
Partial tree-edit distance: a solution to the
default class problem in pattern-based tree

classification

Maciej Piernik and Tadeusz Morzy

Institute of Computing Science, Poznan University of Technology
ul. Piotrowo 2, 60-965 Poznan, Poland
maciej.piernik@cs.put.poznan.pl

Abstract. Pattern-based tree classifiers are capable of producing high
quality results, however, they are prone to the problem of the default
class overuse. In this paper, we propose a measure designed to address
this issue, called partial tree-edit distance (PTED), which allows for as-
sessing the degree of containment of one tree in another. Furthermore,
we propose an algorithm which calculates the measure and perform an
experiment involving pattern-based classification to illustrate its useful-
ness. The results show that incorporating PTED into the classification
scheme allowed us to significantly improve the accuracy on the tested
datasets.

Keywords: Tree-subtree similarity, tree classification, tree-edit distance

1 Introduction

Rooted, ordered, labeled tree is a popular data structure which finds various ap-
plications in many different domains. One of the most important issues concern-
ing this structure is similarity computation. This problem has several practical
applications such as XML document similarity [1], comparison of RNA secondary
structures [2], natural language processing [3], or data integration [4, 5]. In this
paper, we focus on the problem of tree similarity in the context of pattern-based
tree classification.

The process of pattern-based tree classification is as follows. First, a training
dataset of trees is mined for patterns (frequent subtrees), separately for each
class. Next, based on the discovered patterns, a classifier is constructed as a set
of rules: pattern→ class, where pattern denotes a frequent subtree mined from
the training dataset with a given class. Once a classifier is created, each new
unclassified tree is tested against every rule for pattern containment (e.g., with
subtree matching) and assigned to the class from which it contains the highest
percentage of patterns.

Pattern-based tree classification is a straightforward method capable of pro-
ducing high quality results [6]. However, there are two problematic cases for this

2 Maciej Piernik, Tadeusz Morzy

approach: (1) if a classified tree contains the same percentage of patterns from
two or more classes, (2) if a classified tree does not contain any pattern. The first
case can be resolved by creating a ranking of patterns and weighing them accord-
ing to their importance. In the second case, however, a common approach is to
use a so called default class, which assigns all unmatched trees to a single class,
e.g., a majority class in the training dataset. Clearly, such a situation should be
avoided as there is a high chance of deteriorating the classification quality. For
traditional, transactional data, other solutions than the default class exist [7],
most of which are based on partial similarity of a rule with a classified object. In
the tree processing domain, however, to the best of our knowledge, an accurate
tree-subtree similarity measure is not available.

In this paper, we analyze the above described problem of tree-subtree simi-
larity defined as follows. Given two trees P (a pattern tree) and D (a document
tree), find how much does P need to be modified to become a subtree of D. In
order to answer this question, we propose a new distance measure, called partial
tree-edit distance (PTED), along with an algorithm to calculate it. We will show
that incorporating PTED into the classification scheme significantly improves
upon the existing methods of dealing with the default class problem.

The remainder of this paper is organized as follows. Section 2 gives the back-
ground of related work for the proposed measure. Section 3 introduces necessary
notation and definitions. In Section 4 we describe and define the partial tree-edit
distance measure. Section 5 presents an efficient algorithm which calculates the
proposed measure. In Section 6 we empirically evaluate the algorithm in terms
of time complexity and illustrate the usefulness of the proposed measure with
an experiment involving pattern-based tree classification. Finally, in Section 7
we conclude the article and draw lines of further research.

2 Related work

One of the first attempts at solving the tree-subtree similarity problem was
proposed by Zhang and Shasha [8]. The authors present a generalization of tree-
edit distance, which can be stated as follows. Given trees T1 and T2, what is
the minimum distance between T1 and T2 when zero or more subtrees can be
removed from T2 at no cost. This problem is similar to the question stated in
this paper, however, it works closely only when the root node of T1 is mapped
to the root node of T2. Furthermore, it allows for all edit operations to appear
in both trees while we allow only for the pattern tree to be modified. Given our
motivation, we need our measure to identify subtrees anywhere in the hierarchy
of a tree and only by modifying a pattern tree in the least invasive way.

Another problem, similar to the one stated in this paper, was explored by
Augsten et al. [5]. The problem concerned finding the best k matches of a small
query tree in a large document tree. This approach, however, is also unsuited for
our problem because it focuses on subtrees spanning to the bottom (leaf nodes)
of a document tree while we need our measure to identify subtrees of any shape
and depth.

Partial tree-edit distance 3

Cohen and Or [9] recently proposed a framework for solving the subtree
similarity-search problem, along with an indexing structure to enhance the effi-
ciency of the searching [10]. Their solution is generic and allows for a wide variety
of similarity measures to be used. However, the aim and scope of the framework
is different to the problem addressed in this paper. The authors focus on finding
several similar subtrees using some subtree similarity measure while we focus on
the sole problem of how to measure the subtree similarity. Therefore, the scope
of our work is different to that of Cohen and Or, nevertheless, complementary.

Much effort has also been put into tree pattern matching, which is a more gen-
eral problem than the one stated in this paper [1]. An interesting approach to tree
pattern matching, called tree pattern relaxation, was proposed by Amer-Yahia et
al. [11]. The authors propose four relaxations of pattern constraints which allow
for approximate pattern matching. This approach, however, requires specifically
constructed weighted patterns, what makes it unsuited for our problem since our
patterns are simple trees.

Another pattern matching related problem is approximate tree matching with
variable length don’t cares [12]. In 1993 Zhang et al. adopted the idea of VLDC’s
from string matching to tree matching. However, this approach, similarly to tree
pattern relaxation, requires patterns of a specific structure. This requirement
makes this method unusable in our case, since we are focusing on simple subtrees.

All of these solutions tackle similar issues to the one stated in this article.
However, their detailed characteristics showcase that they are unsuited for our
particular problem.

3 Preliminaries

A tree T is a connected graph with |T | nodes and |T |−1 edges. We call a tree T
rooted if all edges in T are directed away from one designated node, called a root
node. We denote a tree T rooted at a node x by Tx and a root node of a tree T
by rT . If two nodes x and y are connected with an edge and x is closer to the
root node than y, then x is a parent of y and y is a child of x. Nodes without any
children are called leaf nodes. Children of the same node x are called siblings
and the number of all children of x is denoted by |x|. We also designate a special
node λ, called empty node.

A rooted tree T is ordered if there exists a total order among all nodes in T .
In our approach, we order the nodes according to the pre-order traversal. The
fact that a node x appears in a tree before a node y is expressed by x < y.

A tree T is labeled if every node in this tree x ∈ T has a label assigned to it,
symbolized by l(x). For convenience, hereinafter, a rooted, ordered, labeled tree
will be referred to as tree.

An ordered set of trees is called a forest. A forest F containing trees rooted
at all children nodes of a node x is denoted by Fx. The rightmost tree of a forest
F is denoted by F̄ . A forest F without a tree T is symbolized by F − T and the
number of nodes in all trees in forest F is symbolized by |F |.

4 Maciej Piernik, Tadeusz Morzy

A tree S whose nodes and edges form subsets of nodes and edges of another
tree T is called a subtree of T . We denote that S is a subtree of T by S ⊆ T .

Let us now define the edit operations which can be performed on tree nodes.
In general, there are three basic edit operations: insertion, deletion, and relabel-
ing. By inserting a node x into a tree T at a node y, x becomes a child of the
parent of y, taking y’s place in the sibling order, while y becomes a child of x.
When deleting a node x from a tree T , all children of x become the children of
the parent of x. Consequently, when x is a root node, the result is a forest Fx.

4 Partial tree-edit distance

4.1 Conceptual description

To illustrate how partial tree-edit distance works, first let us consider an example
presented in Fig. 1. In this example, by T i we will denote the i-th node (according
to the pre-order traversal) in tree T . As the question stated in this paper implies,
the task is to determine how many operations need to be performed on P for it
to become a subtree of D. Looking at the example, clearly, P is not a subtree
of D. However, as illustrated with the grey areas, there is a part of P which
can be directly mapped into D. Namely, nodes P 2, P 4, and P 5 can be mapped
into D1, D5, and D11, respectively, as they have the same labels. As a result
of this mapping, we also have to map P 3 into D4. This time, however, we need
to use the relabeling operation as the labels are different. Finally, as nodes P 1,
P 6, and P 7 have no corresponding nodes in D, they have to be removed using
the deletion operation. Therefore, the total number of edit operations required
to transform P into a subtree of D is 4 (1 relabeling, 3 deletions).

a1

b2 g7

b1

x4 e11

P D

c3 f6

x10

e5 d5 x12

d4

x2

x9 x13g3

x6 x8x7 b14 g15

Fig. 1. Example of fitting a pattern tree P into a document tree D. The nodes in
P covered by the grey area are relabeled to the corresponding nodes covered by the
grey area in D, while the nodes in P uncovered by the grey area are deleted. Numbers
represent the order of pre-order traversal.

So far, we have only used relabeling and deletion. Furthermore, we only
deleted the root node (P 1) and the leaf nodes (P 6, P 7). Let us now discuss the
possible consequences of using other edit operations, namely, deletion of inner
nodes and insertion of inner and non-inner nodes. Inserting a non-inner node

Partial tree-edit distance 5

into P does not make sense, since it could only increase the number of opera-
tions needed to fit P into D. That is why, in partial tree-edit distance insertion
of non-inner nodes is forbidden. Deleting or inserting an inner node results in a
children nodes’ transfer, so the internal structure of a tree is altered. In our case
however, given the pattern-based classification motivation, allowing for such op-
erations to appear would alter the inner structure of the patterns. Since patterns
are frequent subtrees, by deleting non-inner nodes we are guaranteed to obtain
structures which are at least as frequent as the base structure thanks to the
anti-monotonicity property of the support measure (any subtree of a frequent
subtree will have equal or higher support). However, allowing for an inner node
to be inserted or deleted from a pattern results in a subtree of which frequency
we know absolutely nothing about, therefore, it cannot be called a pattern any-
more. It may even happen that such a pattern does not appear in the dataset
at all. Therefore, insertion and deletion of inner nodes into a pattern may lead
to wrong class assignments and deteriorate the overall classification quality.

It is worth noting that other applications may benefit from allowing these
additional edit operations to appear and exploring such operations constitutes
an interesting topic for a future research. However, given our main motivation,
they are out of the scope of this paper.

Given the above, partial tree-edit distance is defined around two edit op-
erations: deletion of non-inner nodes and relabeling. Both of these operations
have an associated cost, which can be universally expressed with the following
formula:

c(x, y) =


0 x = λ

wd y = λ

wr otherwise

(1)

where x and y are nodes, λ is an empty node, and wd and wr are user-defined
weights associated with deletion and relabeling. Let s be a sequence of these
two operations. Partial tree-edit sequence s between two trees P and D is a
sequence which transforms P into any subtree of D. The cost c(s) of partial
tree-edit sequence s is the total cost of all operations in s. Partial tree-edit
distance (PTED) ∆(P,D) between a pattern tree P and a document tree D is
the minimal cost of all possible partial tree-edit sequences between P and D.

As we can see, the measure works as a combination of subtree matching and
tree-edit distance, producing a distance equal 0 when a pattern appears in a
tree, and a value between 0 and the size of a pattern, otherwise.

4.2 Formal definition

Definition 1. A partial mapping m between a pattern tree P and a document
tree D is a subset of P × (D ∪ {λ}), such that: (1) each node from P appears in
m exactly once, (2) each node from D appears in m at most once, (3) for any
(x, x′), (y, y′) ∈ m where x′ 6= λ and y′ 6= λ: x is a parent of y ⇔ x′ is a parent
of y′, (4) for any (x, x′), (y, y′) ∈ m where x is a sibling of y and x′ is a sibling
of y′: x < x′ ⇔ y < y′.

6 Maciej Piernik, Tadeusz Morzy

Each element in the mapping (x, x′) ∈ m represents an edit operation and has
an associated cost c(x, x′), as defined in Equation 1. An element where x′ = λ
represents a deletion while an element where x′ 6= λ represents a relabeling. The
cost c(m) of a partial mapping m is a sum of costs of all elements in m.

Definition 2. Partial tree-edit distance ∆(P,D) between a pattern tree P and
a document tree D is the minimal cost of all possible partial mappings between
P and D.

Now, we will introduce a recursive formula which calculates partial tree-
edit distance. The formula works in two stages. The purpose of the first stage,
performed by a main function ∆ and defined in Equation 2, is to place P at each
possible position in D.

∆ (P,D) = min
x∈P,y∈D

{
δ({Tx}, {Ty}) +

∑
{z∈P :z/∈Tx}

c(z, λ)
}

(2)

Next, for each placement of P in D, the second stage takes place. The goal of
the second stage, performed by an auxiliary function δ defined in Equation 3, is
to check how well does P fit in D, at a given placement. The function accepts two
forests G and H as parameters and recursively considers 3 cases: ignoring the
rightmost tree of H, deleting the rightmost tree of G, and fitting the rightmost
tree of G into the rightmost tree of H.

δ (G,H) = min


δ
(
G,H − H̄

)
δ
(
G− Ḡ,H

)
+ δ

(
{Ḡ}, ∅

)
δ
(
G− Ḡ,H − H̄

)
+ δ (FrḠ , FrH̄) + c(rḠ, rH̄)

(3)

Equation 4 defines the boundary conditions of the auxiliary function δ. The
first two cases reflect the fact that the cost of fitting an empty pattern into any
tree equals 0, while the third case signifies that the cost of fitting any non-empty
pattern into an empty tree equals the cost of removing the whole pattern.

δ (∅, ∅) = 0

δ (∅, H) = 0

δ (G, ∅) = δ
(
G− Ḡ, ∅

)
+ δ (FrḠ , ∅) + c(rḠ, λ)

(4)

5 Algorithm

In this section we propose an algorithm which calculates partial tree-edit dis-
tance. Similarly to the formal definition, the algorithm consists of two main
components: (1) the main loop ∆ which places P at every possible position in
D and (2) the auxiliary function δ which checks the quality of each placement.
The algorithm for the main loop is a trivial implementation of Equation 2, so

Partial tree-edit distance 7

Algorithm 1 Partial tree edit distance algorithm: δ(Tv, Tw)
Require: trees Tv and Tw,
Ensure: a cost of a partial mapping m between Tv and Tw with restriction (v, w) ∈ m
1: tab← [|v|+ 1, |w|+ 1]
2: for j = 0..|w| do
3: tab[0, j]← 0;
4: end for
5: for i = 1..|v| do
6: tab[i, 0]← tab[i− 1, 0] + (|Tvi

|) · wd;

7: end for
8: for i = 1..|v| do
9: for j = 1..|w| do
10: tab[i, j]← min{

tab[i− 1, j] + (|Tvi
|) · wd,

tab[i, j − 1],
tab[i− 1, j − 1] + δ(Tvi

, Twj
)

};
11: end for
12: end for
13: return tab[|v|, |w|] + (l(v) = l(w) ? 0 : wr);

we will skip the pseudocode for this step. The auxiliary function is implemented
with a dynamic programming algorithm, given in Algorithm 1.

The algorithm accepts two trees Tv and Tw as parameters and outputs the
minimal cost of a partial mapping between Tv and Tw, given that v is mapped
into w. Variable tab stores the intermediate results of mapping the children nodes
of v into the children nodes of w, so it is an R|v|+1×|w|+1 matrix (Line 1). In
Lines 2-4 the top row in the matrix is initialized to 0. This reflects the fact that
the subtrees in the right tree can be removed without any cost (ignored). In
practice, it fulfills the second boundary condition from Equation 4. In Lines 5-7,
the left column is initialized with the cumulative cost of deleting consecutive
subtrees of v (tab[i, 0] = cost of removing Tv1

..Tvi). These values fulfill the third
boundary condition from Equation 4. Lines 8-12 contain the main loop of the
auxiliary function. It scans through all children nodes of v and w and for each
pair vi, wj stores a temporary result tab[i, j] which holds the minimal cost of
mapping v1..vi into w1..wj . This cost is computed in Line 10 as the minimum of
3 expressions, reflecting the 3 options in Equation 3:

– tab[i−1, j] + (|vi|+ 1) ·wd accounts for removing the rightmost subtree from
the left tree;

– tab[i, j − 1] accounts for ignoring the rightmost subtree from the right tree;
– tab[i− 1, j − 1] + δ(Tvi , Twj

) accounts for mapping the rightmost subtree of
the left tree into the rightmost subtree of the right tree.

In the end, tab[|v|, |w|] holds the minimal cost of mapping the children of v into
the children of w (with descendants). Finally, in Line 13, by adding the cost
of mapping v into w we obtain the total cost of the minimal partial mapping
between Tv and Tw with v mapped into w. This concludes the algorithm.

Let us now analyze the complexity of the presented algorithm. It is easy
to notice that the auxiliary function algorithm is an adoption of the algorithm
for the Levenstein distance between two sequences [13], which has a quadratic

8 Maciej Piernik, Tadeusz Morzy

complexity. Here however, the auxiliary function is called within the main loop
which is also quadratic in time, so the overall complexity is O(n4). However, the
auxiliary function runs only as deep as the height of the smaller tree, so since
pattern trees are usually much smaller than document trees, the algorithm will
usually be more efficient than the complexity suggests.

6 Experimental evaluation

6.1 Datasets and experimental setup

During the experiments, we used both real and synthetic datasets containing
XML documents represent as rooted, ordered, labeled trees. For the time com-
plexity evaluation, we generated a dataset of 20 documents ranging between
100 and 2000 in the number of elements. To generate this dataset, we used the
software developed by Zaki [14].

To test the applicability of PTED in pattern-based classification, we used
the datasets created by Zaki and Aggarwal [6]. The synthetic datasets DS1-4,
were generated by the aforementioned authors and are composed of a training
and a testing set each, containing between 60000 and 100000 documents. The
real datasets CS1-3, each consisting of around 8000 documents, contain web logs
categorized into two classes (for a detailed description see [6]). Since they were
not divided into training and testing sets, we used each for both purposes and
cross-validated them with one another. By CSXY we will denote the CSX set
used for training and CSY for testing. This gives us a total of 10 tests: 4 on
synthetic and 6 on real data. The minimal frequency of a subtree required to
consider it a pattern was 0.1% for DS datasets and 1% for CS datasets.

All classifiers were evaluated using a weighted accuracy measure [6], defined
as follows:

Accuracy =
∑
c∈C

(
wc ·
|Dtestc |
|Dc|

)
(5)

where C is the set of all classes, Dtestc is the set of documents correctly assigned to
class c, Dc is the set of documents which should be assigned to class c, and wc is
a weight associated with each of the classes. Similarly as Zaki and Aggarwal [6],
we analyzed three weighting models:

– proportional : wc = |Dc|/|D| — classes weighted proportionally to their dis-
tribution in the training dataset,

– equal : wc = 1/|C| — all classes weighted equally,

– inverse: wc = 1/Dc∑
c′∈C 1/|Dc′ |

— classes weighted inversely to their distribution

in the training dataset.

Additionally, we used the Friedman test [15] to determine whether the com-
pared approaches performed significantly differently and a post-hoc Nemenyi
test [15] to check if the proposed solution significantly improved the quality of
classification.

Partial tree-edit distance 9

6.2 Time complexity evaluation

To assess the time complexity of the proposed algorithm we used the generated
dataset containing 20 documents of increasing sizes. For each pair of documents,
we calculated partial tree-edit distance 100 times and measured the average
computing time. The results of this test are presented in Fig. 2.

x

y

z

1

2

3

4

5

time [s]

(a) PTED processing time for varying
pattern and document sizes. Axes X and
Y represent the sizes of pattern and doc-
ument trees while the Z axis represents
processing time.

500 1000 1500 2000

0
1

2
3

4
5

Number of elements

T
im

e
[s

]

(b) PTED processing time for increasing
pattern and document size.

Fig. 2. Time complexity of the algorithm calculating partial tree-edit distance.

Fig. 2(a) illustrates how much time it takes to calculate PTED for trees of
various sizes. First, let us observe how the algorithm behaves when both pattern
and document trees are expanded. As we can see, with increasing sizes of both
trees, processing time presents a polynomial growth. This is reflected in the spine
on the 3D chart (the diagonal line w.r.t. X and Y axes) which is extracted and
visualized in Fig. 2(b) to facilitate the observation. When increasing the size of
only one of the trees, the increase in processing time is much slower. Considering
the purpose of our measure, this is a very important observation. Since we are
assessing the degree of containment of one tree in another, the left (pattern) tree
should be usually much smaller than the right (document) tree. This is certainly
true in the practical example involving pattern-based classification presented in
Section 6.3, as the largest patterns discovered in all experiments contained only
11 nodes. Additionally, it is worth noticing that the chart is symmetrical w.r.t.
the X/Y diagonal. This means that the algorithm behaves the same regardless
of which tree is bigger.

6.3 Practical application

To empirically evaluate the usefulness of PTED, we performed an experiment
involving pattern-based tree classification. Our goal of is to illustrate the im-
portance of the default class problem and show how partial tree-edit distance
can be used to address it. We compare four ways of dealing with this problem.

10 Maciej Piernik, Tadeusz Morzy

In the first three approaches, we use different methods for determining the de-
fault class, as proposed by Zaki and Aggarwal in the state-of-the-art XRules
classifier [6]. All three approaches determine the dafault class based on the class
distribution in the documents from the training dataset which are not covered by
any rule (do not contain any of the discovered frequent subtrees). Moreover, each
method maximizes the accuracy measure from Equation 5 w.r.t. one of the three
weights: proportional, equal, and inverse. Analogously to the accuracy measure,
given that Dc represents the training documents with class c and D̄c represents
a portion of these documents uncovered by any of the rules, the method for
determining the default class is defined as follows:

Class(D) = arg max
c∈C

(
wc ·
|D̄c|
|Dc|

)
(6)

where wc is one of the three previously defined weights: proportional, equal, or
inverse.

In the last approach, we use partial tree-edit distance to assign each ambigu-
ous document D to one of the classes according to the following formula:

Class(D) = arg max
c∈C

(∑
P∈Pc

(
1− ∆(P,D)

|P |

))
(7)

where C is a set of classes and Pc is a set of patterns with class c. Intuitively, this
formula measures the similarity of D with all patterns in each class and assigns
it to the class with the highest cumulative similarity.

Table 1 presents the results of this experiment. The first column represents
the datasets used in each test (the values in square brackets [DC%] will be
explained later) while the following columns present the accuracies achieved by
each of the described approaches. The results of the proportional and equal
methods are presented in a single column as they produced the same outcome
on every dataset. Each method was evaluated with three variants of the accuracy
measure and the differences in the results were tested for statistical significance.
In order to determine whether by using PTED we were able to significantly
improve the quality of classification, for every dataset we ranked each algorithm’s
performance from 1 to 3, where 1 is the highest and 3 is the lowest score. In
cases when one or more of the algorithms were tied, average ranks were assigned
(e.g., if two algorithms were tied at the 2nd place, each was granted a rank of
2.5). Once created, the ranking (presented in the “Avg. rank” row) was used to
perform the Friedman test [15]. The null-hypothesis for this test is that there is
no difference in the performance between the tested methods. Moreover, in case
of rejecting this null-hypothesis we used the Nemenyi post-hoc test [15] to verify
whether the performance of the best approach is statistically different from the
remaining approaches.

The results clearly illustrate that by using partial tree-edit distance we were
able to improve the classification quality in almost every test, regardless of the
applied accuracy measure. This outcome is partially confirmed by the Friedman

Partial tree-edit distance 11

Table 1. Comparison of methods for handling unclassified examples in a pattern-based
classifier. Bold indicates the best result.

Approach Prop./Eq. Inv. PTED Prop./Eq. Inv. PTED Prop./Eq. Inv. PTED

Dataset [DC%] Proportional accuracy [%] Equal accuracy [%] Inverse accuracy [%]

DS1 [56] 53.37 47.74 47.74 52.35 50.47 52.35 56.95 47.57 56.95
DS2 [70] 62.38 34.23 34.23 48.74 52.47 48.74 63.25 42.56 63.25
DS3 [74] 54.03 54.03 59.93 54.03 54.03 59.93 54.03 54.03 59.93
DS4 [63] 54.02 54.02 54.02 53.43 53.43 53.43 52.85 52.85 52.85
CS12 [47] 72.32 72.32 72.44 64.04 64.04 64.43 55.76 55.76 56.43
CS21 [49] 72.78 72.78 72.78 62.62 62.62 62.64 52.47 52.47 52.50
CS13 [48] 72.26 72.26 72.69 63.33 63.33 64.33 54.40 54.40 55.96
CS31 [50] 72.63 72.63 73.61 62.68 62.68 67.27 52.73 52.73 60.93
CS23 [47] 73.61 73.61 73.64 63.60 63.60 63.66 53.59 53.59 53.67
CS32 [50] 73.17 73.17 73.71 62.79 62.79 67.07 52.42 52.42 60.44

Avg. rank 2.10 2.40 1.50 2.35 2.35 1.30 2.25 2.55 1.20

statistical test. The critical value of the Friedman statistic for the analyzed
setting at α = 0.05 is 3.560 and the F scores for the proportional, equal, and
inverse accuracy tests are 2.392, 5.229, and 9.090, respectively. Therefore, the
analyzed approaches perform significantly differently according to the two latter
measures, but not according to the first one. The additional post-hoc Nemenyi
test reveals that the critical distance (difference in average ranks) required to
deem an approach significantly superior to others equals 1.048 at α = 0.05, so
PTED is indeed significantly better than any of the three default class strategies
according to equal and inverse accuracy.

In order to emphasize the gravity of the default class problem, we addition-
ally measured how many times the default class had to be used in the analyzed
datasets. The numbers in the square brackets in the first column of Table 1
([DC%]) present the percentage of documents from the test set which were un-
covered by any pattern from the classifier. In every test, this problem concerned
around half or more documents (e.g., for test DS3 which contains 100000 test
documents there were 73906 documents without any matching pattern). By us-
ing partial tree-edit distance we are able to treat each of these cases individually
instead of assigning them arbitrarily to the same class.

7 Conclusions

In this paper, we introduced a new measure for assessing the tree-subtree simi-
larity, called partial tree-edit distance (PTED), which describes to what extent
one tree is included in another. We also proposed an algorithm which calculates
the proposed measure in polynomial time. Furthermore, we performed an exper-
iment involving pattern-based tree classification using partial tree-edit distance
to illustrate the usefulness of the measure. The results show that by using PTED
we were able to significantly improve the classification quality over the classical
pattern-based approach.

The measure proposed in this paper opens several possibilities of future re-
search. It could be used to improve the quality of approximate subtree matching,

12 Maciej Piernik, Tadeusz Morzy

XML querying, ranking, clustering, or classification. Encouraged by the results
achieved in our experiments, we plan on developing a new pattern-based XML
classification algorithm designed around partial tree-edit distance.

Acknowledgments

This research is partly funded by the Polish National Science Center under Grant
No. DEC-2015/19/B/ST6/02637.

References

1. Hachicha, M., Darmont, J.: A survey of xml tree patterns. IEEE Trans. on Knowl.
and Data Eng. 25(1) (2013) 29–46

2. Dulucq, S., Tichit, L.: Rna secondary structure comparison: Exact analysis of the
zhang–shasha tree edit algorithm. Theor. Comput. Sci. 306(1-3) (2003) 471–484

3. Kouylekov, M., Magnini, B.: Combining lexical resources with tree edit distance for
recognizing textual entailment. In: Proceedings of the 1st International Conference
on Machine Learning Challenges. MLCW’05 (2006) 217–230

4. Augsten, N., Bohlen, M., Dyreson, C., Gamper, J.: Approximate joins for data-
centric xml. In: Data Engineering, 2008. ICDE 2008. IEEE 24th International
Conference on. (2008) 814–823

5. Augsten, N., Barbosa, D., Bohlen, M., Palpanas, T.: Efficient top-k approximate
subtree matching in small memory. IEEE Trans. on Knowl. and Data Eng. 23(8)
(2011) 1123–1137

6. Zaki, M.J., Aggarwal, C.C.: XRules: An Effective Algorithm for Structural Clas-
sification of XML Data. Mach. Learn. 62(1-2) (2006) 137–170

7. Stefanowski, J.: Algorithims of rule induction for knowledge discovery (2001) Ha-
bilitation thesis.

8. Zhang, K., Shasha, D.: Simple fast algorithms for the editing distance between
trees and related problems. SIAM J. Comput. 18(6) (1989) 1245–1262

9. Cohen, S., Or, N.: A general algorithm for subtree similarity-search. In: Proceed-
ings of the 30th International Conference on Data Engineering. ICDE’14 (2014)
928–939

10. Cohen, S.: Indexing for subtree similarity-search using edit distance. In: Proceed-
ings of the 2013 ACM SIGMOD International Conference on Management of Data.
SIGMOD ’13 (2013) 49–60

11. Amer-Yahia, S., Cho, S., Srivastava, D.: Tree pattern relaxation. In: Proceedings
of the 8th International Conference on Extending Database Technology: Advances
in Database Technology. EDBT ’02 (2002) 496–513

12. Zhang, K., Shasha, D., Wang, J.T.L.: Approximate tree matching in the presence
of variable length don’t cares. J. Algorithms 16 (1993) 33–66

13. Levenshtein, V.: Binary Codes Capable of Correcting Deletions, Insertions and
Reversals. Soviet Physics Doklady 10 (1966) 707

14. Zaki, M.J.: Efficiently mining frequent trees in a forest: Algorithms and applica-
tions. IEEE Trans. on Knowl. and Data Eng. 17(8) (August 2005) 1021–1035

15. Demsar, J.: Statistical Comparisons of Classifiers over Multiple Data Sets. J.
Mach. Learn. Res. 7 (2006) 1–30

	Partial tree-edit distance: a solution to the default class problem in pattern-based tree classification

