
>>> Operating Systems And Applications For Embedded Systems
>>> Toolchains

Name: Mariusz Naumowicz
Date: 31 sierpnia 2018

[~]$ _ [1/19]

>>> Plan

1. Toolchain
Toolchain
Main component of GNU toolchain
C library
Finding a toolchain

2. crosstool-NG
crosstool-NG
Installing
Anatomy of a toolchain
Information about cross-compiler
Configruation
Most interesting features
Sysroot
Other tools
POSIX functions AP

[~]$ _ [2/19]

>>> Toolchain

A toolchain is the set of tools that compiles source code into executables that can
run on your target device, and includes a compiler, a linker, and run-time
libraries.

[1. Toolchain]$ _ [3/19]

>>> Main component of GNU toolchain

* Binutils: A set of binary utilities including the assembler, and the linker,
ld. It is available at http://www.gnu.org/software/binutils/.

* GNU Compiler Collection (GCC): These are the compilers for C and other languages
which, depending on the version of GCC, include C++, Objective-C, Objective-C++,
Java, Fortran, Ada, and Go. They all use a common back-end which produces
assembler code which is fed to the GNU assembler. It is available at
http://gcc.gnu.org/.

* C library: A standardized API based on the POSIX specification which is the
principle interface to the operating system kernel from applications. There are
several C libraries to consider, see the following section.

[1. Toolchain]$ _ [4/19]

>>> C library

* glibc: Available at http://www.gnu.org/software/libc. It is the standard GNU C
library. It is big and, until recently, not very configurable, but it is the
most complete implementation of the POSIX API.

* eglibc: Available at http://www.eglibc.org/home. This is the embedded GLIBC.
It was a series of patches to glibc which added configuration options and
support for architectures not covered by glibc (specifically, the PowerPC e500).
The split between eglibc and glibc was always rather artificial and,
fortunately, the code base from eglibc has been merged back into glibc as of
version 2.20, leaving us with one improved library. eglibc is no longer
maintained.

* uClibc: Available at http://www.uclibc.org. The ’u’ is really a Greek ’mu’
character, indicating that this is the micro controller C library. It was first
developed to work with uClinux (Linux for CPUs without memory management units),
but has since been adapted to be used with full Linux. There is a configuration
utility which allows you to fine-tune its features to your needs. Even a full
configuration is smaller than glibc but it is not as complete an implementation
of the POSIX standards.

* musl libc: Available at http://www.musl-libc.org. It is a new C library
designed for embedded systems.

[1. Toolchain]$ _ [5/19]

>>> Finding a toolchain

* SoC or board vendor. Most vendors offer a Linux toolchain.

* A consortium dedicated to providing system-level support for a given
architecture. For example, Linaro, (https://www.linaro.org) have pre-built
toolchains for the ARM architecture.

* Third-party Linux tool vendors such as Mentor Graphics, TimeSys, or MontaVista.

* Cross tool packages for your desktop Linux distribution, for example,
Debian-based distributions have packages for cross compiling for ARM, MIPS, and
PowerPC targets.

* A binary SDK produced by one of the integrated embedded build tools, the Yocto
Project has some examples at http://autobuilder.yoctoproject.
org/pub/releases/CURRENT/toolchain and there is also the Denx Embedded Linux
Development Kit at ftp://ftp.denx.de/pub/eldk/.

* A link from a forum that you can’t find any more.

[1. Toolchain]$ _ [6/19]

>>> crosstool-NG

I am going to begin with crosstool-NG because it allows you to see the process of
creating the toolchain and to create several different sorts.
Some years ago, Dan Kegel wrote a set of scripts and makefles for generating cross
development toolchains and called it crosstool (kegel.com/crosstool). In 2007, Yann
E. Morin used that base to create the next generation of crosstool, crosstool-NG
(crosstool-ng.org). Today it is, by far, the most convenient way to create a stand
alone cross toolchain from source.

[2. crosstool-NG]$ _ [7/19]

>>> Installing

sudo apt-get install automake bison chrpath flex g++ git gperf gawk libexpat1-dev
libncurses5-dev libsdl1.2-dev libtool python2.7-dev texinfo
tar xf crosstool-ng-1.20.0.tar.bz2
cd crosstool-ng-1.20.0
./configure –enable-local
make
make install

[2. crosstool-NG]$ _ [8/19]

>>> Anatomy of a toolchain

PATH= /x-tools/arm-cortex_a8-linux-gnueabihf/bin:$PATH
arm-cortex_a8-linux-gnueabihf-gcc helloworld.c -o helloworld
file helloworld
helloworld: ELF 32-bit LSB executable, ARM, version 1 (SYSV),
dynamically linked (uses shared libs), for GNU/Linux 3.15.4, not
stripped

[2. crosstool-NG]$ _ [9/19]

>>> Information about cross-compiler

arm-cortex_a8-linux-gnueabi-gcc –version
arm-cortex_a8-linux-gnueabi-gcc (crosstool-NG 1.20.0) 4.9.1
Copyright (C) 2014 Free Software Foundation, Inc.
This is free software; see the source for copying conditions. There
is NO warranty; not even for MERCHANTABILITY or FITNESS FOR A PARTICULAR
PURPOSE.

[2. crosstool-NG]$ _ [10/19]

>>> Configruation I

arm-cortex_a8-linux-gnueabi-gcc -v
Using built-in specs.
COLLECT_GCC=arm-cortex_a8-linux-gnueabihf-gcc
COLLECT_LTO_WRAPPER=/home/chris/x-tools/arm-cortex_a8-linuxgnueabihf/libexec/gcc/arm-cortex_a8-linux-gnueabihf/4.9.1/lto-wrapper
Target: arm-cortex_a8-linux-gnueabihf
Configured with:
/home/chris/hd/home/chris/build/MELP/build/crosstool-ng-
1.20.0/.build/src/gcc-4.9.1/configure –build=x86_64-build_unknownlinux-gnu
–host=x86_64-build_unknown-linux-gnu –target=armcortex_a8-linux-gnueabihf
–prefix=/home/chris/x-tools/arm-cortex_a8- linux-gnueabihf
–with-sysroot=/home/chris/x-tools/arm-cortex_a8-
linux-gnueabihf/arm-cortex_a8-linux-gnueabihf/sysroot –enablelanguages=c,c++
–with-arch=armv7-a –with-cpu=cortex-a8 –withtune=cortex-a8 –with-float=hard
–with-pkgversion=’crosstool-NG 1.20.0’ –enable-__cxa_atexit –disable-libmudflap
–disable-libgomp –disable-libssp –disable-libquadmath –disable-libquadmath-support
–disable-libsanitizer
–withgmp=/home/chris/hd/home/chris/build/MELP/build/crosstool-ng-
1.20.0/.build/arm-cortex_a8-linux-gnueabihf/buildtools
–withmpfr=/home/chris/hd/home/chris/build/MELP/build/crosstool-ng-

[2. crosstool-NG]$ _ [11/19]

>>> Configruation II

1.20.0/.build/arm-cortex_a8-linux-gnueabihf/buildtools
–withmpc=/home/chris/hd/home/chris/build/MELP/build/crosstool-ng-
1.20.0/.build/arm-cortex_a8-linux-gnueabihf/buildtools
–withisl=/home/chris/hd/home/chris/build/MELP/build/crosstool-ng-
1.20.0/.build/arm-cortex_a8-linux-gnueabihf/buildtools
–withcloog=/home/chris/hd/home/chris/build/MELP/build/crosstool-ng-
1.20.0/.build/arm-cortex_a8-linux-gnueabihf/buildtools
–withlibelf=/home/chris/hd/home/chris/build/MELP/build/crosstool-ng-
1.20.0/.build/arm-cortex_a8-linux-gnueabihf/buildtools
–with-hostlibstdcxx=’-static-libgcc -Wl,-Bstatic,-lstdc++,-Bdynamic -lm’ –
enable-threads=posix –enable-target-optspace –enable-plugin – enable-gold
–disable-nls –disable-multilib
–with-localprefix=/home/chris/x-tools/arm-cortex_a8-linux-gnueabihf/armcortex_a8-linux-gnueabihf/sysroot
–enable-c99 –enable-long-long
Thread model: posix
gcc version 4.9.1 (crosstool-NG 1.20.0)

[2. crosstool-NG]$ _ [12/19]

>>> Most interesting features

1.
–with-sysroot=/home/chris/x-tools/arm-cortex_a8-linuxgnueabihf/arm-cortex_a8-linux-gnueabihf/sysroot:
This is the default sysroot directory, see the following section for an
explanation

2. –enable-languages=c,c++: Using this we have both C and C++ languages enabled
–with-arch=armv7-a: The code is generated using the ARM v7a instruction set

3. –with-cpu=cortex-a8 and –with-tune=cortex-a8: The the code is further tweaked
for a Cortex A8 core

4. –with-float=hard: Generate opcodes for the floating point unit and uses the VFP
registers for parameters

5. –enable-threads=posix: Enable POSIX threads

[2. crosstool-NG]$ _ [13/19]

>>> Sysroot

* lib: Contains the shared objects for the C library and the dynamic linker/
loader, ld-linux

* usr/lib: the static library archives for the C library and any other libraries
that may be installed subsequently

* usr/include: Contains the headers for all the libraries

* usr/bin: Contains the utility programs that run on the target, such as the ldd
command

* /usr/share: Used for localization and internationalization

* sbin: Provides the ldconfig utility, used to optimize library loading paths

[2. crosstool-NG]$ _ [14/19]

>>> Other tools I

Tablica: Toolchain’s commands

Command Description
addr2line Converts program addresses into filenames

and numbers by reading the debug symbol
tables in an executable file. It is very
useful when decoding addresses printed out
in a system crash report.

ar The archive utility is used to create
static libraries.

as This is the GNU assembler.
c++filt This is used to demangle C++ and Java

symbols.
cpp This is the C preprocessor, and is used to

expand #define, #include, and other similar
directives. You seldom need to use this by
itself. elfedit This is used to update the
ELF header of ELF files.

[2. crosstool-NG]$ _ [15/19]

>>> Other tools II
g++ This is the GNU C++ front-end, which

assumes source files contain C++ code.
gcc This is the GNU C front-end, which assumes

source files contain C code.
gcov This is a code coverage tool.
gdb This is the GNU debugger.
gprof This is a program profiling tool.
ld This is the GNU linker.
nm This lists symbols from object files.
objcopy This is used to copy and translate object

files.
objdump This is used to display information from

object files.
ranlib This creates or modifies an index in a

static library, making the linking stage
faster.

readelf This displays information about files in
ELF object format.

[2. crosstool-NG]$ _ [16/19]

>>> Other tools III

size This lists section sizes and the total
size.

strings This display strings of printable
characters in files.

strip This is used to strip an object file
of debug symbol tables, thus making it
smaller. Typically, you would strip all
the executable code that is put onto the
target.

[2. crosstool-NG]$ _ [17/19]

>>> POSIX functions AP

* libc: The main C library that contains the well-known POSIX functions such as
printf, open, close, read, write, and so on

* libm: Maths functions such as cos, exp, and log

* libpthread: All the POSIX thread functions with names beginning with pthread_

* librt: The real-time extensions to POSIX, including shared memory and
asynchronous I/O

arm-cortex_a8-linux-gnueabihf-readelf -a myprog | grep ”Shared library”
0x00000001 (NEEDED) Shared library: [libm.so.6]
0x00000001 (NEEDED) Shared library: [libc.so.6]

[2. crosstool-NG]$ _ [18/19]

>>> References

C. Simmonds.
Mastering Embedded Linux Programming.
Packt Publishing, 2015.

[2. crosstool-NG]$ _ [19/19]

	Toolchain
	Toolchain
	Main component of GNU toolchain
	C library
	Finding a toolchain

	crosstool-NG
	crosstool-NG
	Installing
	Anatomy of a toolchain
	Information about cross-compiler
	Configruation
	Most interesting features
	Sysroot
	Other tools
	POSIX functions AP

