
Materialized Views in Data Mining

Bogdan Czejdo1, Mikołaj Morzy2, Marek Wojciechowski2, Maciej Zakrzewicz2

Mathematics & Computer Science Department, Loyola University1
czejdo@loyno.edu

Institute of Computing Science, Poznań University of Technology2
{mmorzy,marek,mzakrz}@cs.put.poznan.pl

Abstract
Data mining is an interactive and iterative process. A user
defines a set of interesting patterns choosing the dataset to
be mined and setting the values of various parameters that
drive mining algorithm. It is highly probable that a user will
issue the same mining query several times until he receives
satisfying results. During each run a user will slightly modify
either the definition of the mined dataset or the parameters
of the algorithm. Currently available mining algorithms
suffer from long processing times depending mainly on the
size of the dataset. As the pattern discovery takes place
mainly in the data warehouse environment, such long
processing times are unacceptable from the point of view of
interactive data mining. On the other hand, the results of
consecutive data mining queries are very similar. One
possible solution is to reuse materialized results of previous
data mining queries. In this paper we present the concept of
materialized data mining views and we show how the results
stored in these views can be used to accelerate processing of
data mining queries. We demonstrate the use of materialized
views in the domains of association rules discovery and
sequential pattern search.

1. Introduction

1.1. Overview

Data mining, also referred to as knowledge discovery in
databases, is a non-trivial process of identifying valid, novel,
potentially useful, and ultimately understandable patterns in
data [8]. Data mining systems are evolving from systems
dedicated to and specialized in particular tasks or domains to
general-purpose systems, which are tightly coupled with the
existing relational database technology. This integration

allows for the development of universal data mining
environments that constitute a set of knowledge discovery
algorithms and a data warehouse. Data warehouses form
excellent data sources for several mining techniques but
require a powerful back-end database engine. Most data
mining queries are costly (in terms of processing cost) and
differ significantly from the typical database queries. Hence,
novel methods of query processing and optimization need to
be developed in order to achieve satisfying data mining
query performance.

From a user’s point of view the execution of a data mining
algorithm and the discovery of a set of patterns is an answer
to a sophisticated database query. A user limits the mined
dataset (e.g., by the means of a standard SQL query) and
determines the values of parameters that control given
algorithm. In return the system discovers the patterns and
presents them to a user. When the process starts, a user does
not know the exact goal of the exploration. Rather, he
achieves satisfying results in several consecutive steps. In
each step the user verifies the discovered patterns and,
suitably to his needs, expectations and experience modifies
either the mined dataset, or algorithm parameters, or both. In
other words, a user discovers interesting and useful results in
a series of runs, with the run environment slightly tuned in
each run. Mining practice shows that the vast majority of
data mining queries are only minor modifications of former
queries. Given these circumstances it is necessary for a user
to be able to exploit the results of previous queries in
answering given query. Knowledge discovery system should
be capable of answering a query in an incremental manner
where the results of previous queries are maintained and
tested against current dataset and parameter set. In
incremental mining base algorithm is run only on the
difference set. This principle applies also to the situation
when the mining algorithm is run after a data warehouse
refresh to discover novel patterns. Usually the volume of
new or changed data after refresh is significantly smaller

(and often negligible) when compared to the size of the
original warehouse.

The basic problem in data mining is the processing time
of data mining queries. Data mining algorithms often require
minutes or hours to answer a simple query. In addition, the
size of the result can easily surpass the size of the queried
database. Such properties of mining process make it
unsuitable for interactive and iterative pattern discovery.

One possible solution to this problem is to use
materialized views. Data mining query results can be
materialized automatically or at user request. Knowledge
discovery system should be capable of using these results
and incorporating them into mining algorithms. Materialized
views have been thoroughly examined and successfully
applied in traditional database management systems. We
propose to follow this path and introduce materialized views
to knowledge discovery systems.
In this paper we present algorithms that reuse materialized
results of former queries and we show how such algorithms
can accelerate processing times of queries in the discovery of
frequent itemsets, association rules and sequential patterns.
Experiments prove that the use of materialized views can
shorten considerably query times for large class of queries in
traditional database systems. Considering data mining
queries, finding materialized views suitable for answering a
given query is more difficult. Query defining a materialized
view can differ from the actual query both in algorithm
parameters and the mined database schema. In this paper we
show how materialized views can be used to answer a data
mining query and what additional steps must be taken to
assure the correctness of the answer. All examples presented
in this paper where expressed in MineSQL, a declarative data
mining language developed in the Institute of Computing
Science of Poznań University of Technology [15].

1.2. Outline

The article is organized as follows. Chapter 2 provides the
definitions of basic notions and presents information on
related work. In Chapter 3 the idea of data mining queries is
presented and illustrated with examples. Different relations
occurring between data mining queries are analyzed and the
notion of materialized data mining view is introduced.
Chapter 4 focuses on data mining query optimization using
materialized views. We conclude in Chapter 5 with a brief
discussion of open questions and future work agenda.

2. Basic Definitions

2.1. Traditional Views vs. Materialized Views

A view is a derived relation defined in terms of base
relations. Formally, a view defines a function from the set of
base relations to the derived relation. This function is usually
computed on each reference to the view. A view can be
materialized by storing tuples in the database. Because all
data available in a materialized view are stored on a disk in a
database, users can create indexes on materialized views,
thus shortening the time needed to access tuples. This time
can be significantly shorter than the time needed to
recompute a view. In a way a materialized view resembles
cache – it is a copy of the data that can be quickly accessed.
The contents of a materialized view become invalid after any
modification to base relations. In such cases view
maintenance techniques are necessary to reflect the changes

that happen in base relations of a materialized view.
Sometimes updates of base relations affect only a part of a
materialized view. In these cases recomputation of an entire
view would be a waste of time and resources. It is faster and
cheaper to perform incremental view maintenance, i.e., to
recompute only the part of a materialized view affected by
the base relation updates. It is worth noticing that in general
incremental view maintenance requires some additional data
and metadata to work properly, and in some cases
(depending on the materialized view definition and base
relation properties) incremental maintenance is impossible
[10].

2.2. Frequent Sets

Let L={l1, l2, …, ln} be a set of literals called items. Let D
be a set of variable length transactions and ∀T∈D:T⊆L. We
say that the transaction T supports an item x if x∈T. We say
that the transaction T supports an itemset X if T supports
every element in X. The support of the itemset X is the ratio
of the number of transactions supporting the itemset to the
total number of transactions. An itemset containing k items is
called a k-itemset.

D
D supportsTDT

DXsupport
}:{

),(
∈

=

The problem of discovering frequent itemsets can be
formulated as follows. Given a database D and a minimum
support threshold supplied by a user (called minsup) find all
itemsets occurring in a database D with the support higher
than minsup. An itemset with the support higher than minsup
is called a frequent itemset.

2.3. Association Rules

An association rule is an implication of the form X→Y
where X⊂L, Y⊂L and X∩Y=∅. X is called the head of a rule
whilst Y is called the body of a rule. Two statistical measures
define its statistical significance and strength.

The support of a rule X→Y is the ratio of the number of
transactions supporting the rule to the total number of
transactions. In other words, a rule X→Y has the support of s
in a database D if s% of transactions support X∪Y.

D
YX supportsTDT

DYXsupport
}:{

),(
∪∈

=→

The confidence of a rule X→Y is the ratio of the number
of transactions supporting the rule to the number of
transactions that support the head of the rule. In other words,
a rule X→Y has the confidence of c in a database D if c% of
transactions supporting X also support Y.

}:{
}:{

),(
X supportsTDT

YX supportsTDT
DYXconfidence

∈

∪∈
=→

The problem of discovering association rules can be
formulated as follows. Given a database D and the minimum
thresholds of support and confidence supplied by a user
(called minsup and minconf respectively) find all association
rules occurring in a database D with support and confidence
higher than minsup and minconf.

2.4. Sequential Patterns

Let L={l1, l2, …,ln} be a set of literals called items. A
sequence is an ordered list of sets of items and is denoted as

<X1, X2, …,Xn> where Xi is a set of items, Xi⊆L. Sets Xi are
called sequence elements. The size of a sequence is the
number of items in a sequence. The length of the sequence is
the number of elements in a sequence. Each element has a
timestamp associated with it. We say that the sequence
X=<X1,…,Xn> is contained in the sequence Y=<Y1,…,Ym> if
there exist integer numbers i1<…<in such that X1<Yi1, …,
 Xn<Yin. The sequence <Yi1,…,Yin> is called an occurrence of
X in Y. There are three main time constraints involved in
sequential pattern discovery, namely, the minimum and
maximum time gap between consecutive occurrences of
elements in a sequence (min-gap and max-gap respectively)
and the size of the time window which allows for merging
identical sequence elements (provided the timestamps of
those elements are contained in one window). The size of the
window is denoted as window-width.

The support of a sequence X=<X1,…,Xn> in a database D
is the ratio of the number of transactions containing the
sequence to the total number of transactions. The problem of
sequential pattern search can be formulated as follows. Given
a database D and the minimum support threshold supplied by
a user (called minsup) find all sequences occurring in the
database D with support higher than minsup. A sequence
with support higher than minsup is called a sequential
pattern.

2.5. Related Work

The work on materialized views started in the 80s. The
basic concept was to use materialized views as a tool to
speed up queries and serve older copies of data. Multiple
algorithms for view maintenance were developed [18].
Further research led to the creation of cost models for
materialized view maintenance and determining the impact
of materialized views presence on query processing
performance. Some research has been conducted on applying
views to force integrity constraints in databases. A summary
of view maintenance techniques can be found in [9]. For a
full presentation of subjects related to materialized views see
[10].

The problem of association rule mining has been
introduced in [1]. The notion of frequent set has been
introduced in [2]. The authors proposed an algorithm called
Apriori that became the basis for several data mining
algorithms. The apriori principle reflects a simple
observation: an itemset can be frequent if and only if all its
subsets are frequent. In other words, only frequent sets are
needed for generating larger frequent sets. The algorithm
works as follows. In the first step all 1-itemsets are found
and their support is determined during a full database scan.
In all consecutive steps candidate itemsets (itemsets which
are potentially large) of size n are generated based on
frequent (n-1) itemsets. Support values of all candidate
itemsets of size n are determined during a database scan and
the itemsets with support lower than minsup threshold are
purged from the collection of frequent itemsets. The main
drawback of the Apriori algorithm is the fact that it uses
(k+1) full database scans (which are costly and time-
consuming operations) to find all frequent sets of size k.

In [6] a novel algorithm called FUP was proposed. This
algorithm took over traditional Apriori technique by
implementing an incremental frequent itemset search. FUP
algorithm exploited previously discovered frequent itemsets
and performed pattern search only in the modified part of the
database. The next proposal presented in [19] performed

incremental frequent itemset search in both reduced and
extended databases. This algorithm exploited properties of
the negative itemset boundary introduced in [20].

The idea of sequential patter discovery was first presented
in [3]. An algorithm called GSP was introduced. GSP
algorithm considered various time-related constraints and
was capable of discovering a wide range of sequential pattern
classes (including generalized sequential patterns). In [4] the
authors proposed to materialize sequential patterns with
reduced support and time constraints and to use these
materialized patterns to answer incoming queries.
Nevertheless, most work on sequential pattern discovery
focused on improving the performance of the algorithm.

The notion of interactive and iterative knowledge
discovery first appeared in [16]. The authors postulated to
create a knowledge cache that would keep recently
discovered frequent itemsets along with their support value.
Such knowledge cache could be shared among multiple users
and multiple applications, allowing them to use reciprocally
partial results of their queries. Besides presenting the notion
of knowledge cache the authors introduced several
maintenance techniques for such cache.

In [21] an interesting idea of prior computation of
frequent itemsets in database partitions was formulated. This
method utilized the fact that an itemset can be frequent in the
database if it is frequent in at least one partition. The authors
presented an algorithm that divided the original database into
several smaller partitions, each of them fitting into available
main memory. The algorithm would find frequent itemsets in
each partition independently. Frequent itemsets found during
this process were materialized and used to identify itemsets
that were frequent in an entire database.

The concept of Knowledge Data Management System was
first introduced in [13]. In the opinion of the authors KDMS
should replace contemporary database management systems
by integrating data and knowledge related activities in one
central place. The authors defined also the notion of a data
mining query and suppressed the need to tightly integrate
knowledge discovery systems with the existing database and
data warehouse infrastructure to provide a framework for
advanced applications.

3. Data Mining Queries

3.1. Queries

In [15] a declarative data mining language called
MineSQL was introduced. MineSQL enables to express
knowledge discovery problems in terms of data mining
queries. This language separates user applications from a
data mining algorithm. MineSQL syntax mimics that of
standard SQL and allows for tight and seamless integration of
data mining queries with traditional database queries.
MineSQL currently allows to issue commands that discover
frequent itemsets, association rules and sequential patterns.
MineSQL defines a set of additional data types (e.g., SET,
ITEMSET, RULE) as well as set of operators and functions
for those data types (e.g., CONTAINS, BODY(x),
HEAD(x)). The following data mining query discovers all
frequent itemsets with support higher than 20% and
containing an item ‘milk’. Mining takes place in the part of
the database that contains transactional data for the 4th
quarter of 2001.

MINE ITEMSET, SUPPORT(ITEMSET)
FOR ITEMS FROM (
SELECT SET(PURCHASED_ITEM) AS ITEMS
FROM PURCHASES
WHERE DATE_OF_PURCHASE > ’01.07.2001’
AND DATE_OF_PURCHASE < ’31.12.2001’
GROUP BY TRANSACTION_ID)
WHERE SUPPORT(ITEMSET) > 0.2
AND ITEMSET CONTAINS TO_SET(‘milk’);

Similarly one can use MineSQL to discover all association
rules with support higher than 10%, confidence higher than
30% and containing item ‘butter’ in the head of a rule.

MINE RULE R, HEAD(R), BODY(R)
FOR ITEMS FROM (
SELECT SET(PURCHASED_ITEM) AS ITEMS
FROM PURCHASES
GROUP BY TRANSACTION_ID)
WHERE SUPPORT(R) > 0.1
AND CONFIDENCE(R) > 0.3
AND HEAD(R) CONTAINS TO_SET(‘butter);

3.2. Relationships Between Results of Data Mining
Queries

In [5] three relationships, which occur between two data,
mining queries Q1 and Q2 have been identified and described.
These relationships include equality, containment and
domination.
• We say that two data mining queries are equal if for

every database the result sets of patterns returned by
both queries are identical and for every pair of patterns
the values of statistical coefficients (e.g., values of
support and confidence) are equal

• We say that a data mining query Q2 contains a query Q1
if for every database each pattern returned by Q1 is also
returned by Q2 and the values of statistical coefficients
are equal in both result sets

• We say that a data mining query Q2 dominates a query
Q1 if for every database each pattern returned by Q1 is
also returned by Q2 and the values of statistical
coefficients determined by Q1 are not less than the
values of respective coefficients determined by Q2

Equality of data mining queries is a special case of
containment relation, and containment is a special case of
more general dominance relation.

Relations described above occur between the results of
data mining queries and can be used to identify the situations
in which a query Q1 can be efficiently answered using the
materialized results of another query Q2. Those relations are
general in nature and can be applied to various types of
patterns (frequent sets, association rules, sequential patterns)
and various constraint models. General idea of using
materialized query results is the following. If for a given
query Q1 exist materialized results of another query Q2 equal
to Q1 then no processing is required and Q1 can be answered
entirely from the results of Q2 (recall that both queries return
the same set of patterns for the same database). If
materialized results are available from the query Q2
containing the original query Q1 then a full result set scan is
required to filter out those patterns from Q2 that do not
satisfy constraints imposed on Q1. If materialized results are
available from the query Q2 dominating the original query Q1
then a full database scan is required to determine the values

of statistical coefficients of patterns present in Q2 (those
values may vary from Q1). Additionally, a scan of result set
is required to filter out those patterns from Q2 that do not
satisfy the constraints imposed on Q1.

3.3. Data mining views

Traditional views are used mainly to hide difficult query
structures from a user and to simplify access data. Views also
provide independence of application from the changes
happening in the database. All changes must be reflected
only in the definition of the view and no modification is
required in the end-user application. Every access to the view
triggers the execution of the query that defines this view.

Data mining is an interactive and iterative process and
data mining queries tend to be fairly complicated. Data
mining views hide the complexity of the algorithm from an
application and simplify access to discovered patterns. The
notion of a data mining view was introduced in [14]. Below
is a MineSQL statement that creates a data mining view
V_ASSOC_RULES.

CREATE VIEW V_ASSOC_RULES AS
MINE RULE, BODY(RULE), SUPPORT(RULE)
FOR ITEMS FROM (
SELECT SET(PURCHASED_ITEMS) AS ITEMS
FROM PURCHASES
WHERE TRANSACTION_DATA > ’01.01.2001’
AND TRANSACTION DATA < ’31.12.2001’
GROUP BY TRANSACTION_ID
HAVING COUNT(*) >= 3)
WHERE SUPPORT(RULE) > 0.2
AND HEAD(RULE) CONTAINS TO_SET(‘bread’);

Two classes of constraints can be seen in the definition
above. Database constraints are placed within WHERE
clause in the SELECT subquery. Database constraints define
a data view, i.e., the subset of the original database in which
data mining is performed. Mining constraints are placed
within the WHERE clause in the MINE statement. Mining
constraints define the conditions that must be met by
discovered patterns.

The use of data mining view provides additional
independency layer between the database and the end-user
application. Slight modifications of algorithm parameters or
explored data view are reflected only in the view definition
whilst the application does not notice any changes. Besides,
the user is separated from the technical details of the
algorithm. As with traditional views, every access to the data
mining view triggers the execution of the underlying
algorithm.

Algorithms for pattern discovery are usually very time-
consuming. Processing time of a data mining query could
easily become unacceptable from the point of view of
interactive process of knowledge discovery. The solution of
this problem is materialization of previously obtained results
of data mining queries. A materialized data mining view is a
database object storing patterns (frequent sets, association
rules, sequential patterns) discovered during data mining
queries. Every pattern in a materialized view has a timestamp
representing its creation time and validity period. With every
materialized view a time period can be associated, after
which the contents of the view is automatically refreshed.
Below is a MineSQL statement that creates the materialized
data mining view MV_ASSOC_RULES.

CREATE MATERIALIZED VIEW
V_ASSOC_RULES REFRESH 7 AS
MINE RULE, SUPPORT(RULE), CONFIDENCE(RULE)
FOR ITEMS FROM (
SELECT SET(PURCHASED_ITEMS) AS ITEMS
FROM PURCHASES
WHERE ITEM_GROUP=’beverages’
GROUP BY TRANSACTION_ID)
WHERE SUPPORT(RULE) > 0.3
AND CONFIDENCE(RULE) > 0.5;

Materialized data mining view can be refreshed either

automatically or on user’s demand. In most cases such
refresh can be performed by one of the incremental refresh
algorithms [6,7,19] instead of running the algorithm from
scratch. Additional advantage of materialized view is the fact
that data mining usually takes place in the data warehouse
environment in which changes to base relations (and thus to
the stored patterns) do not happen continually over time but
are accumulated and loaded to the data warehouse during
data warehouse refresh process. The patterns discovered and
stored in the materialized view remain valid for a long period
of time until next data warehouse refresh. Validation of
patterns can be postponed until next warehouse refresh event.

4. Data mining query optimization

4.1. Frequent sets and association rules

In many cases contents of the materialized view can be
used to answer a query that is similar to a query defining the
view. If the query defining the view Qv dominates or
contains given query Q then the later can be answered by
simply reading the contents of the view and purging those
patterns that do not meet the conditions formulated in Q. In
order to use the contents of a materialized view for data
mining query optimization additional formulations are
required. First of all, it is necessary to define the conditions
that must be met for an answer using materialized patterns to
be correct. Those conditions are based on relations occurring
between data mining queries. Below four main relationships
regarding both database and mining constraints are
identified.

Given materialized view based on query Qv and a data
mining query Q we say that:
• query Q extends database constraints of Qv if

o Q adds additional WHERE or HAVING clauses to
the database constraints of Qv

o Q adds an ANDed condition to the database
constraints of Qv in the WHERE or HAVING
clauses

o Q removes an ORed condition from the database
constraints of Qv in the WHERE or HAVING
clauses

• query Q reduces database constraints of Qv if
o Q removes WHERE or HAVING clauses from the

database constraints of Qv
o Q removes an ANDed condition from the database

constraints of Qv in the WHERE or HAVING
clauses

o Q adds an ORed condition to the database
constraints of Qv in the WHERE or HAVING
clauses

• query Q extends mining constraints of Qv if

o Q adds additional WHERE or HAVING clauses to
the mining constraints of Qv

o Q adds an ANDed condition to the mining
constraints of Qv in the WHERE or HAVING
clauses

o Q removes an ORed condition from the mining
constraints of Qv in the WHERE or HAVING
clauses

o replaces mining constraint present in Qv with a more
restrictive constraint (e.g., higher minsup value)

• query Q reduces mining constraints of Qv if
o Q removes WHERE or HAVING clauses from the

mining constraints of Qv
o Q removes an ANDed condition from the mining

constraints of Qv in the WHERE or HAVING
clauses

o Q adds an ORed condition to the mining constraints
of Qv in the WHERE or HAVING clauses

o replaces mining constraint present in Qv with a less
restrictive constraint (e.g., lower minsup value)

Conceptually extending database constraints means
shrinking the dataset whilst reducing database constraints
means extending the data set to be mined. Extending mining
constraints means narrowing whilst reducing mining
constraints means extending the result set of patterns.

Depending on circumstances several mining methods are
available. Full mining refers to the situation when the
contents of a view cannot be used to answer the query and
the mining algorithm must be run from scratch. This
situation occurs when the query Q extends database
constraints of the query Qv defining the view. Incremental
mining refers to the situation when one of the incremental
discovery algorithms is executed on extended data view. This
method is used when the query Q reduces database
constraints of Qv. Another possibility is complementary
mining. Patterns are discovered based on previously
discovered patterns. This method can be utilized when the
query reduces mining constraints of Qv (all patterns available
in the view will be present in the answer to the query).
Finally, verifying mining consists in reading materialized
view and pruning away those patterns that do not satisfy
extended mining constraints of Q. Below an example of
using a materialized data mining view to answer a data
mining query is presented.

Given the following definition of materialized data mining
view Qv:

MINE ITEMSET, SUPPORT(ITEMSET)
FOR ITEMS FROM (
SELECT SET(PURCHASED_ITEM) AS ITEMS
FROM PURCHASES
GROUP BY TRANSACTION_ID
HAVING COUNT(*) > 5)
WHERE SUPPORT(ITEMSET) > 0.3;

and the following data mining query Q:

MINE ITEMSET, SUPPORT(ITEMSET)
FOR ITEMS FROM (
SELECT SET(PURCHASED_ITEM) AS ITEMS
FROM PURCHASES
GROUP BY TRANSACTION_ID)
WHERE SUPPORT(ITEMSET) > 0.5
AND ITEMSET CONTAINS TO_SET(‘butter’,’milk’);

The query Q extends mining constraints of Qv by setting a
more restrictive (higher) value of minimum support and
adding a clause containing mining constraints (narrowing
pattern set to those patterns that contain items ‘butter’ and
‘milk’). Conversely, the query Q reduces mining constraints
of Qv by removing a HAVING clause from the view
definition. To answer Q using the contents of Qv the
following steps need to be taken. First, verifying mining is
performed to prune patterns with support lower than 0.5 and
not containing items ‘butter’ and ‘milk’. Next, incremental
mining is performed on the part of the database consisting of
transactions shorter than 5 items.

4.2. Sequential patterns

Similarly to frequent itemset and association rule
discovery, materialized views can be successfully utilized in
sequential pattern search. In order to be able to use the
results materialized in a query it is necessary to first
determine the type of relationship occurring between the two
queries (the query being answered and the query defining a
materialized view). This relationship depends strongly on
liaisons between classes of constraints in the queries. Basic
formulation of the sequential pattern search identifies three
constraint classes.
• database constraints are used to limit the original

database to the interesting subset of data
• mining constraints are the parameters of discovery

algorithms, currently only minimal support threshold
(denoted as minsup) is used

• time constraints are used to set the processing window
size, currently only minimum and maximum gaps
between consecutive elements are used along with the
window width (denoted as min-gap, max-gap and
window-width respectively)

For any data mining queries Q1 and Q2 two reciprocal
relationships can be observed with respect to the above
defined constraint classes.
• query Q2 extends mining constraints of Q1 if the mining

constraints of Q1 can be obtained from the mining
constraints of Q2 by adding new elementary predicates
or replacing existing predicates of Q2 by stronger (more
restrictive) predicates

• query Q2 extends time constraints of Q1 if it tightens one
of the time parameters min-gap, max-gap or window-
width without relaxing any remaining parameters

These remarks concern the syntax of data mining queries.
The implications of syntactic differences between data
mining queries were examined in detail in [22]. With respect
to sequential pattern queries the following relationships exist.
• let the queries Q1 and Q2 have identical data views (i.e.,

both queries operate on the same data set and have
identical database constraints). Let the queries Q1 and Q2
have the same time constraints. If the query Q2 extends
mining constraints of Q1 then Q1 contains Q2

• let the queries Q1 and Q2 operate on the same data set
and have the same mining constraints. If the query Q2
extends time constraints of Q1 then Q1 dominates Q2

• let the queries Q1 and Q2 operate on the same data set. If
the query Q2 extends both time and mining constraints of
Q1 then Q1 dominates Q2

Those relationships form the basis for the algorithms that
use materialized results of previous queries to answer a given
query. Below we present a short description of various
techniques using materialized data mining views. For a more
detailed presentation of the subject please refer to [22]. In all
examples Q denotes a data mining query expressing
sequential pattern search and Qv denotes the query defining
the contents of a materialized data mining view MV.

If Q and Qv operate on the same data set and have
identical mining and time constraints then the equality occurs
and no processing is required. The results of both queries are
identical and entirely contained in the materialized view MV.

If Q and Qv operate on the same data set and have the
same time constraints and the query Q extends mining
constraints of Qv then the query Q can be answered from the
materialized view by purging those patterns from Qv that do
not satisfy the more restrictive constraints of Q (Qv contains
Q). The algorithm performs one scan of the materialized
view and for each pattern it verifies whether the pattern
satisfies additional mining constraints imposed on Q.

If Q and Qv operate on the same data set and have
identical mining constraints and the query Q extends time
constraints of Qv then Q can be answered by reading the
contents of the view and verifying patterns materialized in
the view against time constraints of Q (by definition Qv
dominates Q).

If Q and Qv operate on the same data set and the query Q
extends both mining and time constraints of Qv (in other
words, Qv dominates Q) then Q can be answered by reading
all patterns materialized in the view and recomputing their
support using time constraints of Q and considering extended
mining conditions of Q. The algorithm performs full scan of
the materialized view and purges all patterns that do not
satisfy the mining constraints of Q. Then the algorithm
performs a full database scan and computes the support of
the remaining patterns using time constraints of Q. Finally,
patterns that have support value below the threshold imposed
on Q are removed from the result set.

These methods allow for answering a sequential patterns
data mining query without the need to run time-consuming
algorithm. Rather, they reuse patterns found in previous
sessions and materialized in views. Experiments show
clearly that this approach leads to significant improvements
in processing time of sequential pattern data mining queries.

5. Conclusions

In this paper we addressed the problem of data mining
query optimization using materialized views. We presented
methods for speeding up processing times in frequent itemset
search, association rule discovery and sequential pattern
search. Still many questions remain opened and several
challenging issues need to be addressed. For example, most
of the presented algorithms assume that interactive
exploration takes place in the same data set from which the
materialized view has been derived. Moreover, those
methods assume that the shape of transactions remain
constant. Questions concerning efficient view maintenance
methods for data mining views remain unanswered. Another

open research area is the domain of cost models for data
mining query optimization.

Our future work will focus on extending the usability of
described methods to queries that differ from the view
definition in explored data view and on constructing cost
models for data mining query processing. A cost model is a
necessary condition for ambitious plan of creating a fully
featured cost-based data mining query optimizer module.

6. References

[1] Agrawal, R., Imielinski, T., Swami, A., “Mining association

rules between sets of items in large databases”, In Proc. of
the ACM SIGMOD International Conference on
Management of Data, Washington, USA, May 1993

[2] Agrawal, R., Srikant, R., “Fast Algorithms for Mining
Association Rules”, In Proc. of the 20th International
Conference on Very Large Data Bases (VLDB'94),
Santiago, Chile, 1994.

[3] Agrawal, R., Srikant, R., “Mining Sequential Patterns”, In
Proc. of the 11th International Conference on Data
Engineering (IDCDE'95), Taipei, Taiwan, March 1995

[4] Agrawal, R., Srikant, R., “Mining Sequential Patterns:
Generalizations and Performance Improvements”, In Proc.
of the 5th International Conference on Extending Database
Technology (EDBT'96), Avignon, France, September 1996

[5] Baralis, E., Psaila, G., “Incremental refinement of mining
queries”, In Proc. of the 1st International Conference on
Data Warehousing and Knowledge Discovery (DaWaK'99),
Florence, Italy, September 1999

[6] Cheung, D.W., Han, J., Ng, V., Wong, C.Y., “Maintenance
of discovered association rules in large databases: An
incremental updating technique”, In Proc. of the 12th
International Conference on Data Engineering (ICDE'96),
New Orleans, USA, February 1996

[7] Cheung, D. W., Lee, S. D. and Kao, B., “A General
Incremental Technique for Maintaining Discovered
Association Rules”, In Proc. of the 5th International
Conference on Database Systems for Advanced
Applications (DASFAA'97), Melbourne, Australia, April
1997

[8] Fayyad, U.M., Piatetsky-Shapiro, G., Smyth, P.,
Uthurusamy, R., (Eds.) Advances in Knowledge Discovery
and Data Mining, AAAI/MIT Press 1996,

[9] Gupta, A., Mumick, I.S., “Maintenance of Materialized
Views: Problems, Techniques, and Applications”, IEEE
Data Engineering Bulletin, Special Issue on Materilaized
Views and Data Warehousing, 18(2), June 1995

[10] Gupta, A., Mumick, I.S., Materialized Views: Techniques,
Implementations, and Applications, The MIT Press, 1999

[11] Han, J., Pei, J., Mortazavi-Asl, B., Chen, Q., Dayal, U.,
Hsu, M.-C., “FreeSpan: frequent pattern-projected
sequential pattern mining”, In Proc. of the 6th ACM
SIGKDD International Conference on Knowledge
Discovery and Data Mining (KDD'2000), Boston, USA,
August 2000

[12] Han, J., Pei, J., Mortazavi-Asl, B., Pinto, H., Chen, Q.,
Dayal, U., Hsu, M.-C., “Prefixspan: Mining sequential
patterns efficiently by prefix-projected pattern growth”, In
Proc. of the 17th International Conference on Data
Engineering (ICDE'01), Heidelberg, Germany, April 2001

[13] Imielinski, T., Mannila, H., „A Database Perspective on
Knowledge Discovery”, Communications of the ACM,
Vol.39, No.11, 1996

[14] Morzy, T., Wojciechowski, M., Zakrzewicz, M., “Data
Mining Query Optimization Using Materialized Views”

[15] Morzy, T., Zakrzewicz, M., “SQL-like Language for
Database Mining”, In Proc. of the 1st East European
Symposium on Advances in Databases and Information
Systems (ADBIS'97), St-Petersburg, Russia, September
1997

[16] Nag, B., Deshpande, P., DeWitt, D.J., “Using a Knowledge
Cache for Interactive Discovery of Association Rules”, In
Proc. of the 5th ACM SIGKDD International Conference on
Knowledge Discovery and Data Mining (KDD'99), San
Diego, USA, August 1999

[17] Parthasarathy, S., Zaki, M.J., Ogihara, M., Dwarkadas, S.,
“Incremental and interactive sequence mining”, In Proc. of
the ACM International Conference on Information and
Knowedge Management (CIKM'99), November 1999

[18] Roussopoulos, N., “Materialized Views and Data
Warehouses”, SIGMOD Record vol.27 no 1, 1998,

[19] Thomas, S., Bodagala, S., Alsabti, K., Ranka, S., “An Ecient
Algorithm for the Incremental Updation of Association
Rules in Large Databases”, In Proc. of the 3rd ACM
SIGKDD International Conference on Knowledge
Discovery and Data Mining (KDD'97), Newport Beach,
USA, August 1997

[20] Toivonen, H., “Sampling large databases for association
rules”, In Proc. of the 22th International Conference on Very
Large Data Bases (VLDB'96), Bombay, India, September
1996

[21] Wojciechowski, M., Zakrzewicz, M., “Itemset Materializing
for Fast Mining of Association Rules”, In Proc. of the 2nd
East European Conference on Advances in Databases and
Information Systems (ADBIS'98), Poznań, Poland,
September 1998

[22] Wojciechowski, M., “Interactive Constraint-Based
Sequential Pattern Mining”, In Proc. of the 5th East
European Conference on Advances in Databases and
Information Systems (ADBIS'01), Vilnius, Lithuania,
September 2001

