16 5.46 39
db0-3 11 4825 220.03 112.24 5.32 195
het 10 1000 40.11 21.82 3.98 73
hom 3 300 36.37 18.07 4.00 12

algorithm for mining maximal frequent subtrees. The experiments took place on

a computer with a 2,80 GHz Inter Core i7 processor and 16 GB of RAM.

To evaluate clustering quality we used Precision and a modi�ed Recall measure

(the standard Recall version produced the same result as Precision in all tests).

The modi�ed version re�ects the dataset coverage and is de�ned as follows:

Precision =

∑
i si∑

i si +
∑

i vi
, Recall =

∑
i si +

∑
i vi

|D|
, i = 1..k

where k is the number of clusters, |D| is the number of documents in the dataset,

si is the number of documents correctly assigned to the i-th cluster and vi is the

number of documents incorrectly assigned to the i-th cluster. Although these

measures originate from supervised learning, they can be used in our setting as

all of the employed datasets contain labeled documents.

6.4.2 Alternative pattern definitions

Before discussing the properties of PathXP, let us analyze the impact of using

various pattern de�nitions with the XPattern framework. As mentioned earlier,

we propose to use XML paths, as they o�er a compromise between full structural

information and lightweight processing. This decision is supported by experimen-

tal results given in Table 6.6 which presents Precision, Recall, and clustering time

of PathXP using subtrees, paths, tags, and metadata as patterns.

Subtrees are often presented as objects that best summarize the structural

information of XML documents. They include all the information contained in

tags or paths and provide additional sibling information. On the other hand,

as experimental results show, subtrees are also the most expensive pattern de�-

nition from the compared set. Frequent subtrees are usually larger than tag or

path patterns and, thus, more resource consuming. Furthermore, as stated by

Chi et al. [CXYM05], the cost of mining maximal frequent subtrees is linearly

proportional to the depth h of a document and exponentially proportional to its

width w. This gives a worst-case complexity of O(2w) just for the pattern mining

step. For this reason, although accurate for smaller datasets, this pattern de�ni-

tion cannot be used to cluster large, real-world datasets such as the INEX movie

database. The experiments performed using subtrees as patterns on datasets db0-

3 consumed all available memory before providing results, which is illustrated by

blank values in Table 6.6.

6.4 Experimental evaluation 67

Table 6.6: Precision, recall and clustering time for PathXP with di�erent pattern de�nitions.

Dataset sig het hom db0 db1 db2 db3

Pattern Precision

Subtrees 1.00 1.00 0.90 - - - -
Paths 1.00 1.00 0.92 0.66 0.71 0.66 0.64

Tags 0.51 1.00 0.35 0.73 0.69 0.45 0.44
Metadata 0.98 0.45 0.36 0.22 0.18 0.15 0.17

Recall

Subtrees 1.00 1.00 1.00 - - - -
Paths 1.00 1.00 1.00 1.00 0.99 0.99 1.00

Tags 1.00 1.00 1.00 1.00 1.00 1.00 1.00

Metadata 1.00 1.00 1.00 1.00 1.00 1.00 1.00

Clustering time [s]

Subtrees 0.06 1.12 2.88 - - - -
Paths 0.15 1.44 0.09 65.25 137.76 311.64 403.38
Tags 0.08 1.06 0.05 21.44 25.62 42.66 44.07
Metadata 0.02 0.03 0.01 0.18 0.24 0.40 0.38

Simple sequences of tags are much easier to process than document trees. As

time results presented in Table 6.6 show, tag patterns are among the easiest to ac-

quire and process. This result �nds its con�rmation in the complexity analysis of

tag mining, which in the worst-case scenario requires O(M · n) operations, where

n is the number of documents in a dataset and M is the number of tags in the

largest document in the dataset. However, precision acquired for the tag-based

approach shows that tag patterns performed well only for the synthetically gen-

erated heterogeneous dataset (het) and for the noiseless real dataset (db0). This

is consistent with the results obtained for the XCleaner2 algorithm. Such an out-

come is expected as single tags can only characterize very distinct object groups.

For more di�cult homogeneous datasets (db1-3, hom), where most objects are

very similar to each other, as well as for real heterogeneous dataset (sig), tags

do not convey enough structural information to perform proper clustering. Addi-

tional data is needed for these datasets, such as additional structural information

or metadata.

Alternatively, pattern de�nitions constructed from document structures can

be replaced by data describing these structures, i.e., by structural metadata. In

order to determine how well metadata can capture document characteristics, 10

di�erent structural summaries were de�ned: number of elements, number of dis-

tinct elements, number of levels, average number of elements at all levels, standard

deviation of number of elements at all levels, number of leafs, average path length,

standard deviation of path length, average number of children for all nodes, and

standard deviation of number of children for all nodes. For each dataset, a test

involving all 1023 possible combinations of these parameters was carried out.

The combination that performed best was based on two very basic structural

68 6 PathXP � a path-based instance of the XPattern framework

summaries: the number of distinct elements and the number of levels in a tree.

The quality and time evaluation of this combination is presented in Table 6.6

(Metadata). The results clearly indicate that using metadata can produce clus-

ters of competing quality compared to the tag-only approach for heterogeneous

(sig, het) and synthetic homogeneous (hom) datasets, while requiring much less

time. However, real homogeneous datasets (db0-3) reveal that this approach can

only be used for simple problems or as additional information for other clustering

methods.

Looking at the results a question arises: to what extent structural metadata

can describe documents? For a closed set of XML data sources, documents can

be clustered using solely structural metadata, but for very large datasets it seems

more reasonable to use metadata only as additional clustering information. As

denoted by Halevy et al. [HNP09], recent research shows that document processing

requires the use of all available data and for this reason, the use of metadata such

as document statistics can possibly become an important part of a real-world

pattern de�nition, but as the presented results show, it is not su�cient to use

them alone.

This thesis focuses mainly on clustering XML documents by structure, but it

is worth noting that the presented approach can work equally well with textual

data as patterns. One can use n-grams, synsets, or other word relations as clus-

ter representatives. Since using patterns for clustering is a general idea, which

does not imply their speci�c de�nition, it can be used with content as well as

structure-based document representations. However, since XML clustering has

many domains of application, we think that algorithms for this problem should

give the user a choice on which information should be taken into account. For

example, in domains such as chemistry, compounds can be encoded only by the

structure of an XML format, thus eliminating the necessity for textual analy-

sis. On the other hand, clustering records of a consistent, XML-based employee

database can be performed without structural information. In other cases both

structure and content should be taken into account.

6.4.3 Component analysis

When constructing the PathXP algorithm, several possibilities concerning algo-

rithm functioning and parametrization were analyzed. The following tests present

the results of this analysis. We will investigate how: restricting frequent patterns

to maximal only, counting multiple pattern occurrences, and considering pattern

uniqueness, in�uence the clustering quality. Additionally, we will analyze the

impact of limiting the length of path patterns.

Let us start by analyzing three binary algorithm settings:

• C: Counting multiple occurrences of patterns in documents.

This information is used by function m(f, d) from De�nition 2 to calculate

pattern similarity and connection strength, as presented in Equations 6.1

and 6.2. In order to discard this information, we alter the de�nition of

m(f, d), so that it produces a binary result: 1 when f ∈ d, 0 otherwise.

6.4 Experimental evaluation 69

• W: Weighting patterns according to their uniqueness.

This information is expressed by the following formula:

WeightedSupport(p) =
∑

d∈D:p∈d

1

|{p′ : p′ ∈ d}|
,

When used, it is embedded into the connection strength formula (Equa-

tion 6.2) as follows:

str (d, πi) =

∑
p∈πi

m(p, d) ·WeightedSupport(p)

|πi|

• M: Using only maximal frequent paths as patterns.

This information is used in the pattern(f) predicate in Equation 5.2. If we

want to use all frequent paths, the pattern(f) predicate simply changes to:

pattern(f)⇔ frequent(f)

Table 6.7 presents the precision obtained by the algorithm for di�erent com-

binations of settings {C, W, M}. Recall was omitted, as it remained unchanged

for each dataset.

Table 6.7: Precision for varying algorithm settings.

Dataset sig het hom db0 db1 db2 db3

C W M Precision Rank

0 0 0 1.00 1.00 1.00 0.62 0.54 0.51 0.47 4.9
0 0 1 1.00 1.00 1.00 0.54 0.51 0.54 0.49 5.0
0 1 0 1.00 1.00 0.76 0.49 0.28 0.17 0.18 6.7
0 1 1 1.00 1.00 0.76 0.61 0.54 0.53 0.50 5.4
1 0 0 1.00 1.00 0.92 0.73 0.68 0.58 0.55 3.1
1 0 1 1.00 1.00 0.92 0.66 0.71 0.66 0.64 2.6

1 1 0 0.50 1.00 0.51 0.72 0.63 0.55 0.52 4.9
1 1 1 1.00 1.00 0.79 0.65 0.70 0.65 0.62 3.4

In order to determine whether the presented settings signi�cantly in�uence the

quality of clustering, for every dataset we ranked each algorithm's performance

from 1 to 8, where 1 is the highest and 8 is the lowest score. In cases when one

or more algorithms were tied, average ranks were assigned (e.g., if two algorithms

were tied at the 3rd place, each was granted a rank of 3.5). Once created, the

ranking was used to perform the Friedman test [Dem06]. The null-hypothesis

for this test is that there is no di�erence in the performance between the tested

algorithm settings. Moreover, in case of rejecting this null-hypothesis we used the

Bonferroni-Dunn post-hoc test [Dem06] to verify whether the performance of the

best setting is statistically di�erent from the remaining approaches. The result of

this test is visualized in Figure 6.3.

70 6 PathXP � a path-based instance of the XPattern framework

2 3 4 5 6

CD

110

010101

111 000

011
100 001

Figure 6.3: Friedmann test performed on the results from Table 6.7.

With 7 degrees of freedom, the value of the Friedman statistic equals 15.30,

so with the signi�cance level of α = 0.05, we can reject the null hypothesis, what

indicates that the algorithm settings are not identical. Furthermore, the Critical

Di�erence (CD) chosen by the Bonferroni-Dunn test CD = 3.5 indicates, that

settings 101 and 100 perform signi�cantly better than setting 010. This means,

that combining information about multiple pattern occurrences with maximal

patterns is better than weighting patterns by their uniqueness combined with

using all patterns instead of maximal. Additionally, analyzing the results of the

two best settings (101 and 100), we observe that setting 101 performs equally

good or better on all datasets, except for db0. That is why, in PathXP we use the

combination of counting multiple pattern occurrences with maximal patterns.

Apart from analyzing di�erent pattern counting schemes, we analyzed the

possibility of limiting the maximal length of paths used as patterns. The results

of this study are illustrated in Table 6.8.

Table 6.8: Precision for varying maximal path length.

Dataset sig het hom db0 db1 db2 db3

Max path length Precision Rank

1 (tags) 0.51 1.00 0.35 0.73 0.69 0.45 0.44 3.6
2 (edges) 0.79 1.00 0.35 0.66 0.66 0.49 0.44 4.0
3 1.00 1.00 0.96 0.67 0.68 0.58 0.55 2.6
4 1.00 1.00 0.92 0.66 0.69 0.61 0.59 2.6
≥5 1.00 1.00 0.92 0.66 0.71 0.66 0.64 2.1

From the computational point of view, the most desired path length is 1 (tags),

as longer paths yield exponential worst-case complexity in the pattern mining pro-

cess. In order to determine whether path length changes the algorithm's quality

we performed another Friedman test illustrated in Figure 6.4. This time we have

�ve algorithms with path lengths ranging from 1 to 5 (the paths of length 5 and

above produced the same results). For this setting, the Friedman test does not

reveal a signi�cant di�erence between the path lengths (α = 0.05). However, be-

cause paths of unlimited length provided the best result for most of the datasets,

in PathXP we are using frequent paths of unlimited length as patterns.

6.4 Experimental evaluation 71

1 2 3 4

CD

1
24

>=5
3

Figure 6.4: Friedmann test performed on the results from Table 6.8.

6.4.4 Parametrization

When designing the PathXP algorithm, a lot of e�ort was put into making it easy

to parametrize. The following tests are designed to verify this claim. Additionally,

a scalability test was performed to inspect how PathXP works with di�erent

dataset sizes. For this purpose, 20 heterogeneous datasets were generated, each

containing from 5000 to 100000 documents. Each dataset was clustered with

PathXP and time was measured for each step of the XPattern framework (except

for Data transformation) separately. As results presented in Figure 6.5 show, the

most time consuming stage of our algorithm is pattern mining, which is expected,

as the worst case complexity of this step is O(2mn), where m is the number of

distinct tags in the dataset of n documents. Additionally, the plot con�rms that

with the increasing number of documents, the execution time of our algorithm

increases linearly.

20000 40000 60000 80000

0
5

10
15

20

Number of documents

T
im

e
[s

]

Pattern mining
Pattern clustering
Document clustering
Overall

Figure 6.5: Scalability test results for PathXP

The parameter sensitivity analysis was performed using the db0-3 datasets, as

they are the most di�cult to cluster. As described earlier, the higher the dataset

number the more noise there is in the data, so this should be re�ected in this test.

The minsup parameter was increased by 0.01 in every step, starting from 0.01

72 6 PathXP � a path-based instance of the XPattern framework

up until the pattern mining phase yielded too few patterns to form the required

number of clusters. Figure 6.6 contains plots showing how minimum support

changes the execution time of all steps in the algorithm.

●
● ● ●

●
● ●

●
● ●

● ●

●

●
● ● ●

●
● ● ● ●

● ●
●

● ● ● ● ● ●

0.00 0.05 0.10 0.15 0.20 0.25 0.30

1
2

5
10

20
50

10
0

20
0

50
0

Minimal support

T
im

e
[s

]

●

Overall
Pattern mining
Pattern clustering
Document clustering

(a) minsup sensitivity for db0

● ●
● ● ● ● ●

● ●
● ● ●

●
●

●

●
●

●
● ● ● ●

●
● ● ● ●

●
● ●

●
●

● ● ● ● ● ●
● ● ● ● ●

● ● ●
●

0.0 0.1 0.2 0.3 0.4

1
5

10
50

10
0

50
0

10
00

Minimal support

T
im

e
[s

]

●

Overall
Pattern mining
Pattern clustering
Document clustering

(b) minsup sensitivity for db1

●●●●●●●●●●
●●

●
●

●
●

●●●●●●●●●●
●●●●

●
●●●●●●●●●●

●
●●●

●●●●●●●●●●●●●●●●●

0.0 0.1 0.2 0.3 0.4 0.5 0.6

2
5

10
20

50
10

0
20

0
50

0
20

00

Minimal support

T
im

e
[s

]

●

Overall
Pattern mining
Pattern clustering
Document clustering

(c) minsup sensitivity for db2

●●●●●●●●●●●
●

●●
●

●
●

●●●
●●●●●●●

●●●
●●

●
●●●

●●●

●
●●●

●●●
●

●

●●●●●
●

●●

●
●●●●

●●●●●●●●
●●

●●●●●

0.0 0.2 0.4 0.6

2
5

10
20

50
10

0
20

0
50

0
20

00

Minimal support

T
im

e
[s

]

●

Overall
Pattern mining
Pattern clustering
Document clustering

(d) minsup sensitivity for db3

Figure 6.6: Sensitivity test results for PathXP w.r.t. minimal support: time

Similarly to the scalability test, the execution time depends mainly on pattern

mining. The plots show, that with decreasing values of minimum support, exe-

cution time increases exponentially. This exponential growth also concerns the

pattern clustering and document assignment. However, these steps do not use the

minimum support parameter, therefore the shapes of the plots in fact illustrate

the growth in the number of patterns generated during the pattern mining step.

It is also worth noticing how marginal the cost of other steps is compared to pat-

tern mining. Furthermore, as expected from the dataset characteristics, the more

di�cult the dataset, the longer it takes for the algorithm to terminate. Addition-

ally, higher noise allows for higher minsup values to be achieved, as evidenced by

the increasing lengths of the plots. This re�ects the fact that noise spans across

the whole dataset causing a lot of cluster overlap, so even though high minsup

values are achievable, they produce patterns of weak discriminative power.

6.4 Experimental evaluation 73

Let us now analyze how minsup in�uences the clustering quality. The out-

come of this analysis is presented in Figure 6.7. As expected, clustering Precision

decreases with the increase of the minimum support value. This is due to the

fact that higher minsup values produce more general patters, which are not dis-

criminative enough to distinguish between di�erent clusters. However, it is worth

noting that for a relatively wide range of minsup values (0.05 � 0.2), Precision

holds a steadily high level in all tests. Only after the 0.2 threshold the quality

starts to deteriorate notably in some datasets.

●

●

●

● ●

● ● ● ●
● ●

●

●
●

●
● ● ● ● ●

●

●

● ●

●

● ● ●

●

● ●

0.00 0.05 0.10 0.15 0.20 0.25 0.30

50
60

70
80

90
10

0

Minimal support

P
re

ci
si

on
/R

ec
al

l [
%

]

● Precision
Recall

(a) minsup sensitivity for db0

●

●

● ●

●

●

● ●

●

● ●

●

●

● ● ● ● ● ●
● ● ●

● ●

●
● ●

● ●

●

●

● ● ● ● ●
● ●

●
●

●
● ●

●

● ●

●

0.0 0.1 0.2 0.3 0.4

40
50

60
70

80
90

10
0

Minimal support

P
re

ci
si

on
/R

ec
al

l [
%

]

● Precision
Recall

(b) minsup sensitivity for db1

●

●

●

●

●

●
●

●
●●

●
●●

●●

●

●●
●

●●●

●
●●

●

●●
●●

●●
●●●●●●●●

●
●

●

●●●●●●

●●

●●●●●
●●

●●●

●

0.0 0.1 0.2 0.3 0.4 0.5 0.6

40
50

60
70

80
90

10
0

Minimal support

P
re

ci
si

on
/R

ec
al

l [
%

]

● Precision
Recall

(c) minsup sensitivity for db2

●

●●

●

●
●

●

●

●●
●●●●

●●●●
●

●

●

●●

●
●●●

●●

●●●

●

●

●

●●●●●●●●●●●●●●●●●
●

●●●

●

●●●

●●●●●●●●●●●●●

●●●

0.0 0.2 0.4 0.6

50
60

70
80

90
10

0

Minimal support

P
re

ci
si

on
/R

ec
al

l [
%

]

● Precision
Recall

(d) minsup sensitivity for db3

Figure 6.7: Sensitivity test results for the PathXP algorithm w.r.t. minimal
support: Precision and Recall

The dataset coverage, re�ected by the Recall measure, is much less a�ected by

the parameter, for all datasets except for db0. In this case, it remains steady at

approximately 100% for minsup between 0 and 0.13 and drops to 88% above the

0.13 threshold. This means that for minsup > 0.13, approximately 12% of the

documents have no corresponding patterns in any pro�le. In other words, after

minsup reaches a certain threshold, the patterns generated in the mining process

begin to re�ect only the most common information in the dataset. As a result, in

74 6 PathXP � a path-based instance of the XPattern framework

the document assignment step, the documents with less common characteristics

have no matching patterns and, therefore, are not assigned to any cluster. This,

in turn, results in lower Recall. This property, however, is not present once the

noise is introduced (datasets db1 � db3). As already mentioned, adding noise leads

to more common information occurring across the whole dataset, so when mining

for patterns, the algorithm is able to �nd them even for very high minsup values.

However, these patterns have very weak discriminative power and lead to quality

deterioration in terms of Precision.

The parameter sensitivity test (Figures 6.6 and 6.7) showcases that PathXP is

predictably sensitive to the value of minimum support in terms of both execution

time and clustering quality. The lower the parameter's value, the longer the

execution time, but also higher clustering quality. It is worth noticing, that the

suggestion of setting the value of this parameter to 1/k produces a compromise

with satisfying quality and acceptable execution time.

Apart from the sensitivity test, we have also evaluated how our algorithm

performs in the parameterless versions proposed in Section 6.3. Table 6.9 presents

the number of clusters, Precision, Recall, and clustering time of PathXP and its

two parameterless versions: PathXP-Q � where the stop condition is de�ned

around �nding a certain number of patterns (Algorithm 4) and PathXP-E �

where the algorithm terminates once an empty cluster is found (Algorithm 5).

Table 6.9: Comparison of PathXP and parameterless PathXP.

Dataset sig het hom db0 db1 db2 db3

Algorithm Number of clusters

PathXP 2 10 3 11 11 11 11
PathXP-Q 2 10 2 8 23 23 23
PathXP-E 2 11 9 22 23 14 18

Clustering time [s]

PathXP 2 <1 <1 65 138 312 403
PathXP-Q 1 176 2 1617 2631 5546 4197
PathXP-E 1 19 1 1538 3176 3647 5999

The results in Table 6.9 show that the parameterless versions of PathXP were

able to produce a reasonable approximation of the number of clusters. For het-

erogeneous datasets (sig, het) the results are identical for the quantity-based ap-

proach and nearly identical for PathXP-E � the algorithm found only one more

cluster for het dataset than expected. For homogeneous datasets (hom, db0-db3),

the algorithms behave di�erently. In the quantity-based approach (PathXP-Q)

for noiseless homogeneous datasets (het, db1), the number of automatically de-

tected clusters is below the expected value. For homogeneous datasets with noise

(db2-db4), the PathXP-Q failed to detect the correct k and produced more clus-

ters than expected. As a result, the clusters are smaller and more cohesive. In the

empty-cluster-based approach (PathXP-E), the number of automatically detected

clusters is higher than the expected value. The reason for this overestimation lies

6.4 Experimental evaluation 75

in a fact that with homogeneous datasets there is naturally more overlap between

the clusters than with heterogeneous datasets. This results in less cohesive pro-

�les and leads to a more uniform distribution of connection strength, even for

higher values of k. This, in turn, cases PathXP-Q to �nd empty clusters only

after exceeding the actual number of clusters.

The additional cost of automatic cluster number detection is apparent in the

processing time. For the analyzed datasets, the processing time of the parameter-

less versions is over an order of magnitude higher than the parametrized version.

Such an overhead is a direct consequence of repetitive pattern mining in the case

of PathXP-Q and triggering of PathXP in the case of PathXP-E.

6.4.5 Comparative analysis

After establishing the properties of PathXP, we have conducted an experiment

comparing the proposed methods against 4 competitive structure based algo-

rithms, which were described earlier in Section 2.3. This comparison was per-

formed on datasets dbX, as they were used by the authors of the competing

methods. The results of this comparison are presented in Table 6.10 (Precision

for algorithms other than PathXP was taken from the Report on the XML Mining

Track at INEX 2005 and INEX 2006 [DG07]). The PathXP settings used for the

comparison were default: counting multiple pattern occurrences with maximal,

unlimited frequent paths as patterns.

Table 6.10: Comparison of PathXP with other structure based algorithms.

Dataset db0 db1 db2 db3

Algorithm Precision

Vercoustre et al. [VFGL05] 0.45 0.71 0.66 0.53
Candillier et al. [CTT05] 0.78 - - -
Hagenbuchner et al. [HST+05] 0.97 - - -
Nayak and Xu [NI06] 0.60 0.60 0.59 0.59
PathXP 0.66 0.71 0.66 0.64

The comparison results are inconclusive, as they do not clearly indicate which

approach is best. PathXP produced equally good or better results across all

datasets compared to Vercoustre's et al., and Nayak's and Xu's approaches.

On the other hand, Candillier's and Hagenbuchner's approaches outperformed

PathXP on the �rst dataset (db0). Unfortunately, results for the remainig datasets

(db1-3) were unavailable due to reasons not clearly stated by the authors [CTT05,

HST+05]. Given the above, we cannot signi�cantly state, that our algorithm

performs better than the others. However, similarly as with XCleaner2, PathXP

presents a competitive solution which additionally addresses the challenges stated

in the introduction of this thesis.

76 6 PathXP � a path-based instance of the XPattern framework

6.5 Conclusions

In this chapter, we have discussed a path-based instantiation of the XPattern

framework, called PathXP. By using maximal frequent paths as patterns, the al-

gorithm produces easily interpretable, high quality results. Furthermore, we have

examined the important issue of parametrization and discussed two approaches

which automatically detect both the minimum support and the number of clus-

ters. This topic is of particular importance in real-world applications, where the

number of clusters is often unknown.

Examining the functioning of each component of the algorithm separately

allowed us to draw some additional conclusions. By exploring di�erent types of

pattern de�nitions, from simple metadata to complex subtrees, we have discovered

that frequent paths provide very good clustering quality while maintaining rea-

sonable e�ciency. We have also shown that the often omitted information about

the number of occurrences of a pattern in a single document can signi�cantly

improve the clustering quality.

XCleaner2 and PathXP are based on similar, nevertheless signi�cantly di�er-

ent assumptions. The use of frequent paths as patterns in the PathXP algorithm

was dictated by a series of experiments conducted on several di�erent de�nitions.

While subtrees preserve more structural information than paths, the latter are

easier to obtain and, thus, the whole clustering process is more e�cient. That

is why, we recommend using XCleaner2 for fairly small and highly homogeneous

datasets and PathXP when larger collections are being analyzed.

PathXP concludes the three-chapter-long discussion on pattern-based XML

clustering. In the next two chapters, we will build on the foundation of patterns

and extend the idea to XML classi�cation.

7
Partial tree-edit distance

The rule-based classi�er, described in Section 2.4, is one of the most popular

approaches in the XML document classi�cation domain and serves as a foundation

for the current state-of-the-art approach � XRules [ZA06]. However, as explained

further in the same section, it su�ers from the fact that if no matching pattern

is found for a given document, it is assigned to one of the classes based on the

default rule, which is somewhat arbitrary. To reduce this problem, one could

use an approximate subtree matching measure to assign documents based on the

closest, best-matching pattern. However, despite a substantial research done in

the �eld of tree similarity computation and, as demonstrated in Section 3.3, in

the �eld of approximate subtree matching, no measure is perfectly suited for this

speci�c task.

In this chapter, we will discuss a measure designed speci�cally for the pattern-

based XML classi�cation task. The measure is called partial tree-edit distance

(PTED) and answers the following question: Given two trees p (a pattern tree)

and d (a document tree), �nd how much does p need to be modi�ed to become a

subtree of d using a constrained set of edit operations. These constraints concern

both the set of operations and the tree nodes to which they can be applied.

The ability to e�ciently determine trees whose subtrees are most similar to

a given pattern tree p with respect to a constrained set of tree-edit operations

is an important task not only in the context of XML classi�cation, but also in

problems such as XML querying or ranking [SM02, Yan04]. Furthermore, PTED

can be used in the framework proposed by Cohen [CO14] (see Section 3.3), but

in contrast to composite pro�le distance functions used in this framework, PTED

returns the exact edit distance value between p and d.

Let us now describe partial tree-edit distance in detail. First, in Section 7.1 we

will introduce necessary de�nitions and notation. In Section 7.2 we will present

a conceptual description of PTED. In Section 7.3 we will formally de�ne the

proposed measure. Section 7.4 discusses an e�cient algorithm for calculating the

proposed measure. In Section 7.5 we will experimentally evaluate the algorithm

and analyze its complexity.

78 7 Partial tree-edit distance

7.1 Preliminaries

In order to formally de�ne partial tree-edit distance, we will need some additional

de�nitions and notation, but �rst, let us recall some basic concepts de�ned earlier

in Chapter 2. A tree t is a connected graph with |t| nodes and |t| − 1 edges. We

call a tree t rooted if all edges in t are directed away from one designated node,

called a root node. We denote a tree t rooted at a node x by tx and a root node

of a tree t by rt. Consequently, a root node has an indegree equal 0 while nodes

with outdegree equal 0 are called leaf nodes. If two nodes x and y are connected

with an edge and x is closer to the root node than y, then x is a parent of y

and y is a child of x. Children of the same node x are called siblings and the

number of all children of x is denoted by |x|. We also designate a special node λ,

called empty node .

A rooted tree t is ordered if there exists a total order among all nodes in t. In

our approach, we order the nodes according to the depth-�rst pre-order traversal.

The fact that node x appears in a tree before node y is expressed by x < y.

A tree t is labeled if every node in this tree x ∈ t has a label assigned to it,

symbolized by l(x). For convenience, hereinafter, a rooted, ordered, labeled tree

will be referred to as tree .

An ordered set of trees is called a forest . A forest F containing trees rooted

at all children nodes of a node x is denoted by Fx. The rightmost tree of a forest

F is denoted by ~F . A forest F without a tree t is symbolized by F − t and the

number of nodes in all trees in F is symbolized by |F |.
A tree s whose nodes and edges form subsets of nodes and edges of another tree

t is called a subtree of t. We denote that s is a subtree of t by s ⊆ t. A subtree

s ⊆ t whose nodes consist of some node in t along with all of its descendants will

be referred to as a full subtree .

Let us now de�ne the edit operations which can be performed on tree nodes. In

general, there are three basic edit operations: insertion, deletion, and relabeling.

By inserting a node x into a tree t at a node y, x becomes a child of the parent

of y, taking y's place in the sibling order, while y becomes a child of x. This

operation is illustrated in Figure 7.1 with the right arrow. When deleting a

node x from a tree t, all children of x become the children of the parent of x.

Consequently, when x is a root node, the result is a forest Fx. This operation is

illustrated in Figure 7.1 with the left arrow. Relabeling a node x to y means

changing a label of x to l(y).

a

b cy
...

d e

a

b c

y
...

d e

x

insert 'x'

delete 'x'

Figure 7.1: Node insertion and deletion.

7.2 Conceptual description 79

7.2 Conceptual description

To illustrate how partial tree-edit distance works, let us consider the example

presented in Figure 7.2. In this example, by ti we will denote the i-th node

(according to the depth-�rst pre-order traversal) in tree t. As the question stated

by the measure implies, the task is to determine how many operations need to be

performed on p for it to become a subtree of d. Looking at the example, clearly,

p is not a subtree of d. However, as illustrated with the grey areas, there is a

part of p which can be directly mapped into d. Namely, nodes p2, p4, and p5 can

be mapped into d1, d5, and d11, respectively, as they have the same labels. As a

result of this mapping, we also have to map p3 into d4. This time, however, we

need to use the relabeling operation as the labels are di�erent. Finally, as nodes

p1, p6, and p7 have no corresponding nodes in d, they have to be removed using

the deletion operation. Therefore, the total number of edit operations required

to transform p into a subtree of d is 4 (1 relabeling, 3 deletions).

So far, we have only used relabeling and deletion. Furthermore, we only

deleted the root node (p1) and the leaf nodes (p6, p7). Let us now discuss the

possible consequences of using other edit operations, namely, deletion of inner

nodes and insertion of inner and non-inner nodes. Inserting a non-inner node

into p does not make sense, since it could only increase the number of operations

needed to �t p into d. That is why, in partial tree-edit distance insertion of non-

inner nodes is forbidden. As illustrated in Figure 7.1, deleting or inserting an

inner node results in a children nodes' transfer, so the internal structure of a tree

is altered. Inasmuch as this is permitted for embedded subtrees, it is forbidden

for induced subtrees, which are the focus of the proposed measure.

a1

b2 g7

b1

x4 e11

p d

c3 f6

x10

e5 d5 x12

d4

x2

x9 x13g3

x6 x8x7 b14 g15

Figure 7.2: Example of �tting a pattern tree p into a document tree d.
The nodes in p covered by the grey area are relabeled to the corresponding
nodes covered by the grey area in d, while the nodes in p uncovered by the
grey area are deleted. Numbers represent the order of depth-�rst pre-order
traversal.

Given the above, partial tree-edit distance is de�ned around two edit opera-

tions: deletion of non-inner nodes and relabeling. Both of these operations have

80 7 Partial tree-edit distance

an associated cost, which can be universally expressed with the following formula:

c(x, y) =


0 x = λ

wd y = λ

wr otherwise

(7.1)

where x and y are nodes, and wd and wr are user-de�ned weights associated with

deletion and relabeling, respectively. Let s be a sequence of these two operations.

Partial tree-edit sequence s between two trees p and d is a sequence which

transforms p into any subtree of d. The cost c(s) of partial tree-edit sequence s is

the total cost of all operations in s. Partial tree-edit distance ~∆(p, d) between

a pattern tree p and a document tree d is the minimal cost of all possible partial

tree-edit sequences between p and d.

~∆(p, d) = min{c(s) : s is a partial tree-edit sequence between p and d} (7.2)

7.3 Formal definition

Let us now formally de�ne partial tree-edit distance. First, we will introduce the

notion of partial mapping, which represents a partial tree-edit sequence.

De�nition 9 A partial mapping m between a pattern tree p and a document

tree d is a subset of p× (d ∪ {λ}), such that:

• each node from p appears in m exactly once,

• each node from d appears in m at most once,

• for any (x, x′), (y, y′) ∈ m where x′ 6= λ and y′ 6= λ: x is a parent of y ⇔
x′ is a parent of y′,

• for any (x, x′), (y, y′) ∈ m where x is a sibling of y and x′ is a sibling of y′:

x < x′ ⇔ y < y′.

Each element in the mapping (x, x′) ∈ m represents a single edit operation

and has an associated cost c(x, x′), as de�ned in Equation 7.1. An element where

x′ = λ represents a deletion while an element where x′ 6= λ represents a relabeling.

The cost c(m) of a partial mapping m is the sum of costs of all elements in m.

De�nition 10 Partial tree-edit distance ~∆(p, d) between a pattern tree p and

a document tree d is the minimal cost of all possible partial mappings between p

and d.

~∆(p, d) = min{c(m) : m is a partial mapping between p and d} (7.3)

Now, let us discuss a recursive formula which calculates partial tree-edit dis-

tance. The formula works in two stages. The purpose of the �rst stage, performed

7.3 Formal de�nition 81

by the main function ~∆ and de�ned in Equation 7.4, is to place p at each possible

position in d.

~∆ (p, d) = min
x∈p,y∈d

{
~δ({tx}, {ty}) +

∑
{z∈p:z /∈tx}

c(z, λ)
}

(7.4)

Next, for each placement of p in d, the second stage takes place. The goal of the

second stage, performed by an auxiliary function ~δ and de�ned in Equation 7.5,

is to check how well does p �t in d, at a given placement. The function accepts

two forests G and H as parameters and recursively considers 3 cases: ignoring the

rightmost tree of H, deleting the rightmost tree of G, and �tting the rightmost

tree of G into the rightmost tree of H.

~δ (G,H) = min


~δ
(
G,H − ~H

)
~δ
(
G− ~G,H

)
+ ~δ

(
{~G}, ∅

)
~δ
(
G− ~G,H − ~H

)
+ ~δ

(
F
r ~G
, F

r ~H

)
+ c(r

~G, r
~H)

(7.5)

Equation 7.6 de�nes the boundary conditions of the auxiliary function ~δ. The

�rst two cases re�ect the fact that the cost of �tting an empty pattern into any

tree always equals 0, while the third case re�ects the fact that the cost of �tting

any non-empty pattern into an empty tree equals the cost of removing the whole

pattern.

~δ (∅, ∅) = 0

~δ (∅, H) = 0

~δ (G, ∅) = ~δ
(
G− ~G, ∅

)
+ ~δ

(
F
r ~G
, ∅
)

+ c(r
~G, λ)

(7.6)

Let us now present some basic properties of the formulas de�ned in Equa-

tions 7.4, 7.5, and 7.6.

Lemma 1 If tx is a subtree of ty rooted at y, then ~δ({tx}, {ty}) = 0.

Proof. Equation 7.5 de�nes 3 cases of �tting a forest {tx} into a forest {ty} and
selects the minimal one. From the fact that tx is a subtree of ty rooted at y,

follows that l(x) = l(y), so the cost of relabeling x to y equals 0. Therefore, if we

choose the third case in the �rst iteration: ~δ({tx}− tx, {ty}− ty) = 0, c(x, y) = 0,

and the recursion proceeds with ~δ(Fx, Fy). In the next iteration, for a non-empty

forest Fx the cost of a second case is always greater than zero, because it involves

a node deletion. From the assumption that tx is a subtree of ty rooted at y we

know that every tree in Fx has a corresponding tree in Fy, i.e., a subtree of ty
rooted at one of the children nodes of y. Thus, at each consecutive recursive step
~δ(G,H) we have two options to consider:

1. ~G is a subtree of ~H rooted at r
~H � in this case we choose the third option

from Equation 7.5: c(r
~G, r

~H) = 0 and the recursion continues.

2. ~G is not a subtree of ~H rooted at r
~H � in this case we choose the �rst

option which adds no cost and the recursion continues.

82 7 Partial tree-edit distance

Considering these two options in each recursive step we reach either the �rst or

the second boundary condition in Equation 7.6, so the total cost will be 0.

Theorem 1 p ⊆ d⇒ ~∆(p, d) = 0.

Proof. The formula in Equation 7.4 �ts each full subtree in p into each full

subtree in d using the auxiliary function de�ned in Equation 7.5. A part of this

process is �tting p (p is a full subtree of p) into all full subtrees of d. In these cases,

the aggregated cost of removing nodes from p in Equation 7.4 (
∑
{z∈p:z /∈p} c(z, λ))

equals 0, as all nodes from p take part in the �tting. Therefore, in these cases the

whole cost comes from �tting p into some full subtree s ⊆ d: ~δ({p}, {s}). From
the assumption that p ⊆ d follows that d contains a full subtree sx of which p is

a subtree rooted at x. From Lemma 1 we know that if p is a subtree of sx rooted

at x, then ~δ({p}, {sx}) = 0. If ~δ({p}, {sx}) = 0 and
∑
{z∈p:z /∈p} c(z, λ) = 0 then

~∆(p, d) = 0.

Lemma 2 ∀p,d(wr = wd = 1)⇒ ~∆(p, d) ≤ |p|.

Proof. This lemma implies that the maximal value of PTED depends solely

on the size of a pattern tree and does not depend on the document tree. In

Equation 7.4 each full subtree in p is �tted into each full subtree in d. Just

as in Theorem 1, consider a case of �tting p (p is a full subtree of p) into any

subtree sx ⊆ d. As earlier established, the aggregated cost of removing nodes

from p in Equation 7.4 (
∑
{z∈p:z /∈p} c(z, λ)) equals zero, as all nodes from p take

part in the �tting. As a result, the whole cost comes from the auxiliary function
~δ({p}, {sx}). If in the �rst recursive step of Equation 7.5 we choose the second

option, we get: ~δ({p}−p, sx)+~δ({p}, λ). With ~δ({p}−p, sx) we reach the second

boundary condition from Equation 7.6, so the cost equals 0. ~δ({p}, λ) meets the

third boundary condition from Equation 7.6 where all nodes in p are removed

at a total cost of |p| (assuming wr = wd = 1). Because this outcome is totally

independent from sx it is always achievable and, thus, forms an upper bound of
~δ and, consequently, ~∆.

Theorem 2 ∀p,d(wr = wd = 1)⇒ 0 ≤ ~∆(p, d) ≤ |p|.

Proof. Follows from Theorem 1 and Lemma 2.

Lemma 3 For any two trees tx and ty, ~δ({tx}, {ty}) calculates the minimal cost

of all partial mappings m between tx and ty, such that (x, y) ∈ m.

Proof. From the assumption that (x, y) ∈ m we know that in the �rst recur-

sion of ~δ({tx}, {ty}) we will not meet any of the boundary conditions de�ned in

Equation 7.6. Furthermore, the �rst two cases from Equation 7.5 also violate the

assumption that (x, y) ∈ m, so only the last case is applicable. As a result, in

the �rst iteration we have a cost of relabeling x to y (c(x, y)), which re�ects the

assumption (x, y) ∈ m, and the recursion continues with ~δ(Fx, Fy). From now on,

in each recursive step we have three possibilities:

7.3 Formal de�nition 83

1. x does not have any children � in this case Fx is empty, so the cost equals

0, regardless of whether y has any children or not because there are no

operations available to perform if we have no nodes in a pattern tree. This

case covers the �rst two boundary conditions from Equation 7.6 and all

nodes which will not appear in the mapping m, namely, all nodes from Fy.

2. x has children but y does not � in this case Fy is empty, so in order to �t

Fx into an empty set we have to delete the whole forest Fx, because only an

empty set is a subset of an empty set. Thus, the cost equals |Fx|×wd. This
case covers the third boundary condition from Equation 7.6 and all nodes

from Fx which will appear in the mapping m as a pair with an empty node

λ, namely, all nodes from Fx.

3. Both x and y have children nodes � in this case both Fx and Fy are not

empty, so we have 3 further possibilities to consider:

a) We dismiss the rightmost tree ~Fy from forest Fy and try to match Fx
with Fy without ~Fy. If Fy has only one tree, then Fy − ~Fy produces

an empty set and we reach the second boundary condition from Equa-

tion 7.6. This case covers the �rst possibility from Equation 7.5 and

all nodes which will not appear in the mapping m, namely, all nodes

from ~Fy.

b) We delete the rightmost tree ~Fx from forest Fx and try to match Fx
without ~Fx with Fy. If Fx has only one tree then Fx − ~Fx produces

an empty set and we reach the third boundary condition from Equa-

tion 7.6. This case covers the second possibility from Equation 7.5 and

all nodes which will appear in the mapping m as a pair with an empty

node λ, namely, all nodes from ~Fx.

c) We map the rightmost tree ~Fx from forest Fx into the rightmost tree
~Fy from forest Fy and try to match Fx without ~Fx with Fy without
~Fy. If Fx has only one tree, then Fx − ~Fx produces an empty set and

we reach the third boundary condition from Equation 7.6. If Fy has

only one tree, then Fy − ~Fy produces an empty set and we reach the

second boundary condition from Equation 7.6. If both Fx and Fy have

only one tree each, then Fx − ~Fx and Fy − ~Fy produce empty sets and

we reach the �rst boundary condition from Equation 7.6. This case

covers the third possibility from Equation 7.5. Nodes r
~Fx and r

~Fx will

appear in the mapping m as a pair.

These cases cover all possible partial mappings m between tx and ty restricted

by (x, y) ∈ m. Since at each recursive step we choose the option with minimal cost,
~δ({tx}, {ty}) �nds the minimal partial mapping m between tx and ty restricted

by (x, y) ∈ m.

Theorem 3 The formula given in Equation 7.4 correctly calculates partial tree-

edit distance according to De�nition 10.

Proof. For any two trees p and d, ~∆(p, d) represents the minimal cost of all

partial mappings m between trees p and d. The only task of the formula given in

84 7 Partial tree-edit distance

Equation 7.4 is to trigger the ~δ function for each placement of p in d and select

the one with the minimal cost. Since in Lemma 3 we have established that ~δ

calculates the minimal cost of all partial mappings m between two trees tx and

ty with the restriction that (x, y) ∈ m, Equation 7.4 correctly calculates partial

tree-edit distance according to De�nition 10.

7.4 Dynamic algorithm

In this section we will discuss an algorithm which will calculate the partial tree-

edit distance measure de�ned in the previous section. Similarly to the formal

de�nition presented in Equations 7.4, 7.5, and 7.6, the algorithm consists of two

main components: i) the main loop ~∆ which places p at every possible position

in d and ii) the auxiliary function ~δ which checks the quality of each placement.

The algorithm for the main loop is a trivial implementation of Equation 7.4, so

we will skip the pseudocode for this step. A straightforward implementation of

the auxiliary function from Equation 7.5 yields a very ine�cient algorithm of ex-

ponential complexity. To resolve this issue, the auxiliary function is implemented

with a dynamic programming algorithm, given in Algorithm 6.

Algorithm 6 Partial tree edit distance algorithm: ~δ(tx, ty)

Require: trees tx and ty,
Ensure: a minimal cost of a partial mappingm between tx and ty with restriction

(x, y) ∈ m
1: tab← [|x|+ 1, |y|+ 1]
2: for j = 0..|y| do
3: tab[0, j]← 0;
4: end for

5: for i = 1..|x| do
6: tab[i, 0]← tab[i− 1, 0] + (|txi |) · wd;
7: end for

8: for i = 1..|x| do
9: for j = 1..|y| do

10: tab[i, j]← min{
tab[i, j − 1],
tab[i− 1, j] + (|txi |) · wd,
tab[i− 1, j − 1] + ~δ(txi , tyj)
};

11: end for

12: end for

13: return tab[|x|, |y|] + (l(x) = l(y) ? 0 : wr);

The algorithm accepts two trees tx and ty as parameters and outputs the

minimal cost of a partial mapping between tx and ty, given that x is mapped into

y. Variable tab stores the intermediate results of mapping the children nodes of

x into the children nodes of y, so it is an R|x|+1×|y|+1 matrix (line 1). In lines

7.5 Experimental evaluation 85

2-4 the top row in the matrix is initialized to 0. This re�ects the fact that the

subtrees in the right tree can be removed without any cost (ignored). In practice,

it ful�lls the second boundary condition from Equation 7.6. In lines 5-7, the left

column is initialized with the cumulative cost of deleting consecutive subtrees of

x (tab[i, 0] = cost of removing tx1 ..txi). These values ful�ll the third boundary

condition from Equation 7.6. Lines 8-12 contain the main loop of the auxiliary

function. It scans through all children nodes of x and y and for each pair xi, yj
stores a temporary result tab[i, j] which holds the minimal cost of mapping x1..xi
into y1..yj . This cost is computed in line 10 as the minimum of 3 expressions,

re�ecting the 3 options in Equation 7.5:

• tab[i, j − 1] accounts for ignoring the rightmost subtree from the right tree;

• tab[i − 1, j] + (|txi |) · wd accounts for removing the rightmost subtree from

the left tree;

• tab[i − 1, j − 1] + ~δ(txi , tyj) accounts for mapping the rightmost subtree of

the left tree into the rightmost subtree of the right tree.

At the end of this procedure, tab[|x|, |y|] holds the minimal cost of mapping the

children of x into the children of y (with descendants). Finally, by adding the

cost of mapping x into y in line 13, we obtain the total cost of the minimal partial

mapping between tx and ty with x mapped into y. This concludes the algorithm.

Let us now analyze the complexity of the presented algorithm. It is easy

to notice, that the algorithm for the auxiliary function is an adoption of the

original algorithm for the Levenshtein distance between two sequences, which has

a quadratic complexity. Here however, the auxiliary function is called within the

main loop which is also quadratic in time, so the overall complexity is O(n4).

However, it is worth noting that the auxiliary function runs only as deep as is the

height of the smaller tree, so since the pattern tree is usually much smaller than

the document tree, in practice, the algorithm should be more e�cient than the

complexity suggests.

7.5 Experimental evaluation

Partial tree-edit distance was proposed to lay a foundation for a new pattern-

based XML classi�er, which will be discussed in the next chapter. However,

before incorporating PTED into a working algorithm, let us empirically evalu-

ate the usefulness of the proposed measure in the context of rule-based XML

classi�cation (see Section 2.4). In the experiments, we used our own implementa-

tion of the rule-based classi�er, which proceeds as follows. In the training phase,

the training dataset is mined for maximal frequent subtrees separately for each

class. Afterwards, the subtrees along with their corresponding classes form rules

r = tr → cr, where tr is a maximal frequent subtree and cr is a class. Next,

all rules R are arranged into a ranking according to their con�dence, support,

and size. In the classi�cation phase, each document is tested against each rule

86 7 Partial tree-edit distance

in the descending ranking order for subtree matching, and assigned to the class

indicated by the �rst matching rule.

As described in Section 2.4, the major drawback of the rule-based approach is

the fact that when a document is being classi�ed and there are no matching rules,

it is assigned to one of the classes arbitrarily, most commonly to the majority class

in the training data. The goal of this experiment is to illustrate the importance

of this problem and show how partial tree-edit distance can be used to address

it. To do so, we compared two approaches to dealing with this problem. In the

�rst approach, we used the majority class method. In the second approach, we

used partial tree-edit distance to assign each ambiguous document d to one of the

classes according to the following formula:

class(d) = arg max
c∈C

(∑
r∈Rc

(
1−

~∆(tr, d)

|tr|

))

where C is a set of classes and Rc is a set of rules with class c. Intuitively, this

formula measures the similarity of d with all subtrees in each class and assigns it

to the class with the highest cumulative similarity.

7.5.1 Datasets and experimental setup

In the experiments we used both synthetic and real datasets created by Zaki and

Aggarwal [ZA06]. The synthetic datasets ds1-4, were generated by the afore-

mentioned authors and are composed of a training and a testing set containing

between 60000 and 100000 documents. The real datasets cs1-3, each consisting

of around 8000 documents, contain web logs categorized into two classes (for a

detailed description see [ZA06]). Since they were not divided into training and

testing sets, we used each for both purposes and cross-validated them with each

other. By csXY we will denote the csX set used for training and csY for testing.

This gives us a total of 10 tests: 4 on synthetic and 6 on real data. The minimal

frequency of a subtree required to consider it a rule (minsup) was 0.1% for ds

datasets and 1% for cs datasets.

All approaches were evaluated using the Accuracy measure, de�ned in Equa-

tion 2.6:

Accuracye =
∑
c∈C

(
1

|C|
· |D

test
c |
|Dc|

)
where Dtestc is the set of documents correctly assigned to class c and Dc is the set
of all documents from class c. Additionally, we used the Wilcoxon signed-ranks

test [Wil45] to determine whether the proposed solution signi�cantly improves

the quality of classi�cation.

7.5.2 Combining PTED with a rule-based classifier

Table 7.1 presents the results of the experiment. The �rst column (�Dataset�)

represents the datasets used in each test. The second and the third columns show

the quality of the compared approaches on each dataset. �MC� shows the accuracy

7.6 Conclusions 87

of the majority class approach while �PTED� shows the accuracy of the partial

tree-edit distance approach. The fourth column (�X�) presents the percentage of

documents from the test set which were unmatched by any rule from the classi�er.

It illustrates the gravity of the default rule problem, which motivated the creation

of patrial tree-edit distance. In every test, this problem concerned around half or

more documents (e.g., for test ds3 which contains 100000 test documents there

were 73906 documents without any matching rule).

Table 7.1: The accuracy of compared classi�ers.

Approach MC PTED

Dataset Accuracy [%] X Di� Rank

ds1 50.03 51.91 56% 1.88 5
ds2 51.43 47.70 70% -3.73 6
ds3 52.28 58.18 74% 5.90 9
ds4 42.90 52.20 63% 9.30 10
cs12 61.67 62.06 47% 0.39 3
cs21 58.66 58.68 49% 0.02 1
cs13 61.05 62.05 48% 1.00 4
cs31 58.08 62.67 50% 4.59 8
cs23 59.88 59.94 47% 0.06 2
cs32 58.45 62.73 50% 4.28 7

The results clearly indicate that by using partial tree-edit distance we were

able to improve the classi�cation quality in almost every test (except for ds2). This

outcome is con�rmed by the statistical test. Column �Di�� presents the di�erence

in quality between the compared approaches for each test and column �Rank�

shows the rank determined by the corresponding di�erence. In the Wilcoxon

signed-ranks test, the W -value calculated based on the �Rank� column equals 6.

The critical value of W for N = 10 datasets and α = 0.05 is 8, so we can reject

the null-hypothesis and state that the PTED approach performed signi�cantly

better than the majority class method.

7.6 Conclusions

In this chapter, we have discussed a measure dedicated for approximate subtree

matching problem, called partial tree-edit distance. By combining the features of

subtree matching and tree-edit distance, this measure describes to what extent

one tree is included in another. We have also discussed an algorithm which calcu-

lates the proposed measure in polynomial time. Furthermore, we have analyzed

the result of an experiment involving rule-based XML classi�cation enhanced with

partial tree-edit distance to illustrate the usefulness of the measure and highlight

the gravity of the default rule problem. The results show that PTED can signi�-

cantly improve the classi�cation quality over the baseline rule-based approach.

88 7 Partial tree-edit distance

Apart from XML classi�cation, the measure discussed in this chapter opens

several possibilities of future research. It could be used to improve the quality of

approximate subtree matching, XML querying, ranking, or clustering. Further-

more, it would be interesting to explore the possible consequences of adding the

information about multiple subtree occurrences to the measure, as the results in-

volving clustering (see Section 6.4.3) suggest this information can hold high value

in some applications.

In the next chapter, we will discuss a new pattern-based XML classi�er. The

algorithm is called k-nearest patterns and is de�ned around the partial tree-edit

distance measure.

8
K-nearest patterns algorithm for

pattern-based XML classification

In the previous chapter, we discussed a measure capable of calculating the degree

of containment of one tree in another. Furthermore, we demonstrated how this

measure could be incorporated into a rule-based XML classi�er to enhance its

predictive capabilities.

In this chapter, we will discuss a new XML classi�cation algorithm based

on the partial tree-edit distance measure, called k-nearest patterns (kNP). The

algorithm attempts to combine the advantages of the rule-based classi�er with the

main features of the nearest neighbor approach while addressing the main issues of

these methods (see Section 2.4). kNP classi�es documents using both global and

local information, by assigning documents to classes based on a weighted majority

voting of their nearest patterns in the classi�cation model. This goal is achieved

in two phases. In the training phase, which will be described in Section 8.1, a

classi�er is created based on maximal frequent subtrees (patterns) found in the

training data. In the classi�cation phase, described in Section 8.2, the classi�er

is used to predict classes of new documents through a weighted majority voting

of k nearest patterns. After discussing both of these phases, we will illustrate

the whole process with a simple example in Section 8.3. In Section 8.4 we will

empirically analyze a series of algorithm's variations, regarding: vote weighting,

neighborhood de�nition, and inter-class duplicate pattern treatment, evaluate

how the algorithm's parameters in�uence its performance, and compare kNP with

the classical rule-based XML classi�er and the state-of-the-art XRules [ZA06].

8.1 Training

In this section, we will discuss the training of a classi�er in the k-nearest patterns

algorithm. The goal of training is to create a classi�cation model (classi�er)

M. In kNP, classi�cation model is a set of patterns de�ned as ordered pairs

p = (t, c), where t is a maximal frequent subtree and c is its corresponding class.

90 8 K-nearest patterns algorithm for pattern-based XML classi�cation

For convenience, we will also refer to a tree and a class of a given pattern p by

tp and cp, respectively. A classi�er is created in three main steps: mining for

maximal frequent subtrees separately for each class (Pattern mining), combining

the patterns into a single classi�cation model (Model creation), and normalizing

the attributes of the patterns across the whole model (Attribute normalization).

Let us now analyze each of these steps in detail.

Pattern mining

First, the training dataset D is split into subsets � one subset Dc ⊂ D per each

class c ∈ C. Next, each subset is separately mined for maximal frequent subtrees

with minsup parameter set uniformly for each class. For this purpose, similarly

as in the previous chapters, we used the CMTreeMiner algorithm proposed by Chi

et al. [CXYM05]. As a result, we get a family P of |C| sets of maximal frequent

subtrees Pc, c ∈ C. Each set Pc, called class pro�le , represents a single class and
is de�ned as follows:

Pc = {t : t is a tree ∧ pattern(t,Dc)} ,

where pattern is the predicate de�ned in Equation 5.2.

Model creation

In the next step, a classi�erM is built, based on the pro�les P obtained in the

previous step. It is achieved by combining all maximal frequent subtrees into

a single set of ordered pairs {(t, c) : ∃c∈Ct ∈ Pc}, so that each tree forms a 2-

tuple with a class of documents from which it was derived. However, because

the mining process takes place separately for each class, the subtrees may not be

unique nor maximal across di�erent classes, as they originate from di�erent sets

of documents. It may happen, that a tree in one class is a subtree of a tree in

another class, thus, when combined into a single model, such patterns may lead to

ambiguous class assignments. To address this problem we propose three di�erent

model construction strategies: Leave all, Remove duplicates, Remove embedded.

Leave all strategy assumes that any ambiguities resulting from co-occurring or

non-maximal subtrees will be resolved in the classi�cation phase. In this case, a

classi�er is simply constructed by joining all trees with their corresponding classes

into a single, unordered set.

M =
⋃
c∈C
{(t, c) : t ∈ Pc}

Remove duplicates strategy is more restrictive and does not allow two patterns

with the same tree to appear in the model. Consequently, if a tree appears in

multiple pro�les it is completely excluded from the model. This strategy assures,

that each tree in the model is unique.

M =
⋃
c∈C

{
(t, c) : t ∈ Pc ∧ ¬∃c′∈C,c′ 6=ct ∈ Pc′

}

8.1 Training 91

Remove embedded strategy is the most restrictive, assuring that each tree in

the model is maximal. If a tree is a subtree or a supertree of another tree from a

di�erent pro�le, it is excluded from the model.

M =
⋃
c∈C
{(t, c) : t ∈ Pc ∧ ∀c′∈C,c′ 6=c¬∃t′∈Pc′ (t ⊆ t

′ ∨ t′ ⊆ t)}

The consequences of using either of the proposed strategies will be evaluated

later in Section 8.4.2. It is important to note that choosing either the Remove

duplicates or the Remove embedded strategy may lead to a situation where one

of the classes has no patterns in the model or, in the extreme case, where there

are no patterns at all (the model is empty). In such cases, where possibly a

highly homogeneous dataset is being analyzed, we recommend using the Leave all

strategy. However, during our experiments such a situation did not occur (see

Section 8.4.2).

Attribute normalization

Apart from a tree and a class, every pattern in the model is described by a set

of attributes, namely: size, support, and con�dence. These values are calculated

analogously as in the case of the classical rule-based classi�er (see Section 2.4).

Size of a pattern p is de�ned as the number of nodes in its tree: size(p) = |tp|.
Support of a pattern p in class c is de�ned as a frequency of its tree tp among

the training documents within class c:

supp(p, c) =
|{d ∈ Dc : tp ⊆ d}|

|Dc|

For convenience, we will use a short notation supp(p) = supp(p, cp) to calculate

the support of pattern p in its corresponding class cp. Con�dence of a pattern

p in class c is de�ned as:

conf(p, c) =
supp(p, c)∑
c′∈C supp(p, c

′)

As with support, we will use a short notation conf(p) = conf(p, cp) to calculate

the con�dence of pattern p in its corresponding class cp.

These attributes will be used in the second phase for classi�cation purposes

(see Section 8.2). In order to assure a fair and equal treatment of all attributes,

we normalize each attribute across the whole model using simple feature scaling:

attr′(p) =
attr(p)−minp′∈M attr(p′)

maxp′∈M attr(p′)−minp′∈M attr(p′)
,

where attr (i.e., size, supp, conf) is an old attribute value and attr′ is a new, nor-

malized attribute value. After normalization, each attribute has a value between

0 and 1, assuring an equal contribution of each attribute when vote weighting is

applied.

92 8 K-nearest patterns algorithm for pattern-based XML classi�cation

8.2 Classification

After completing the training described in the previous section, we can proceed

with the classi�cation phase. The goal of the classi�cation phase is to assign each

new, unlabeled document d to one of the classes c ∈ C based on the model M
created in the training phase. The class assignment takes place in several steps.

First, the distances between d and every pattern p in the model are calculated.

Afterwards, with a given neighborhood de�nition, we select a subset of the nearest

patterns fromM and aggregate the weights of all patterns in this subset for each

class into a single class score. In other words, each pattern from the nearest

neighborhood votes for its corresponding class. A single vote can have a weight

equal to 1 or can range from 0 to 1, depending on the applied weighting strategy.

After the votes are collected, �nally, document d is assigned to the class with the

highest score.

There are three main components that need to be speci�ed in the described

classi�cation process: How to evaluate the similarity between documents and

patterns (a problem of Distance measure)? How to de�ne the boundaries of a

neighborhood with a given distance measure (a problem of Neighborhood de�ni-

tion)? How to use pattern attributes in the voting process (a problem of Vote

weighting)? Let us now look into these questions in detail.

Distance measure

In order to limit the nearest neighborhood, we need to de�ne a distance mea-

sure. The problem is, that we have to compute distances between objects in two

di�erent spaces: documents and patterns. We know however, how these spaces

are related, because pattern trees are derived directly from documents as their

subtrees. Therefore, we need a measure that calculates how much does one tree

(i.e., pattern tree) need to be modi�ed to become a subtree of another tree (i.e.,

document tree). As typical methods used in tree processing, such as tree-edit dis-

tance or subtree matching, are not appropriate for this speci�c problem, we use

the partial tree-edit distance measure (PTED), described in Chapter 7, designed

speci�cally for such tasks. Let us recall that PTED calculates how much does one

tree need to be modi�ed to become a subtree of another tree.

To avoid promoting small patterns, we normalize each distance with the size

of the pattern, so that it falls into a < 0− 1 > range. The complete formula for

calculating distance between a pattern p and a document d is given as follows:

dist(p, d) =
~∆(tp, d)

|tp|
, (8.1)

where ~∆(tp, d) is the partial tree-edit distance between a pattern tree tp and a

document tree d.

8.2 Classi�cation 93

Neighborhood definition

With a distance measure speci�ed, next, we have to de�ne the neighborhood of

a document d in the pattern space. Let us discuss two possible cases of nearest

neighborhood de�nitions: instance-based and distance-based.

The instance-based approach is analogous to that in kNN algorithm: nearest

neighborhood of a document d is de�ned as the k nearest patterns in a model

M, according to the distances calculated with the formula in Equation 8.1. This

approach requires user to provide the k parameter. Formally, instance-based

nearest neighborhood of a document d in a modelM is de�ned as follows:

kNP (d,M) =
⋃
X⊆M

{p ∈ X :

|X | = k ∧ ¬∃Y⊆M,Y6=X (|Y| = k ∧max
y∈Y

(dist(y, d)) < max
x∈X

(dist(x, d)))}
(8.2)

The distance-based approach de�nes neighborhood by pattern distances rather

than a �xed number of patterns. In this scenario, all patterns within a speci�ed

range r form the nearest neighborhood of a given document d. As a consequence,

each classi�ed document may have a di�erent number of patterns in its nearest

neighborhood. This approach requires user to provide the r parameter. Formally,

distance-based nearest neighborhood of a document d in a modelM is de�ned as

follows:

NP r(d,M) = {p ∈M : dist(p, d) ≤ r} (8.3)

When de�ning the nearest neighborhood with either of these approaches, a

couple of additional issues need to be resolved. Considering the de�nition of the

instance-based neighborhood given in Equation 8.2, we have to deal with situa-

tions in which several patterns are at the same distance from the analyzed docu-

ment. As an example, consider 4 patterns x, y, z, w, a document d, and distances

between each pattern and d equal to 0, 0.5, 0.5, and 0.7, respectively. Given k = 2,

it is ambiguous whether to include pattern y or z into the nearest neighborhood.

In such cases, we propose to use one of the three following strategies: k+NP ,

kcNP , or krNP .

The k+NP strategy is the one presented in Equation 8.2 and it resolves the

problem of ambiguity by including all patterns which are at the same distance

from d as the k-th pattern (in the distance order). Consequently, in this strategy

the nearest neighborhood may contain more than k patterns.

In kcNP strategy, if there are several patterns at the k-th position, we order

them according to their con�dence, support, and size. If two or more patterns

have the same distance, con�dence, support, and size, precedence between them is

decided randomly. Once the ranking is created, we select only the top m patterns

(m ≤ k), so that the nearest neighborhood contains exactly k patterns.

The last strategy (krNP) is the simplest one and is based on the original,

basic kNN algorithm. In this case, if there are several patterns at the k-th posi-

tion, we select m out of these patterns at random (m ≤ k), so that the nearest

neighborhood contains exactly k patterns.

94 8 K-nearest patterns algorithm for pattern-based XML classi�cation

Choosing one of the presented strategies resolves the problem of the nearest

neighborhood ambiguity in the instance-based model. On the other hand, when

de�ning the nearest neighborhood with the distance-based model, given in Equa-

tion 8.3, we have to deal with a situation in which no patterns fall into the de�ned

range r. In this case, we propose to use the k+NP strategy of the instance-based

model with k = 1, as it simulates the range expansion to the distance of the

closest patterns.

The consequences of using either of the presented approaches will be evaluated

later in Section 8.4.2.

Vote weighting

After selecting a subset of nearest patterns NP according to one of the presented

nearest neighborhood de�nitions, the next task is to check how well does the

analyzed document �t into each of the class pro�les. This is achieved by aggre-

gating the weights of all patterns corresponding with a given class in the nearest

neighborhood. As a result, each class has a score calculated with the following

formula:

score(d, c) =
∑

{p∈NP :pc=c}

w(p, d) (8.4)

where w(p, d) is a weight associated with pattern p for document d. The pattern

weighting can be carried out in several ways: all patterns weighted uniformly with

w(p, d) = 1; patterns weighted according to their distances from the classi�ed

document w(p, d) = (1 − dist(p, d)); patterns weighted according to one of their

attributes w(p, d) = attr(p); patterns weighted with a product of their attributes

and their distance from the document, e.g., w(p, d) = conf(p) · size(p) · (1 −
dist(p, d)). The consequences of using either of the presented pattern weighting

strategies will be evaluated later in Section 8.4.2.

With a class score function and a weighting strategy, a document d is assigned

to the class with the highest score:

class(d) = arg max
c∈C

(score(d, c)) (8.5)

This concludes the classi�cation phase.

8.3 Example

Let us now illustrate how kNP works with a simple example. Consider the training

set of documents presented in Table 2.2. Given that documents d1−4 represent a

group of book chapters (class c1) and documents d5−8 represent a group of journal

papers (class c2), the task is to classify an unlabeled document dx, presented in

Figure 8.1, into one of the two classes c1, c2.

8.3 Example 95

paper

editors inbook

personperson person title volumeyear

notepublisher

Figure 8.1: Example document dx.

For this example, we will use a distance-based model (r = 0.2, minsup = 0.5)

with Leave all strategy and pattern weights de�ned as w(p, d) = (1− dist(p, d)) ·
conf(p).

In the training phase, �rst, we are mining for maximal frequent subtrees with

a given minsup, separately for each class. The result of this process is illustrated

in Fig 8.2. Next, since we are using the Leave all strategy, we create a model of

the following structure: M = {p1 = (t1, c1), p2 = (t2, c2)}. This concludes the

training phase.

paper

authors inbook

t1c1:

person title

paper

authors journal

t2c2:

person title year volume

Figure 8.2: Patterns found in the example training dataset.

In the classi�cation phase, we collect the nearest patterns NP of document

dx: NP = NP r(dx,M). First, we have to calculate the distances from each

pattern to dx. Using the formula given in Equation 8.1, the distances for patterns

p1 and p2 are 0.20 and 0.29, respectively. As we can see, pattern p1 falls into the

0.2 range, so the nearest neighborhood has the following structure: NP = {p1}.
After selecting the nearest patterns, we calculate the score for each class. Since

in this example the nearest neighborhood contains only one pattern the score

computation is unnecessary. Nevertheless, let us perform the calculations for

demonstrative purposes.

score(dx, c1) = (1− dist(p1, dx)) · conf(p1) = (1− 0.2) · 1 = 0.8

score(dx, c2) = 0

Based on the calculated scores, document dx will be assigned to class c1, as it has

the highest score. According to the DTDs from Table 2.3, this outcome is correct.

This concludes the classi�cation phase and the whole algorithm.

96 8 K-nearest patterns algorithm for pattern-based XML classi�cation

8.4 Experimental evaluation

The proposed approach was evaluated with a series of experiments, which will

be discussed in this section. First, we will analyze how di�erent components of

the method, namely, model construction strategy, neighborhood de�nition, and

vote weighting, in�uence the classi�cation process. Afterwards, we will analyze

the stability of the discussed approaches w.r.t. their parameters: minsup, k,

and r. Finally, we will compare our approach with two other XML classi�ca-

tion algorithms: the classical rule-based classi�er and the state-of-the-art XRules

algorithm [ZA06].

8.4.1 Datasets and experimental setup

To evaluate our method and fairly compare it with XRules [ZA06], we used the

same datasets as Zaki and Aggarwal for the evaluation of their approach: 8 syn-

thetic and 4 real. We have already mentioned these datasets earlier when demon-

strating how partial tree-edit distance could be used to enhance the rule-based

approach in the previous chapter. This time however, we used a slightly di�erent

real dataset con�guration, consistent with the one used to evaluate XRules.

The synthetic datasets dsX.test and dsX.train (X = 1..4) were generated by

the aforementioned authors. Each dsX.train dataset was used for training while

its corresponding dsX.test dataset was used in the classi�cation phase. The real

datasets cs1, cs2, and cs3, contain web logs categorized into two classes (for a

detailed description see [ZA06]). Additional dataset cs12 contains documents

from both cs1 and cs2. Both training and testing datasets were labeled and this

information was used for classi�cation quality assessment. For convenience, in

the following experiments we will use a shortened notation of the datasets: dsX

means an experiment performed with a pair of datasets dsX.train and dsX.test,

while csX−Y means an experiment performed with dataset csX used for training

and csY for classi�cation. All datasets are characterized in Table 8.1.

Unless stated otherwise, the parameters and components of our algorithms in

the experiments were as follows: k = 1, r = 0.2, Remove duplicates model con-

struction strategy, NP r neighborhood de�nition, votes weighted with con�dence

and size, minsup as given in Table 8.1.

All algorithms were implemented in the C# programming language, with the

exception of CMTreeMiner, implemented in C++ [CXYM05]. Additionally, the

Accuracy of XRules was assessed from [ZA06]. The experiments took place on a

machine equipped with a dual-core Intel i7-2640M CPU 2.8Ghz processor and 16

GB of RAM.

All approaches were evaluated using Accuracy, given in Equation 2.5:

Accuracy =
|Dtest|
|D|

,

where Dtest is the set of correctly classi�ed documents and D is the set of all docu-

8.4 Experimental evaluation 97

Table 8.1: Datasets and their characteristics.

Dataset
Number of Class

minsup
documents distribution

ds1.test 88493 56.50% -
ds2.test 72510 68.96% -
ds3.test 100000 50.00% -
ds4.test 74880 49.28% -
ds1.train 91288 54.77% 0.008
ds2.train 67893 73.65% 0.009
ds3.train 100000 50.00% 0.007
ds4.train 75037 52.96% 0.002
cs1 8074 75.70% 0.035
cs2 7409 77.22% 0.045
cs3 7628 76.43% 0.045
cs12 15483 76.43% 0.040

ments. Additionally, to determine whether the analyzed components signi�cantly

in�uence the quality of our approach, in some experiments we used the Friedman

test improved by Iman and Davenport, as proposed in [Dem06]. In such cases, for

each dataset, each approach was granted a score from 1 to the number of tested

approaches, where 1 is the highest score. The null-hypothesis for each test was

that there is no di�erence in performance between all tested approaches.

8.4.2 Component analysis

Before comparing kNP with other approaches, let us analyze what impact does

each of the components have on the classi�cation quality. The goal of the �rst

experiment was to select the best model construction strategy. Each approach,

namely: Leave all, Remove duplicates, Remove embedded, was tested against all

datasets. The result of this experiment is presented in Table 8.2.

Table 8.2: Model construction strategies.

Strategy Leave all
Remove Remove
duplicates embedded

Dataset Accuracy [%]

ds1 73.05 73.25 72.00
ds2 81.64 81.64 65.35
ds3 65.86 66.35 65.10
ds4 64.05 64.05 62.17
cs1-2 80.33 80.33 80.69

cs2-3 79.72 79.72 79.05
cs3-1 79.22 79.22 78.90
cs12-3 79.40 79.40 79.77

Rank 1.875 1.625 2.500

The results show, that the Remove duplicates strategy performs best in 6 out

98 8 K-nearest patterns algorithm for pattern-based XML classi�cation

of 8 cases. Moreover, it produces equally good or better quality results than the

Leave all strategy for all datsets. Interestingly, the Remove embedded strategy

gives the worst accuracy on 6 out of 8 datasets, however, it performs best for

cs1-2 and cs12-3 and competitively on the remaining two cs datasets.

In order to determine whether the discussed model construction strategies

signi�cantly in�uence the quality of kNP, let us analyze the results of the Friedman

test. The average ranks for each of the strategies are presented in the last row of

Table 8.2. With 3 algorithms and 8 datasets, FF is distributed according to the

F distribution with 3 − 1 = 2 and (3 − 1)(8 − 1) = 14 degrees of freedom. The

FF score for this experiment equals 1.784, so with α = 0.05 and FCritical = 3.739,

we cannot reject the null-hypothesis. Thus, the test did not reveal any signi�cant

di�erences in quality between the analyzed approaches.

The results of this test are statistically inconclusive and do not clearly indicate

the best solution. However, based on the above analysis, we propose to use the

Remove duplicates strategy. Even though it was not signi�cantly better than

other strategies, it performed best on average and was the most stable approach

across all datasets. Moreover, by choosing this strategy, we are able to reduce the

size of the model without decreasing its predictive capabilities.

The aim of the second experiment was to compare the alternative neighbor-

hood de�nitions. Each approach was tested against all datasets and the results

of this experiment are shown in Table 8.3.

Table 8.3: Neighborhood de�nitions.

Neighborhood
krNP kcNP k+NP NP r

de�nition

Dataset Accuracy [%]

ds1 65.26 71.25 72.62 73.25

ds2 77.06 74.20 80.61 81.64

ds3 62.24 65.57 65.70 66.35

ds4 60.56 63.94 63.28 64.05

ds1-2 79.59 49.37 80.33 80.33

ds2-3 78.96 79.68 79.72 79.72

ds3-1 78.76 79.22 79.22 79.22

ds12-3 78.66 79.35 79.40 79.40

Rank 3.750 3.000 1.938 1.313

The obtained results clearly indicate that the distance-based model (NP r)

produces the best results, as it outperformed or matched all other approaches in

8 out of 8 cases. The best instance-based model (k+NP) produced equally good

results for 4 datasets and the second best result in 3 cases. As expected, the

de�nition which turned out to be the worst is the instance-based krNP model. It

ranked at the last place in 5 out of 8 cases, outperforming only the kcNP model

in the remaining 3 tests.

Similarly as with the model creation strategies, let us perform a Friedman test

in search for statistically signi�cant di�erences. The average ranks for each of the

8.4 Experimental evaluation 99

strategies are presented in the last row of Table 8.3. This time, we are comparing 4

algorithms on 8 datasets, so FF is distributed according to the F distribution with

4−1 = 3 and (4−1)(8−1) = 21 degrees of freedom. Consequently, FF = 16.957,

so with α = 0.05 and FCritical = 3.072, we can reject the null-hypothesis and state

that the analyzed neighborhood de�nitions produce signi�cantly di�erent results.

Moreover, the Nemenyi test reveals that the distance-based model is signi�cantly

better than instance-based models krNP and kcNP (critical distance CD = 1.658

for α = 0.05). Comparing the instance-based models, k+NP is also signi�cantly

better than krNP . Figure 8.3 illustrates the performed test and indicates the

statistically signi�cant di�erences.

1 2 3 4

CD

NPr

k+NP

krNP

kcNP

Figure 8.3: Friedman and Nemenyi tests for neighborhood de�nitions.

The results of this test clearly indicate that there is a substantial di�er-

ence in classi�cation quality between the analyzed neighborhood de�nitions. The

distance-based model performs best, however, the instance-based k+NP model

produces results of competitive quality. As one would expect, the instance-based

krNP model gives the worst results, as it resolves ambiguous situations in a

random fashion. Based on the above analysis, we propose to use the distance-

based model, as it performed signi�cantly better than two of the instance-based

approaches and matched or outperformed k+NP model on all datasets.

The �nal component of the kNP classi�er which needs to be discussed is vote

weighting. Each weighting scheme was experimentally evaluated in order to check

its impact on the classi�cation quality. Since we have 4 possible weights, it gives

us a total of 16 di�erent combinations, all of which were tested on all datasets.

The result of this experiment is presented in Table 8.4. Each row represents a

di�erent weighting strategy. The �rst four columns indicate if the corresponding

weights were incorporated (1) or not (0).

The results reveal some interesting properties. Firstly, relying solely on the

distance weight diminishes the accuracy when compared with the strategy without

any weights in 4 out of 8 tests. Other than that, adding the information about

distance seems to have a minor, if any, e�ect on the classi�cation quality. Given

the above, let us focus on the other weights without the distance incorporated

(Dist = 0). The combination of con�dence and size gives the best results on 4

out of 8 datasets (ds1, ds3, cs1-2, cs12-3) and ranks at a second place on the other

4. Additionally, analyzing the results vertically we can see that some datasets are

much less a�ected by the changes in weighting strategy than others (especially

cs2-3 and cs3-1).

The Friedman test con�rms that altering the weighting strategy leads to sig-

T
a
b
le

8
.4
:
W
eig

h
tin

g
strateg

ies.D
ataset

d
s1

d
s2

d
s3

d
s4

cs1-2
cs2-3

cs3-1
cs12-3

D
ist

C
o
n
f

S
u
p
p

S
ize

A
ccu

racy
[%

]
R
an
k

0
0

0
0

72.76
80.89

65.26
61.48

77.66
79.72

7
9
.2
3

76.49
5.625

1
0

0
0

72.44
80.58

64.98
61.45

77.66
79.72

7
9
.2
3

76.49
-

0
1

0
0

73.00
81.61

66.18
64.45

80.31
79.68

79.22
79.37

3.750
1

1
0

0
73.00

81.61
66.18

6
4
.4
6

80.31
79.68

79.22
79.37

-
0

0
1

0
70.55

79.85
63.97

62.99
79.35

79.72
7
9
.2
3

78.80
5.625

1
0

1
0

70.37
79.85

63.96
62.76

79.35
79.72

7
9
.2
3

78.80
-

0
1

1
0

72.46
81.50

66.02
63.33

80.31
79.69

79.22
7
9
.4
0

4.375
1

1
1

0
72.46

81.51
66.02

63.29
80.31

79.69
79.22

7
9
.4
0

-
0

0
0

1
73.04

81.02
65.85

62.83
76.10

7
9
.7
6

79.22
73.81

5.250
1

0
0

1
73.04

80.77
65.85

62.84
76.10

7
9
.7
6

79.22
73.81

-
0

1
0

1
7
3
.2
5

81.64
6
6
.3
5

64.04
8
0
.3
3

79.72
79.22

7
9
.4
0

2
.3
7
5

1
1

0
1

7
3
.2
5

81.64
6
6
.3
5

64.05
8
0
.3
3

79.72
79.22

7
9
.4
0

-
0

0
1

1
71.10

80.61
65.31

62.92
77.76

7
9
.7
6

79.22
76.34

5.750
1

0
1

1
71.10

80.37
65.30

62.77
77.76

7
9
.7
6

79.22
76.34

-
0

1
1

1
72.99

8
1
.6
5

66.03
63.00

80.32
79.72

79.22
7
9
.4
0

3.250
1

1
1

1
72.99

8
1
.6
5

66.03
62.99

80.32
79.72

79.22
7
9
.4
0

-

8.4 Experimental evaluation 101

ni�cant changes in classi�cation quality. As described above, the distance weight

was excluded from the test due to its minimal in�uence on the outcome, so the

total number of compared approaches is 8. Therefore, FF is distributed according

to the F distribution with 8−1 = 7 and (8−1)(8−1) = 49 degrees of freedom, so

for α = 0.05, FF = 2.580 > FCritical = 2.203. However, the additional Nemenyi

test did not reveal any signi�cant di�erences for pairwise comparisons, neither

for α = 0.05 (CD = 3.712) nor for α = 0.10 (CD = 3.405). The last column in

Table 8.4 presents the average rank of each of the tested approaches (excluding

distance).

The results of this experiment show that weighting strategies signi�cantly

in�uence the quality of classi�cation. However, the performed tests are insu�cient

to indicate which one works best. The lack of statistical signi�cance in pairwise

comparisons may be caused by insu�cient number of datasets compared with

the number of evaluated approaches, as we are testing 8 strategies on 8 datasets.

Nevertheless, based on the ranking and the above discussion, we propose to weight

votes using con�dence and size, as these attributes performed best on 4/8 datasets

and produced only slightly worse results on the remaining 4 datasets.

8.4.3 Parametrization

As stressed in the introduction of this thesis, proposing good parameter values

plays an important role in performing any data mining activity. The following

experiments aim at inspecting how the proposed approaches react to parameter

changes. In these tests, both distance-based NP r and instance-based k+NP

model were considered in order to evaluate all of the earlier discussed parameters:

minsup and r for NP r, and minsup and k for k+NP . The �rst experiment

illustrates how the minimal support parameter in�uences the classi�cation quality.

Since previous tests indicate a major di�erence in characteristics between ds and

cs datasets, we performed this test using ds1 and cs1-2 datasets. The result is

presented in Figures 8.4(a) and 8.4(b). Each plot illustrates the accuracy of both,

NP r and k+NP approaches. The test was conducted withminsup changing from

0.001 with 0.001 step until pattern mining did not �nd any patterns for at least

one of the classes.

The plots clearly indicate that minimal support can have a substantial in�u-

ence on the classi�cation quality. In case of both datasets, for lowerminsup values

there is a noticeable di�erence in quality between the instance- and distance-based

approaches, the latter being always superior. However, after crossing a certain

threshold both approaches start producing the same results. This is due to the

fact that lower minsup produces more patterns and, thus, there are more pat-

terns for the algorithms to chose from. As described earlier, these approaches

were tested with k = 1 and r = 0.2, so this test in fact shows the minsup value

after which either all patterns in the 0.2 range are in the same distance from the

documents or no patterns fall into the 0.2 range.

This experiment reveals an issue common with most approaches based on fre-

quent itemsets, i.e., sensitivity w.r.t. minsup parameter. However, it is important

102 8 K-nearest patterns algorithm for pattern-based XML classi�cation

0.00 0.02 0.04 0.06 0.08

0.
50

0.
55

0.
60

0.
65

0.
70

Minimal support

A
cc

ur
ac

y
[%

]

kNP
NP

(a) minsup sensitivity (ds1)

0.00 0.05 0.10 0.15

0.
4

0.
5

0.
6

0.
7

0.
8

Minimal support

A
cc

ur
ac

y
[%

]

kNP
NP

(b) minsup sensitivity (cs1-2)

Figure 8.4: Sensitivity w.r.t. minsup.

to note that in the case of classi�cation this value is much easier to assess than

in clustering described in the earlier chapters. Here for example, one can use the

training dataset to tune the parameters with cross-validation [AC09].

Now, let us focus on the remaining parameters and examine how manipulating

k and r in�uences the predictive capabilities of the discussed algorithms. Impor-

tantly, the e�ect these parameters have on classi�cation outcome is dependent on

minimal support, as di�erent minsup values produce di�erent pattern sets, not

only in terms of tree structures but also in terms of quantity. That is why this test

was performed with varying minsup, in order to include this factor in the anal-

ysis. The experiment was conducted on datasets ds1-4. Each dataset was tested

for both model construction strategies (k+NP and NP r) with minsup changing

from 0.001 to 0.010 with 0.001 step, r changing from 0 to 1 with 0.1 step, and k

changing from 1 to 10 with 1 step. In order to facilitate the analysis of the results

of this experiment, each test is illustrated with a heat map, with colors ranging

from dark green � the highest quality, to dark red � the lowest quality. The

results are presented in Figures 8.5(a)-8.5(h). In the diagrams, minsup increases

horizontally while r and k change vertically.

The results of this experiment reveal noticeable di�erences in stability be-

tween the analyzed approaches. The heat maps for the distance-based approach

(Figures 8.5(a)-8.5(d)) show that for r between 0 and 0.4, the algorithm produces

stable, high quality results. After r = 0.4, the quality starts to degrade and

drops signi�cantly after the 0.8 threshold. More importantly, the plots show that

minsup seems to have a relatively smaller e�ect on the quality of the distance-

based model. In case of the instance-based approach (Figures 8.5(e)- 8.5(h)), the

heat maps are fairly irregular and show that the approach performs reasonably

stable w.r.t. minsup only for k = 1. There also seems to be a slight indication

that the quality degrades diagonally towards the right bottom corner. This means

that the higher the minsup the lower the k should be, and vice versa. This can be

explained by the fact that higher minimal support values lead to fewer and more

general patterns which, in turn, may overlap more. On the other hand, patterns

8.4 Experimental evaluation 103

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

(a) r sensitivity (ds1) (b) r sensitivity (ds2) (c) r sensitivity (ds3) (d) r sensitivity (ds4)

1

2

3

4

5

6

7

8

9

10

(e) k sensitivity (ds1) (f) k sensitivity (ds2) (g) k sensitivity (ds3) (h) k sensitivity (ds4)

Figure 8.5: Sensitivity w.r.t. k and r.

with lower minsup are less common and more speci�c, so we need to consider

more of them, in order to make a solid decision.

The tests reveal that changing the minsup value can have a high impact on

the quality of both of the approaches. Furthermore, the experiments show that

the distance-based model has a higher stability w.r.t. the r parameter than the

instance-based model w.r.t. the k parameter with varying minsup. This, com-

bined with the results from the previous section, suggests that the distance-based

model is generally a favorable option, both in terms of ease of parametrization

and classi�cation quality.

8.4.4 Comparative analysis

The aim of the last experiment is to compare the proposed method with compet-

itive solutions. kNP was compared with the classical rule-based classi�er (Rule)

and the state-of-the-art structural XML classi�cation algorithm�XRules [ZA06].

The results for XRules were taken from [ZA06] while the results for the Rule classi-

�er were obtained with our own implementation, described in the previous chapter

(see Section 7.5). In the training phase, the training dataset is mined for max-

imal frequent subtrees separately for each class. Afterwards, the subtrees along

with their corresponding classes form rules: r = tr → cr, where tr is a maximal

frequent subtree and cr is a class. Next, the rules are arranged into a ranking

according to their con�dence, support, and size. In the classi�cation phase, each

document is tested against each rule in the descending ranking order for subtree

matching, and assigned to the class indicated by the �rst matching rule. If a

document does not match any rule, it is assigned to a class based on a default

rule (the majority class in the training dataset). The Accuracy of each algorithm

is presented in Table 8.5. Additionally, next to Accuracy in column �Rule�, there

is a number illustrating the percentage of documents classi�ed with a default rule.

104 8 K-nearest patterns algorithm for pattern-based XML classi�cation

Table 8.5: Comparison of kNP with other methods.

Algorithm Rule XRules kNP

Dataset Accuracy [%]

ds1 64.54 (63.95%) 71.93 73.25

ds2 79.77 (58.06%) 79.77 81.64

ds3 56.77 (62.76%) 61.63 66.35

ds4 60.32 (65.81%) 67.65 64.04
cs1-2 80.37 (53.99%) 83.63 80.33
cs2-3 79.67 (58.77%) 84.29 79.72
cs3-1 79.16 (59.56%) 84.39 79.22
cs12-3 79.33 (57.75%) 83.51 79.40

Rank 2.813 1.438 1.750

The accuracies of the analyzed approaches show that both XRules and kNP are

superior to the Rule algorithm. For α = 0.05, with 3−1 = 2 and (3−1)(8−1) = 14

degrees of freedom, the Friedman test indicates a statistically signi�cant di�erence

in quality between the analyzed algorithms: FF = 10.067 > FCritical = 3.739.

With the ranks presented in the last row of Table 8.5, the additional Nemenyi

test shows that, indeed, XRules and kNP perform signi�cantly better than Rule:

XRules for α = 0.05 (CD = 1.172) and kNP for α = 0.10 (CD = 1.026).

Comparing XRules with kNP we can see that XRules outperforms kNP in 5

out of 8 tests while kNP performs better in the other 3. Even though this result is

inconclusive, we can observe that kNP performs better on balanced datasets dsX,

while XRules excels on datasets with skewed class distributions. This observation

indicates that enhancing the algorithms ability to handle unevenly distributed

classes should be addressed in future research.

Looking at the results of the classical rule-based classi�er (Rule), it is worth

noticing that the default rule was used for over 50% of the documents. This

illustrates the size of the default rule problem, addressed in this thesis, and is

consistent with the observations from the previous chapter (see Section 7.5).

8.5 Conclusions

In this chapter, we have discussed a structural XML classi�cation algorithm, called

k-nearest patterns (kNP), inspired by the nearest neighbor and rule-based classi-

�ers. The originality of the method stems from the combination of global infor-

mation encapsulated in frequent patterns and local information available through

pattern-document similarity measure � partial tree-edit distance. Several vari-

ations regarding the algorithm's components were discussed and experimentally

evaluated. Finally, the proposed approach was tested for quality and parameter

sensitivity, and compared with the classical rule-based classi�er and the state-of-

the-art XRules algorithm.

8.5 Conclusions 105

The experimental evaluation shows that the proposed approach produces re-

sults of competitive quality to XRules. Furthermore, kNP proved to be signi�-

cantly better than the classical rule-based approach while additionally resolving

the problem of excessive default rule usage.

As a future research direction, the proposed approach could be easily adapted

to stream processing by incorporating an incremental frequent subtree mining al-

gorithm, such as AdaTreeNat proposed by Bifet and Gavaldà [BG09]. To the best

of our knowledge, currently the only XML stream classi�cation algorithm is the

one proposed by the aforementioned authors, thus, it would be very interesting to

see how kNP performs in such a setting. So far, our preliminary experiments re-

veal that such an adoption produces very promising results [BP14]. Nevertheless,

we will not discuss these results in detail as data streams constitute a separate

research area and are out of the scope of this thesis.

kNP is the last approach discussed in this dissertation. In the next chapter,

we will summarize the main �ndings of the thesis, confront them with the goals

formed in the introduction and draw lines of future research.

9
Final conclusions and future work

In this thesis, we have discussed some of the main challenges of pattern-based

clustering and classi�cation of XML data and proposed new methods which suc-

cessfully address these challenges. This chapter will summarize the main �ndings

of this work and indicate possible lines of future research.

The analysis was divided into two core and one secondary domain, namely,

clustering and classi�cation, and approximate subtree matching. We described the

main applications of these �elds of study, outlined the main problems with the

existing approaches, and explained why they are worth pursuing. Furthermore,

we presented a comprehensive overview of the analyzed domains by discussing

their components separately as well as examining the state-of-the-art approaches

in each of the �elds.

The �rst subject of inquiry was XML clustering. The domain overview re-

vealed that most of the existing approaches rely on a local-information-oriented

framework, what can lead to production of high quality, nevertheless poorly inter-

pretable results. To address this issue, we proposed and formalized the XPattern

framework � a generic methodology for clustering XML documents by patterns.

The proposed solution allows to design algorithms based on global information

and systematically ensures high interpretability of the achieved results thanks

to the notion of pro�les, summarizing the contents of clusters. This claim was

validated with two working examples: a tree-based XCleaner2 algorithm and a

path-based PathXP algorithm.

XCleaner2 represents documents as trees and de�nes patterns as maximal fre-

quent subtrees. As trees encapsulate the whole information available in XML

documents, the algorithm is capable of producing results of the highest qual-

ity even for more di�cult datasets and was shown to match the state-of-the-art

approach in this regard. The sensitivity tests showed that XCleaner2 is highly

but predictably sensitive w.r.t. the minimum support (minsup) parameter �

the lower the value the better the result, in general. However, as was shown

in the experimental analysis, the costly processing of tree structures, especially

for low minsup values, substantially lengthens the execution time. That is why,

108 9 Final conclusions and future work

XCleaner2 is recommended to be used with smaller documents or smaller datasets,

when highly accurate measurements are required.

When bigger collections of large documents are being processed, PathXP �

the second instance of XPattern � is recommended. PathXP decomposes the

documents into paths and de�nes patterns as maximal frequent subpaths. Despite

the information loss caused by this decomposition, the algorithm was able to

match its main rivals in terms of quality.

On the example of PathXP, several additional experiments � concerning

pattern-based clustering in general � were conducted. First, we compared al-

ternative pattern de�nitions, namely: subtrees, paths of various lengths, tags,

and metadata, and analyzed their applicability to di�erent types of datasets. The

experiment validated the previous observation that subtrees are only usable when

narrow documents are being processed, as frequent subtree mining depends lin-

early on the height of trees but exponentially on their width. The comparison

also con�rms that frequent paths are able to produce results of high quality while

maintaining reasonable processing time. However, further information reduction,

i.e., limiting the length of frequent paths, negatively in�uences the clustering

quality on average. In the extreme case, when path length was limited to 1

(tag-based approach), the results show that such patterns are only suitable for

simple, highly heterogeneous datasets. When data homogeneity occurs, tags do

not convey enough structural information to properly distinguish between dif-

ferent groups of documents. Finally, with patterns de�ned as simple metadata,

e.g., number of distinct elements or height of a document tree, the results clearly

indicate that such a representation is only capable of dealing with the simplest

heterogeneous datasets and only compared to the tag-based approach. This fact,

combined with a very high processing speed, makes this option usable only for

preliminary analysis on massive datasets.

By analyzing various components of PathXP, we have shown that the often

omitted information about the number of occurrences of a pattern in a single

document can signi�cantly improve the clustering quality (α = 0.05). Moreover,

limiting frequent paths to maximal only does not diminish the quality of the ob-

tained results, yet, allows to create a more compact model. Somewhat surprising

to �nd was that weighting patterns according to their uniqueness not only does

not improve the quality, but actually signi�cantly diminishes it (α = 0.05).

The sensitivity tests show that PathXP, similarly as XCleaner2, is highly but

predictably sensitive to the minimum support parameter and a simple heuristic

based on the number of desired clusters was su�cient to accurately approximate

this value. As a result, PathXP requires only a single parameter to be provided

by user, i.e., number of clusters. To further adapt the proposed approach to real-

world scenarios, where this value is often unknown, we proposed two heuristics

which automatically detect the number of clusters: one for cases when some

knowledge about the analyzed dataset is available and the other one when no

preliminary assumptions are made. The experiments show that both methods

provide a reasonable approximation of the number of clusters, however, intuitively,

their predictive capabilities peak with easily separable groups of documents.

9 Final conclusions and future work 109

The second part of the work concentrated on the issue of XML classi�cation.

The literature overview shows that in addition to local-information-oriented solu-

tions there are several approaches based on global information, most notably, the

rule-based classi�er, commonly used in this scenario. However, this approach suf-

fers from the important default rule usage problem. The gravity of this issue was

illustrated experimentally and the results revealed that in some cases it concerned

up to 74% of documents. To resolve this issue, we introduced a pattern-document

similarity measure, called partial tree-edit distance, which allows to blend some

amount of local information into the otherwise globally-oriented scheme. The

measure works as a combination of subtree matching and tree-edit distance and

allows to measure the degree of containment of one tree in another. To be able to

use partial tree-edit distance e�ciently, we also put forward a dynamic program-

ming algorithm, which calculates the proposed measure. The experiments show,

that incorporating partial tree-edit distance into the basic rule-based classi�cation

scheme signi�cantly improves the classi�cation quality (α = 0.05).

The developed measure served as a foundation for a new pattern-based XML

classi�cation algorithm, called k-nearest patterns. The algorithm was inspired by

two classical approaches: rule-based and nearest neighbor classi�er. This allows

us to combine global information encapsulated in patterns with local information

available through document-pattern similarity (partial tree-edit distance). The

algorithm was shown to signi�cantly outperform the classical rule-based approach

(α = 0.10) and produce results of quality competitive with the state-of-the-art

method.

In addition to standard comparative analysis, we empirically analyzed several

components of the proposed algorithm, including duplicate pattern treatment,

alternative neighborhood de�nitions, and various vote weighting schemes. The

analysis reveals that removing duplicate patterns from the model improves its

predictive capabilities on average. Moreover, the distance-based neighborhood

de�nition turned out to be equally good or better than any of the proposed

instance-based models on all datasets. It was also shown to be more stable w.r.t.

various parameter values than any of the alternatives. Finally, analyzing various

vote weighting schemes revealed that the combination of patterns' size and their

con�dence performs best on average.

Based on the above, all research objectives stated in this thesis have been

accomplished:

• We proposed and formalized a generic pattern-based framework for XML

clustering, called XPattern.

• The framework was validated with two working algorithms: XCleaner2 and

PathXP.

• We analyzed alternative pattern de�nitions, namely: subtrees, paths of var-

ious lengths, tags, and metadata, in terms of their applicability to di�erent

types of datasets.

• We proposed and validated a pattern-based algorithm for XML classi�ca-

tion, called k-nearest patterns.

110 9 Final conclusions and future work

• We proposed a measure for evaluating similarity between pattern trees and

document trees, called partial tree-edit distance, along with an e�cient

algorithm for calculating this measure.

• All proposed algorithms were experimentally evaluated with the emphasis

on sensitivity w.r.t. their parameters.

Let us now discuss some of the possible lines of future work emerging from

the research conducted in this thesis. The literature overview already highlights

several open issues in this �eld. Firstly, a strong dependency between the used

similarity measures and document representations can be noticed. Similarity be-

tween documents represented with paths is usually evaluated with simple occur-

rence counting, while tree structures are compared using tree-edit distance mea-

sures. Consequently, there is a room for developing more complex path measures

which would take into account not only their presence but also their structural

relationships. Furthermore, when analyzing the clustering approaches based on

the traditional, three-step framework (document transformation, similarity eval-

uation, document clustering), one can observe that the last step of the process

leaves room for further developments, as currently only general, non-XML-speci�c

clustering algorithms are in use.

A di�erent take on future work can be explored in the context of classi�ca-

tion. The research conducted in this thesis focused on processing of large, static

collections of XML data. Nowadays however, the data processing paradigm is

shifting from static to streaming data, where documents have to be processed

online using limited memory. As most existing XML classi�ers are capable of

processing only static data, there is a need to develop new approaches dedicated

for streaming environments. Example applications involving processing of XML

data generated at high rates include monitoring messages exchanged between

web-services, event stream management, distributed ETL processes, and services

for RSS feeds [MP09]. The k-nearest patterns algorithm, proposed in this the-

sis, could be easily adapted to stream processing by incorporating an incremen-

tal frequent subtree mining algorithm, such as AdaTreeNat proposed by Bifet

and Gavaldà [BG09]. Our preliminary experiments with this concept show very

promising results [BP14]. Currently, the only XML classi�er designed for stream

processing is the one proposed by the aforementioned authors. Therefore, this

issue opens many possibilities for novel research.

In the introduction, we have also touched on the matter of data distribution

and its in�uence on the data mining process. In our experiments, we used datasets

of various distributions. However, we did not discuss datasets with highly skewed

distributions, e.g., one class containing 90% of documents. Such datasets are

called imbalanced and the issue of processing such data has grown to constitute

a separate research area. As the approaches proposed in this thesis use patterns

de�ned in terms of frequency across the dataset, imbalanced data can have a

signi�cant impact on the quality of our methods. Inasmuch as this issue is to

some extent addressed in classi�cation, as patterns are mined separately for each

class, it is potentially problematic in the clustering task.

9 Final conclusions and future work 111

When developing a solution in the XML mining domain, researchers face an-

other problem, completely unrelated with the scienti�c task � shortage of pub-

licly available, real-world datasets. Such a situation makes it very di�cult to

analyze newly proposed methods, not to mention compare them with existing

approaches. The comparison is even more di�cult to perform since usually not

only the datasets are unavailable but also the implementations of the competi-

tive algorithms. This situation partially stems from the fact that, even though

XML clustering has many applications, the actual application rate of the pro-

posed methods is very low. Clearly, there is a strong need for some kind of XML

clustering platform or a repository where researchers could store and test their

algorithms and analysts could post real datasets and process them with di�erent

methods. This would greatly facilitate the comparison of existing methods and al-

low easy access to the newest solutions to real XML-related problems. This could

be achieved either by a separate tool/platform or a set of extensions to existing

data mining tools, e.g., R [R C13], Weka [HFH+09], or RapidMiner [KMF06].

Currently, neither publicly available research tools nor commercial systems ded-

icated for XML clustering by structure exist. We believe that addressing this

problem would be of high practical value to the research community and could

improve the dissemination of newly developed approaches.

A
Subtree Matching Algorithm

In order to check if a document contains a pattern, a subtree matching algorithm

was implemented. The algorithm iterates through the elements of a string encoded

document and tries to match pattern elements to the document's tree nodes. For

each pair of compared elements we check if the current document and pattern

labels are identical and if the relative document and pattern depth levels are

equal. Additionally, in each step the algorithm checks if it has traversed a level

higher than the searched element's parent. If so, it is forced to search once again

for the last matched element. The exact steps of the procedure are listed in

Algorithm 7.

In the worst case scenario, the algorithm attempts to match a subtree begin-

ning at every node in all of the documents in the dataset. Since the algorithm

restarts from every possible pattern root found in a document, for a single docu-

ment and pattern, it requires O(|d|2) time. For a dataset of n documents, a set of

p patterns, and with l being the number of nodes in the longest document in the

dataset, the pessimistic complexity of �nding all pattern-document connections

in is O(npl2).

Let us analyze how the algorithm operates with a simple example depicted

in Figure A.1. Let d be an XML document and p be a pattern. We begin with

transforming p from its string format (2 3 4 -1 -1) to a label[level] format (2[1]

3[2] 4[3]). Next, we �nd the �rst occurrence of the pattern's root and search for

the next pattern element (Figure A.1(a)). While searching for the second pattern

element we �nd an element with a label identical to that of the pattern's root, so

we set it as startPos (Figure A.1(b)). The startPos variable allows us to remember

the next root occurrence if we do not manage to �nd the pattern in a single pass.

Continuing with the depth-�rst traversal of the document we go a level higher

than the searched element's parent (Figure A.1(c)). This forces us to search once

again for the root of the pattern. In Figures A.1(d-f) we see another attempt

at matching p to d, this time from docPos = 11. While searching for the third

pattern element we reach the level of its parent and have to search for it again.

Figures A.1(g-i) show the last three steps in matching pattern p to document d.

Algorithm 7 Subtree Matching Algorithm

Require: an XML document d and a pattern p in a string format
Ensure: true if p is a subtree of d, false otherwise
1: docPos← 0;
2: startPos← null
3: calculate depth level for each label pi ∈ p and remove all return marks −1

from p;
4: docLevel← 0;
5: if startPos 6= null then
6: docPos← startPos;
7: end if

8: if startPos > last occurrence of p[0] in d then
9: return false;

10: end if

11: startPos← null;
12: for i = {0, ..., legth(p)− 1} do
13: while docPos < docLength and (p[i] 6= d[docPos] or docLevel 6=

depth(p[i])) do
14: if i > 0 then
15: if d[docPos] 6= −1 then
16: docLevel← docLevel + 1. ;
17: else

18: docLevel← docLevel − 1;
19: if IsLevelCrossed(p, docLevel, i) then
20: i← index of the parent of p[i];
21: end if

22: end if

23: if d[docPos] = p[0] and startPos = null then
24: startPos← docPos;
25: end if

26: end if

27: docPos← docPos+ 1;
28: end while

29: if d[docPos] = p[0] and startPos = null then
30: startPos← docPos;
31: end if

32: if docPos > docLength then
33: goto 5;
34: else if i = legth(p)− 1 then
35: return true;
36: else

37: docLevel← docLevel + 1;
38: docPos← docPos+ 1;
39: end if

40: end for

2

3

4

0

1

2

2

3

4

2

3

5

3

4

2

3

4

0

1

2

2

3

4

2

3

5

3

4

2

3

4

0

1

2

2

3

4

2

3

5

3

4

2

3

4

0

1

2

2

3

4

2

3

5

3

4

2

3

4

0

1

2

2

3

4

2

3

5

3

4

2

3

4

0

1

2

2

3

4

2

3

5

3

4

2

3

4

0

1

2

2

3

4

2

3

5

3

4

2

3

4

0

1

2

2

3

4

2

3

5

3

4

2

3

4

0

1

2

2

3

4

2

3

5

3

4

d: 0 1 2 2 3 -1 -1 4 -1 -1 -1 2 3 5 -1 -1 3 4 -1 -1 -1
p: 2 3 4
docPos = 2, docLevel = 0, startPos = null

(a)

d: 0 1 2 2 3 -1 -1 4 -1 -1 -1 2 3 5 -1 -1 3 4 -1 -1 -1
p: 2 3 4
docPos = 3, docLevel = 1, startPos = null

d: 0 1 2 2 3 -1 -1 4 -1 -1 -1 2 3 5 -1 -1 3 4 -1 -1 -1
p: 2 3 4
docPos = 9, docLevel = 0, startPos = 3

d: 0 1 2 2 3 -1 -1 4 -1 -1 -1 2 3 5 -1 -1 3 4 -1 -1 -1
p: 2 3 4
docPos = 11, docLevel = 0, startPos = 3

d: 0 1 2 2 3 -1 -1 4 -1 -1 -1 2 3 5 -1 -1 3 4 -1 -1 -1
p: 2 3 4
docPos = 12, docLevel = 1, startPos = 3

d: 0 1 2 2 3 -1 -1 4 -1 -1 -1 2 3 5 -1 -1 3 4 -1 -1 -1
p: 2 3 4
docPos = 15, docLevel = 1, startPos = 3

d: 0 1 2 2 3 -1 -1 4 -1 -1 -1 2 3 5 -1 -1 3 4 -1 -1 -1
p: 2 3 4
docPos = 16, docLevel = 1, startPos = 3

d: 0 1 2 2 3 -1 -1 4 -1 -1 -1 2 3 5 -1 -1 3 4 -1 -1 -1
p: 2 3 4
docPos = 17, docLevel = 2, startPos = 3

(b) (c)

(d) (e) (f)

(g) (h) (i)

found pattern

Figure A.1: Subtree matching example.

Bibliography

[AAWS09] Bill Andreopoulos, Aijun An, Xiaogang Wang, and Michael

Schroeder. A roadmap of clustering algorithms: �nding a match for

a biomedical application. Brie�ngs in Bioinformatics, 10(3):297�314,

2009.

[ABBP10] Nikolaus Augsten, Denilson Barbosa, Michael H. Böhlen, and Themis

Palpanas. TASM: top-k approximate subtree matching. In Proceed-

ings of the 26th International Conference on Data Engineering, ICDE

2010, March 1-6, 2010, Long Beach, California, USA, pages 353�364.

IEEE, 2010.

[ABG05] Nikolaus Augsten, Michael H. Böhlen, and Johann Gamper. Approx-

imate matching of hierarchical data using pq-grams. In Proceedings of

the 31st International Conference on Very Large Data Bases, Trond-

heim, Norway, August 30 - September 2, 2005, pages 301�312. ACM,

2005.

[ABMS12] Ali Aïtelhadj, Mohand Boughanem, Mohamed Mezghiche, and Fatiha

Souam. Using structural similarity for clustering XML documents.

Knowledge and Information Systems, 32(1):109�139, 2012.

[AC09] Sylvain Arlot and Alain Celisse. A survey of cross-validation proce-

dures for model selection. ArXiv e-prints, July 2009.

[ACS02] Sihem Amer-Yahia, SungRan Cho, and Divesh Srivastava. Tree

pattern relaxation. In Advances in Database Technology - EDBT

2002, 8th International Conference on Extending Database Technol-

ogy, Prague, Czech Republic, March 25-27, Proceedings, volume 2287

of Lecture Notes in Computer Science, pages 496�513. Springer, 2002.

[AMNS11] Alsayed Algergawy, Marco Mesiti, Richi Nayak, and Gunter Saake.

XML data clustering: An overview. ACM Computing Surveys,

43(4):25, 2011.

118 A Bibliography

[AMT08] Panagiotis Antonellis, Christos Makris, and Nikos Tsirakis. Xedge:

clustering homogeneous and heterogeneous XML documents using

edge summaries. In Proceedings of the 2008 ACM Symposium on

Applied Computing (SAC), Fortaleza, Ceara, Brazil, March 16-20,

2008, pages 1081�1088. ACM, 2008.

[ANA10] Mohamad Alishahi, Mahmoud Naghibzadeh, and Baharak Shakeri

Aski. Tag name structure-based clustering of XML documents. Inter-

national Journal of Electrical and Computer Engineering, 2(1):119�

126, February 2010.

[AS94] Rakesh Agrawal and Ramakrishnan Srikant. Fast algorithms for min-

ing association rules in large databases. In VLDB'94, Proceedings of

20th International Conference on Very Large Data Bases, Septem-

ber 12-15, 1994, Santiago de Chile, Chile, pages 487�499. Morgan

Kaufmann, 1994.

[ATW+07] Charu C. Aggarwal, Na Ta, Jianyong Wang, Jianhua Feng, and

Mohammed Javeed Zaki. Xproj: a framework for projected struc-

tural clustering of xml documents. In Proceedings of the 13th ACM

SIGKDD International Conference on Knowledge Discovery and Data

Mining, San Jose, California, USA, August 12-15, 2007, pages 46�55.

ACM, 2007.

[BG09] Albert Bifet and Ricard Gavaldà. Adaptive XML tree classi�cation

on evolving data streams. In Machine Learning and Knowledge Dis-

covery in Databases, European Conference, ECML PKDD 2009, Bled,

Slovenia, September 7-11, 2009, Proceedings, Part I, volume 5781 of

Lecture Notes in Computer Science, pages 147�162. Springer, 2009.

[BH07] Abdelhamid Bouchachia and Marcus Hassler. Classi�cation of XML

documents. In Proceedings of the IEEE Symposium on Computational

Intelligence and Data Mining, CIDM 2007, part of the IEEE Sympo-

sium Series on Computational Intelligence 2007, Honolulu, Hawaii,

USA, 1-5 April 2007, pages 390�396. IEEE, 2007.

[Bil05] Philip Bille. A survey on tree edit distance and related problems.

Theoretical Computer Science, 337(1-3):217�239, 2005.

[BLMP11] Dariusz Brzezinski, Anna Lesniewska, Tadeusz Morzy, and Maciej

Piernik. XCleaner: A new method for clustering XML documents by

structure. Control and Cybernetics, 40(3):877�891, 2011.

[BMAD06] Z. Bakar, R. Mohemad, A. Ahmad, and M. Deris. A Comparative

Study for Outlier Detection Techniques in Data Mining. In 2006

IEEE Conference on Cybernetics and Intelligent Systems, pages 1�6.

IEEE, November 2006.

[BMKL02] Denilson Barbosa, Alberto O. Mendelzon, John Keenleyside, and

Kelly A. Lyons. Toxgene: a template-based data generator for XML.

A Bibliography 119

In Proceedings of the 2002 ACM SIGMOD International Conference

on Management of Data, Madison, Wisconsin, June 3-6, 2002, page

616. ACM, 2002.

[BP14] Dariusz Brzezinski and Maciej Piernik. Adaptive XML stream classi-

�cation using partial tree-edit distance. In Foundations of Intelligent

Systems - 21st International Symposium, ISMIS 2014, Roskilde, Den-

mark, June 25-27, 2014. Proceedings, volume 8502 of Lecture Notes

in Computer Science, pages 10�19. Springer, 2014.

[BPSM98] Tim Bray, Jean Paoli, and C. M. Sperberg-McQueen. Extensible

Markup Language (XML) 1.0. Recommendation, World Wide Web

Consortium (W3C), 1998.

[BR99] Ricardo A. Baeza-Yates and Berthier A. Ribeiro-Neto. Modern In-

formation Retrieval. ACM Press / Addison-Wesley, 1999.

[BSM97] Bioinformatic Sequence Markup Language - BSML. http://xml.

coverpages.org/bsml.html, 1997.

[But04] David Buttler. A short survey of document structure similarity al-

gorithms. In Proceedings of the International Conference on Internet

Computing, IC '04, Las Vegas, Nevada, USA, June 21-24, 2004, Vol-

ume 1, pages 3�9. CSREA Press, 2004.

[Cha99] Sudarshan S. Chawathe. Comparing hierarchical data in external

memory. In VLDB'99, Proceedings of 25th International Conference

on Very Large Data Bases, September 7-10, 1999, Edinburgh, Scot-

land, UK, pages 90�101. Morgan Kaufmann, 1999.

[CMK07] Il-Hwan Choi, Bongki Moon, and Hyoung-Joo Kim. A clustering

method based on path similarities of XML data. Data & Knowledge

Engineering, 60(2):361�376, 2007.

[CML95] Chemical Markup Language - CML. http://www.xml-cml.org/,

1995.

[CMOT04] Gianni Costa, Giuseppe Manco, Riccardo Ortale, and Andrea

Tagarelli. A tree-based approach to clustering XML documents by

structure. In Knowledge Discovery in Databases: PKDD 2004, 8th

European Conference on Principles and Practice of Knowledge Dis-

covery in Databases, Pisa, Italy, September 20-24, 2004, Proceedings,

volume 3202 of Lecture Notes in Computer Science, pages 137�148.

Springer, 2004.

[CO14] Sara Cohen and Nerya Or. A general algorithm for subtree similarity-

search. In IEEE 30th International Conference on Data Engineering,

Chicago, ICDE 2014, IL, USA, March 31 - April 4, 2014, pages 928�

939. IEEE, 2014.

http://xml.coverpages.org/bsml.html
http://xml.coverpages.org/bsml.html
http://www.xml-cml.org/

120 A Bibliography

[Coh13] Sara Cohen. Indexing for subtree similarity-search using edit dis-

tance. In Proceedings of the ACM SIGMOD International Conference

on Management of Data, SIGMOD 2013, New York, NY, USA, June

22-27, 2013, pages 49�60. ACM, 2013.

[COR13] Gianni Costa, Riccardo Ortale, and Ettore Ritacco. X-class: Asso-

ciative classi�cation of XML documents by structure. ACM Trans-

actions on Information Systems, 31(1):3:1�3:40, 2013.

[CRGW96] Sudarshan S. Chawathe, Anand Rajaraman, Hector Garcia-Molina,

and Jennifer Widom. Change detection in hierarchically structured

information. In Proceedings of the 1996 ACM SIGMOD International

Conference on Management of Data, Montreal, Quebec, Canada,

June 4-6, 1996., pages 493�504. ACM Press, 1996.

[CTT05] Laurent Candillier, Isabelle Tellier, and Fabien Torre. Transforming

XML trees for e�cient classi�cation and clustering. In Advances in

XML Information Retrieval and Evaluation, 4th International Work-

shop of the Initiative for the Evaluation of XML Retrieval, INEX

2005, Dagstuhl Castle, Germany, November 28-30, 2005, Revised Se-

lected Papers, volume 3977 of Lecture Notes in Computer Science,

pages 469�480. Springer, 2005.

[CXYM05] Yun Chi, Yi Xia, Yirong Yang, and Richard R. Muntz. Mining closed

and maximal frequent subtrees from databases of labeled rooted trees.

IEEE Trans. Knowl. Data Eng., 17(2):190�202, 2005.

[DA02] Antoine Doucet and Helena Ahonen-Myka. Naïve clustering of a large

XML document collection. In Proceedings of the First Workshop of

the INitiative for the Evaluation of XML Retrieval (INEX), Schloss

Dagstuhl, Germany, December 9-11, 2002, pages 81�87, 2002.

[DCWS06] Theodore Dalamagas, Tao Cheng, Klaas-Jan Winkel, and Timos K.

Sellis. A methodology for clustering XML documents by structure.

Information Systems, 31(3):187�228, 2006.

[Dem06] Janez Demsar. Statistical comparisons of classi�ers over multiple data

sets. Journal of Machine Learning Research, 7:1�30, 2006.

[DG04] Ludovic Denoyer and Patrick Gallinari. Bayesian network model for

semi-structured document classi�cation. Information Processing &

Management, 40(5):807�827, 2004.

[DG07] Ludovic Denoyer and Patrick Gallinari. Report on the XML mining

track at INEX 2005 and INEX 2006: categorization and clustering of

XML documents. SIGIR Forum, 41(1):79�90, 2007.

[DMRW09] Erik D. Demaine, Shay Mozes, Benjamin Rossman, and Oren

Weimann. An optimal decomposition algorithm for tree edit distance.

ACM Transactions on Algorithms, 6(1):2:1�2:19, 2009.

A Bibliography 121

[FMM+05] Sergio Flesca, Giuseppe Manco, Elio Masciari, Luigi Pontieri, and

Andrea Pugliese. Fast detection of XML structural similarity. IEEE

Transactions on Knowledge and Data Engineering, 17(2):160�175,

2005.

[GMS07] Giovanna Guerrini, Marco Mesiti, and Ismael Sanz. Web Data Man-

agement Practices: Emerging Techniques and Technologies, chapter

3. An Overview of Similarity Measures for Clustering XML Docu-

ments. Idea Group Inc (IGI), 2007.

[GMT05] Calin Garboni, Florent Masseglia, and Brigitte Trousse. Sequential

pattern mining for structure-based XML document classi�cation. In

Advances in XML Information Retrieval and Evaluation, 4th Interna-

tional Workshop of the Initiative for the Evaluation of XML Retrieval,

INEX 2005, Dagstuhl Castle, Germany, November 28-30, 2005, Re-

vised Selected Papers, volume 3977 of Lecture Notes in Computer

Science, pages 458�468. Springer, 2005.

[GRS00] Sudipto Guha, Rajeev Rastogi, and Kyuseok Shim. ROCK: A robust

clustering algorithm for categorical attributes. Information Systems,

25(5):345�366, 2000.

[GW97] Roy Goldman and Jennifer Widom. Dataguides: Enabling query for-

mulation and optimization in semistructured databases. In VLDB'97,

Proceedings of 23rd International Conference on Very Large Data

Bases, August 25-29, 1997, Athens, Greece, pages 436�445. Morgan

Kaufmann, 1997.

[HAB12] Sven Helmer, Nikolaus Augsten, and Michael H. Böhlen. Measuring

structural similarity of semistructured data based on information-

theoretic approaches. The VLDB Journal, 21(5):677�702, 2012.

[HD13] Marouane Hachicha and Jérôme Darmont. A survey of XML tree

patterns. IEEE Transactions on Knowledge and Data Engineering,

25(1):29�46, 2013.

[Hel07] Sven Helmer. Measuring the structural similarity of semistructured

documents using entropy. In Proceedings of the 33rd International

Conference on Very Large Data Bases, University of Vienna, Austria,

September 23-27, 2007, pages 1022�1032. ACM, 2007.

[HFH+09] Mark Hall, Eibe Frank, Geo�rey Holmes, Bernhard Pfahringer, Peter

Reutemann, and Ian H. Witten. The weka data mining software: An

update. SIGKDD Explorations, 11(1), 2009.

[HFS+03] Michael Hucka, Andrew Finney, Herbert M. Sauro, H. Bolouri,

John C. Doyle, Hiroaki Kitano, Adam P. Arkin, Benjamin J. Born-

stein, D. Bray, A. Cornish-Bowden, Autumn A. Cuellar, Serge

Dronov, Ernst Dieter Gilles, Martin Ginkel, Victoria Gor, Igor

122 A Bibliography

Goryanin, W. J. Hedley, T. Charles Hodgman, J. H. Hofmeyr, Pe-

ter J. Hunter, Nick S. Juty, J. L. Kasberger, Andreas Kremling, Ur-

sula Kummer, Nicolas Le Novère, Leslie M. Loew, D. Lucio, Pedro

Mendes, E. Minch, Eric Mjolsness, Yoichi Nakayama, M. R. Nelson,

Poul M. F. Nielsen, T. Sakurada, James C. Scha�, Bruce E. Shapiro,

Thomas Simon Shimizu, Hugh D. Spence, Jörg Stelling, Koichi Taka-

hashi, Masaru Tomita, J. Wagner, and J. Wang. The systems biology

markup language (SBML): a medium for representation and exchange

of biochemical network models. Bioinformatics, 19(4):524�531, 2003.

[HNP09] Alon Y. Halevy, Peter Norvig, and Fernando Pereira. The unrea-

sonable e�ectiveness of data. IEEE Intelligent Systems, 24(2):8�12,

2009.

[HPRS07] Du²an Husek, Jaroslav Pokorny, Hana Rezankova, and Václav Snasel.

Web Data Management Practices: Emerging Techniques and Tech-

nologies, chapter 1. Data Clustering: From Documents to the Web.

Idea Group Inc (IGI), 2007.

[HST+05] Markus Hagenbuchner, Alessandro Sperduti, Ah Chung Tsoi,

Francesca Trentini, Franco Scarselli, and Marco Gori. Clustering

XML documents using self-organizing maps for structures. In Ad-

vances in XML Information Retrieval and Evaluation, 4th Interna-

tional Workshop of the Initiative for the Evaluation of XML Retrieval,

INEX 2005, Dagstuhl Castle, Germany, November 28-30, 2005, Re-

vised Selected Papers, volume 3977 of Lecture Notes in Computer

Science, pages 481�496. Springer, 2005.

[HZL02] Daniel Hanisch, Ralf Zimmer, and Thomas Lengauer. ProML - the

protein markup language for speci�cation of protein sequences, struc-

tures and families. In Silico Biol, 2(3):313�24, 2002.

[Kle98] Philip N. Klein. Computing the edit-distance between unrooted or-

dered trees. In Algorithms - ESA '98, 6th Annual European Sympo-

sium, Venice, Italy, August 24-26, 1998, Proceedings, volume 1461 of

Lecture Notes in Computer Science, pages 91�102. Springer, 1998.

[KMF06] Ralf Klinkenberg, Ingo Mierswa, and Simon Fischer. Rapid miner.

https://rapidminer.com/, 2006.

[Koh89] T. Kohonen. Self-organization and associative memory: 3rd edition.

Springer-Verlag New York, Inc., 1989.

[KSC02] Lukasz A. Kurgan, Waldemar Swiercz, and Krzysztof J. Cios. Se-

mantic mapping of XML tags using inductive machine learning. In

Proceedings of the 2002 International Conference on Machine Learn-

ing and Applications - ICMLA 2002, June 24-27, 2002, Las Vegas,

Nevada, USA., pages 99�109. CSREA Press, 2002.

https://rapidminer.com/

A Bibliography 123

[KTNL07] Sangeetha Kutty, Tien Tran, Richi Nayak, and Yuefeng Li. Clus-

tering XML documents using closed frequent subtrees: A structural

similarity approach. In Focused Access to XML Documents, 6th In-

ternational Workshop of the Initiative for the Evaluation of XML

Retrieval, INEX 2007, Dagstuhl Castle, Germany, December 17-19,

2007. Selected Papers, volume 4862 of Lecture Notes in Computer

Science, pages 183�194. Springer, 2007.

[LCCL05] Ho-pong Leung, Korris Fu-Lai Chung, Stephen Chi-fai Chan, and

Robert Wing Pong Luk. XML document clustering using common

xpath. In 2005 International Workshop on Challenges in Web In-

formation Retrieval and Integration (WIRI 2005), 8-9 April 2005,

Tokyo, Japan, pages 91�96. IEEE Computer Society, 2005.

[LCMY04] Wang Lian, David Wai-Lok Cheung, Nikos Mamoulis, and Siu-Ming

Yiu. An e�cient and scalable algorithm for clustering XML doc-

uments by structure. IEEE Transactions on Knowledge and Data

Engineering, 16(1):82�96, 2004.

[LSG14] Issam H. Laradji, Mohammed Salahadin, and Lahouari Ghouti. XML

classi�cation using ensemble learning on extracted features. In Pro-

ceedings of the 2014 ACM Southeast Regional Conference, Kennesaw,

GA, USA, March 28 - 29, 2014, page 1. ACM, 2014.

[LXJZ14] Jie Li, Zheng Xu, Yayun Jiang, and Rui Zhang. The overview of big

data storage and management. In IEEE 13th International Confer-

ence on Cognitive Informatics and Cognitive Computing, ICCI*CC

2014, London, UK, August 18-20, 2014, pages 510�513. IEEE, 2014.

[Moo96] Todd K. Moon. The expectation-maximization algorithm. IEEE

Signal Processing Magazine, 13(6):47�60, November 1996.

[MP09] Veronica Mayorga and Neoklis Polyzotis. Sketch-based summariza-

tion of ordered XML streams. In Proceedings of the 25th International

Conference on Data Engineering, ICDE 2009, March 29 2009 - April

2 2009, Shanghai, China, pages 541�552. IEEE, 2009.

[Nay08] Richi Nayak. Fast and e�ective clustering of XML data using struc-

tural information. Knowledge and Information Systems, 14(2):197�

215, 2008.

[NI06] Richi Nayak and Wina Iryadi. Xmine: A methodology for mining

XML structure. In Frontiers of WWW Research and Development

- APWeb 2006, 8th Asia-Paci�c Web Conference, Harbin, China,

January 16-18, 2006, Proceedings, volume 3841 of Lecture Notes in

Computer Science, pages 786�792. Springer, 2006.

[NJ02] Andrew Nierman and H. V. Jagadish. Evaluating structural simi-

larity in XML documents. In Proceedings of the Fifth International

124 A Bibliography

Workshop on the Web and Databases, WebDB 2002, pages 61�66.

University of California, 2002.

[NVK+09] Richi Nayak, Christopher M. De Vries, Sangeetha Kutty, Shlomo

Geva, Ludovic Denoyer, and Patrick Gallinari. Overview of the INEX

2009 XML mining track: Clustering and classi�cation of XML docu-

ments. In Focused Retrieval and Evaluation, 8th International Work-

shop of the Initiative for the Evaluation of XML Retrieval, INEX

2009, Brisbane, Australia, December 7-9, 2009, Revised and Selected

Papers, volume 6203 of Lecture Notes in Computer Science, pages

366�378. Springer, 2009.

[PA11] Mateusz Pawlik and Nikolaus Augsten. RTED: A robust algorithm

for the tree edit distance. PVLDB, 5(4):334�345, 2011.

[PBM15] Maciej Piernik, Dariusz Brzezinski, and Tadeusz Morzy. Clustering

xml documents by patterns. Knowledge and Information Systems,

2015.

[PBML14] Maciej Piernik, Dariusz Brzezinski, Tadeusz Morzy, and Anna

Lesniewska. XML clustering: A review of structural approaches. The

Knowledge Engineering Review, 2014.

[Pos09] Thomas Pospech. GML - Geography Markup Language. GRIN Verlag,

May 2009.

[R C13] R Core Team. R: A Language and Environment for Statistical Com-

puting. R Foundation for Statistical Computing, Vienna, Austria,

2013. ISBN 3-900051-07-0.

[Ran71] William M. Rand. Objective criteria for the evaluation of clus-

tering methods. Journal of the American Statistical Association,

66(336):846�850, 1971.

[RMS06] Davood Ra�ei, Daniel L. Moise, and Dabo Sun. Finding syntactic

similarities between XML documents. In 17th International Work-

shop on Database and Expert Systems Applications (DEXA 2006), 4-

8 September 2006, Krakow, Poland, pages 512�516. IEEE Computer

Society, 2006.

[Rou87] Peter Rousseeuw. Silhouettes: a graphical aid to the interpretation

and validation of cluster analysis. Journal of Computational and

Applied Mathematics, 20(1):53�65, November 1987.

[SB88] Gerard Salton and Chris Buckley. Term-weighting approaches in

automatic text retrieval. Information Processing & Management,

24(5):513�523, 1988.

[Sel77] Stanley M. Selkow. The tree-to-tree editing problem. Information

Processing Letters, 6(6):184�186, 1977.

A Bibliography 125

[SIG11] SIGMOD. http://www.sigmod.org/publications/sigmod-record/

xml-edition, August 2011.

[SM02] Torsten Schlieder and Holger Meuss. Querying and ranking XML

documents. Journal of the Association for Information Science and

Technology, 53(6):489�503, 2002.

[SW03] Yun Shen and Bing Wang. Clustering schemaless XML documents.

In On The Move to Meaningful Internet Systems 2003: CoopIS,

DOA, and ODBASE - OTM Confederated International Conferences,

CoopIS, DOA, and ODBASE 2003, Catania, Sicily, Italy, November

3-7, 2003, volume 2888 of Lecture Notes in Computer Science, pages

767�784. Springer, 2003.

[Tai79] Kuo-Chung Tai. The tree-to-tree correction problem. Journal of the

ACM, 26(3):422�433, 1979.

[TC12] Joe Tekli and Richard Chbeir. A novel XML document structure

comparison framework based-on sub-tree commonalities and label se-

mantics. Journal of Web Semantics, 11:14�40, 2012.

[TCY07] Joe Tekli, Richard Chbeir, and Kokou Yétongnon. E�cient XML

structural similarity detection using sub-tree commonalities. In XXII

Simpósio Brasileiro de Banco de Dados, 15-19 de Outubro, João Pes-

soa, Paraíba, Brasil, Anais, pages 116�130. SBC, 2007.

[TCY09] Joe Tekli, Richard Chbeir, and Kokou Yetongnon. Survey: An

overview on XML similarity: Background, current trends and future

directions. Computer Science Review, 3(3):151�173, August 2009.

[TNB07] Tien Tran, Richi Nayak, and Peter Bruza. Document clustering us-

ing incremental and pairwise approaches. In Focused Access to XML

Documents, 6th International Workshop of the Initiative for the Eval-

uation of XML Retrieval, INEX 2007, Dagstuhl Castle, Germany,

December 17-19, 2007. Selected Papers, volume 4862 of Lecture Notes

in Computer Science, pages 222�233. Springer, 2007.

[TSK05] Pang-Ning Tan, Michael Steinbach, and Vipin Kumar. Introduction

to Data Mining. Addison-Wesley, 2005.

[TSW03] Martin Theobald, Ralf Schenkel, and Gerhard Weikum. Exploit-

ing structure, annotation, and ontological knowledge for automatic

classi�cation of XML data. In International Workshop on Web and

Databases, San Diego, California, June 12-13, 2003, pages 1�6, 2003.

[VFGL05] Anne-Marie Vercoustre, Mounir Fegas, Saba Gul, and Yves Lecheval-

lier. A �exible structured-based representation for XML document

mining. In Advances in XML Information Retrieval and Evaluation,

4th International Workshop of the Initiative for the Evaluation of

XML Retrieval, INEX 2005, Dagstuhl Castle, Germany, November

http://www.sigmod.org/publications/sigmod-record/xml-edition
http://www.sigmod.org/publications/sigmod-record/xml-edition

126 A Bibliography

28-30, 2005, Revised Selected Papers, volume 3977 of Lecture Notes

in Computer Science, pages 443�457. Springer, 2005.

[VMB08] Waraporn Viyanon, Sanjay Kumar Madria, and Sourav S. Bhowmick.

XML data integration based on content and structure similarity using

keys. In On the Move to Meaningful Internet Systems: OTM 2008,

OTM 2008 Confederated International Conferences, CoopIS, DOA,

GADA, IS, and ODBASE 2008, Monterrey, Mexico, November 9-14,

2008, Proceedings, Part I, volume 5331 of Lecture Notes in Computer

Science, pages 484�493. Springer, 2008.

[VNK+10] Christopher M. De Vries, Richi Nayak, Sangeetha Kutty, Shlomo

Geva, and Andrea Tagarelli. Overview of the INEX 2010 XML mining

track: Clustering and classi�cation of XML documents. In Compar-

ative Evaluation of Focused Retrieval - 9th International Workshop

of the Inititative for the Evaluation of XML Retrieval, INEX 2010,

Vugh, The Netherlands, December 13-15, 2010, Revised Selected Pa-

pers, volume 6932 of Lecture Notes in Computer Science, pages 363�

376. Springer, 2010.

[VPA07] Athena Vakali, George Pallis, and Lefteris Angelis. Web Data Man-

agement Practices: Emerging Techniques and Technologies, chapter

2. Clustering Web Information Services. Idea Group Inc (IGI), 2007.

[VPD04] Athena Vakali, Jaroslav Pokorný, and Theodore Dalamagas. An

overview of web data clustering practices. In Current Trends in

Database Technology - EDBT 2004 Workshops, EDBT 2004 Work-

shops PhD, DataX, PIM, P2P&DB, and ClustWeb, Heraklion, Crete,

Greece, March 14-18, 2004, Revised Selected Papers, volume 3268 of

Lecture Notes in Computer Science, pages 597�606. Springer, 2004.

[W3C95] The World Wide Web Consortium � W3C. http://www.w3.org/,

1995.

[Wil45] Frank Wilcoxon. Individual comparisons by ranking methods. Bio-

metrics Bulletin, 1(6):80�83, 1945.

[WIN+05] John D. Westbrook, Nobutoshi Ito, Haruki Nakamura, Kim Henrick,

and Helen M. Berman. Pdbml: the representation of archival macro-

molecular structure data in xml. Bioinformatics, 21(7):988�992, 2005.

[WWZ+15] Yue Wang, Hongzhi Wang, Liyan Zhang, Yang Wang, Jianzhong Li,

and Hong Gao. Extend tree edit distance for e�ective object identi-

�cation. Knowledge and Information Systems, pages 1�28, 2015.

[Yan04] Guizhen Yang. The complexity of mining maximal frequent itemsets

and maximal frequent patterns. In Proceedings of the Tenth ACM

SIGKDD International Conference on Knowledge Discovery and Data

Mining, Seattle, Washington, USA, August 22-25, 2004, pages 344�

353. ACM, 2004.

http://www.w3.org/

A Bibliography 127

[YKT05] Rui Yang, Panos Kalnis, and Anthony K. H. Tung. Similarity evalu-

ation on tree-structured data. In Proceedings of the ACM SIGMOD

International Conference on Management of Data, Baltimore, Mary-

land, USA, June 14-16, 2005, pages 754�765. ACM, 2005.

[YW09] Jianwu Yang and Songlin Wang. Extended VSM for XML document

classi�cation using frequent subtrees. In Focused Retrieval and Evalu-

ation, 8th International Workshop of the Initiative for the Evaluation

of XML Retrieval, INEX 2009, Brisbane, Australia, December 7-9,

2009, Revised and Selected Papers, volume 6203 of Lecture Notes in

Computer Science, pages 441�448. Springer, 2009.

[ZA06] Mohammed Javeed Zaki and Charu C. Aggarwal. Xrules: An ef-

fective algorithm for structural classi�cation of XML data. Machine

Learning, 62(1-2):137�170, 2006.

[Zak02] Mohammed Javeed Zaki. E�ciently mining frequent trees in a forest.

In Proceedings of the Eighth ACM SIGKDD International Conference

on Knowledge Discovery and Data Mining, July 23-26, 2002, Edmon-

ton, Alberta, Canada, pages 71�80. ACM, 2002.

[ZJS10] Ying-wen Zhu, Gen-Lin Ji, and Qin-hong Sun. Clustering GML doc-

uments using maximal frequent induced subtrees. In Seventh In-

ternational Conference on Fuzzy Systems and Knowledge Discovery,

FSKD 2010, 10-12 August 2010, Yantai, Shandong, China, pages

2265�2269. IEEE, 2010.

[ZK02] Ying Zhao and George Karypis. Evaluation of hierarchical cluster-

ing algorithms for document datasets. In Proceedings of the 2002

ACM CIKM International Conference on Information and Knowl-

edge Management, McLean, VA, USA, November 4-9, 2002, pages

515�524. ACM, 2002.

[ZLZC11] Yan-Tao Zheng, Yiqun Li, Zheng-Jun Zha, and Tat-Seng Chua. Min-

ing travel patterns from gps-tagged photos. In Advances in Multime-

dia Modeling - 17th International Multimedia Modeling Conference,

MMM 2011, Taipei, Taiwan, January 5-7, 2011, Proceedings, Part I,

volume 6523 of Lecture Notes in Computer Science, pages 262�272.

Springer, 2011.

[ZS89] Kaizhong Zhang and Dennis Shasha. Simple fast algorithms for the

editing distance between trees and related problems. SIAM Journal

on Computing, 18(6):1245�1262, 1989.

[ZSW94] Kaizhong Zhang, Dennis Shasha, and Jason Tsong-Li Wang. Approx-

imate tree matching in the presence of variable length don't cares.

Journal of Algorithms, 16(1):33�66, 1994.

128 A Bibliography

[ZWB+11] Xiangguo Zhao, Guoren Wang, Xin Bi, Peizhen Gong, and Yuhai

Zhao. XML document classi�cation based on ELM. Neurocomputing,

74(16):2444�2451, 2011.

Index

A

Accuracy, 28

equal, 29

proportional, 29

B

Between group sum of squares, SSB, 29

C

centroid, 24

classi�cation, 25

k-nearest neighbors, kNN, 27

rule-based, 25

classi�cation model, 25

classi�er, 25

lazy classi�er, 27

cluster, 21

clustering, 21

hierarchical, 22

agglomerative, AHC, 22

average-link, 23

complete-link, 23

divisive, 22

single-link, 23

partition-based, 23

k-means, 24

k-medoids, 24

connection, 44

connection strength, 44

containment, 44

D

data

labeled, 25

training, 25

unlabeled, 25

default rule, 26

dendrogram, 22

E

external measures, 28

F

F-score, 28

false negative, FN, 28

false positive, FP, 28

feature, 44

frequent, 48

maximal, 48

forest, 18, 78

full path, 14

I

information

global, 5

local, 5

internal measures, 29

cohesion, 29

isolation, 29

K

k-nearest patterns, kNP, 89

130 A Index

keyroots, 19

L

label, 12

M

model construction strategies

Leave all, 90

Remove duplicates, 90

Remove embedded, 91

N

neighborhood de�nition

distance-based, 93

instance-based, 93

P

partial mapping, 80

partial tree-edit distance, PTED, 77, 80

partial tree-edit sequence, 80

PathXP, 57

pattern, 44

con�dence, 91

size, 91

support, 91

Precision, 28

pro�le

(classi�cation), 90

(clustering), 44

Purity, 29

R

Rand Index, 29

Recall, 28

relationship

horizontal, 12

precedence, 12

sibling, 12

vertical, 12

ancestor-descendant, 12

parent-child, 12

rule

con�dence, 26

size, 26

support, 26

S

Sensitivity, 28

set of pro�les, 44

Silhouette coe�cient, 30

Speci�city, 28

subtree, 14, 78

embedded, 14

full subtree, 78

induced, 14

Sum of squared errors, SSE, 29

T

training, 25

training examples, 25

tree, 13, 78

labeled, 13, 78

nodes

child, 78

empty node, 78

leaf, 78

parent, 78

root, 13, 78

siblings, 78

ordered, 13, 78

rooted, 13, 78

tree-edit distance, TED, 18

tree-edit operations

deletion, 17, 78

insertion, 17, 78

relabeling, 17, 78

tree-edit sequence, 18

true negative, TN, 28

true positive, TP, 28

X

XCleaner2, 47

XML document, 12

content, 2

information types

direct, 12

explicit, 12

implicit, 12

indirect, 12

structure, 2, 11

attribute, 12

element, 11, 12

XPattern, 41

	Dedication
	Acknowledgements
	Introduction
	Applications of XML clustering and classification
	Open challenges in XML mining
	Research assumptions
	Research objectives
	Thesis structure

	XML Mining
	Representing XML documents
	Measuring similarity
	Clustering
	Classification
	Performance evaluation
	Conclusions

	State of the art
	Clustering
	Classification
	Approximate subtree matching
	Conclusions

	XPattern — a framework for clustering XML data by patterns
	Conceptual description
	Formal definition
	Generic algorithm
	Conclusions

	XCleaner2 — a tree-based instance of the XPattern framework
	Algorithm
	Example
	Experimental evaluation
	Datasets and experimental setup
	Parametrization
	Comparative analysis

	Conclusions

	PathXP — a path-based instance of the XPattern framework
	Algorithm
	Example
	Parametrization
	Experimental evaluation
	Datasets and experimental setup
	Alternative pattern definitions
	Component analysis
	Parametrization
	Comparative analysis

	Conclusions

	Partial tree-edit distance
	Preliminaries
	Conceptual description
	Formal definition
	Dynamic algorithm
	Experimental evaluation
	Datasets and experimental setup
	Combining PTED with a rule-based classifier

	Conclusions

	K-nearest patterns algorithm for pattern-based XML classification
	Training
	Classification
	Example
	Experimental evaluation
	Datasets and experimental setup
	Component analysis
	Parametrization
	Comparative analysis

	Conclusions

	Final conclusions and future work
	Subtree Matching Algorithm
	Bibliography
	Index

