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Abstract 
Data mining is an interactive and iterative process. A user 
defines a set of interesting patterns choosing the dataset to 
be mined and setting the values of various parameters that 
drive mining algorithm. It is highly probable that a user will 
issue the same mining query several times until he receives 
satisfying results. During each run a user will slightly modify 
either the definition of the mined dataset or the parameters 
of the algorithm. Currently available mining algorithms 
suffer from long processing times depending mainly on the 
size of the dataset. As the pattern discovery takes place 
mainly in the data warehouse environment, such long 
processing times are unacceptable from the point of view of 
interactive data mining. On the other hand, the results of 
consecutive data mining queries are very similar. One 
possible solution is to reuse materialized results of previous 
data mining queries. In this paper we present the concept of 
materialized data mining views and we show how the results 
stored in these views can be used to accelerate processing of 
data mining queries. We demonstrate the use of materialized 
views in the domains of association rules discovery and 
sequential pattern search. 
 
 
 
1. Introduction 
 
1.1. Overview 
 

Data mining, also referred to as knowledge discovery in 
databases, is a non-trivial process of identifying valid, novel, 
potentially useful, and ultimately understandable patterns in 
data [8]. Data mining systems are evolving from systems 
dedicated to and specialized in particular tasks or domains to 
general-purpose systems, which are tightly coupled with the 
existing relational database technology. This integration 

allows for the development of universal data mining 
environments that constitute a set of knowledge discovery 
algorithms and a data warehouse. Data warehouses form 
excellent data sources for several mining techniques but 
require a powerful back-end database engine. Most data 
mining queries are costly (in terms of processing cost) and 
differ significantly from the typical database queries. Hence, 
novel methods of query processing and optimization need to 
be developed in order to achieve satisfying data mining 
query performance. 

From a user’s point of view the execution of a data mining 
algorithm and the discovery of a set of patterns is an answer 
to a sophisticated database query. A user limits the mined 
dataset (e.g., by the means of a standard SQL query) and 
determines the values of parameters that control given 
algorithm. In return the system discovers the patterns and 
presents them to a user. When the process starts, a user does 
not know the exact goal of the exploration. Rather, he 
achieves satisfying results in several consecutive steps. In 
each step the user verifies the discovered patterns and, 
suitably to his needs, expectations and experience modifies 
either the mined dataset, or algorithm parameters, or both. In 
other words, a user discovers interesting and useful results in 
a series of runs, with the run environment slightly tuned in 
each run. Mining practice shows that the vast majority of 
data mining queries are only minor modifications of former 
queries. Given these circumstances it is necessary for a user 
to be able to exploit the results of previous queries in 
answering given query. Knowledge discovery system should 
be capable of answering a query in an incremental manner 
where the results of previous queries are maintained and 
tested against current dataset and parameter set. In 
incremental mining base algorithm is run only on the 
difference set. This principle applies also to the situation 
when the mining algorithm is run after a data warehouse 
refresh to discover novel patterns. Usually the volume of 
new or changed data after refresh is significantly smaller 



(and often negligible) when compared to the size of the 
original warehouse. 

The basic problem in data mining is the processing time 
of data mining queries. Data mining algorithms often require 
minutes or hours to answer a simple query. In addition, the 
size of the result can easily surpass the size of the queried 
database. Such properties of mining process make it 
unsuitable for interactive and iterative pattern discovery. 

One possible solution to this problem is to use 
materialized views. Data mining query results can be 
materialized automatically or at user request. Knowledge 
discovery system should be capable of using these results 
and incorporating them into mining algorithms. Materialized 
views have been thoroughly examined and successfully 
applied in traditional database management systems. We 
propose to follow this path and introduce materialized views 
to knowledge discovery systems. 
In this paper we present algorithms that reuse materialized 
results of former queries and we show how such algorithms 
can accelerate processing times of queries in the discovery of 
frequent itemsets, association rules and sequential patterns. 
Experiments prove that the use of materialized views can 
shorten considerably query times for large class of queries in 
traditional database systems. Considering data mining 
queries, finding materialized views suitable for answering a 
given query is more difficult. Query defining a materialized 
view can differ from the actual query both in algorithm 
parameters and the mined database schema. In this paper we 
show how materialized views can be used to answer a data 
mining query and what additional steps must be taken to 
assure the correctness of the answer. All examples presented 
in this paper where expressed in MineSQL, a declarative data 
mining language developed in the Institute of Computing 
Science of Poznań University of Technology [15]. 
 
1.2. Outline 
 
The article is organized as follows. Chapter 2 provides the 
definitions of basic notions and presents information on 
related work. In Chapter 3 the idea of data mining queries is 
presented and illustrated with examples. Different relations 
occurring between data mining queries are analyzed and the 
notion of materialized data mining view is introduced. 
Chapter 4 focuses on data mining query optimization using 
materialized views. We conclude in Chapter 5 with a brief 
discussion of open questions and future work agenda. 
 
2. Basic Definitions 
 
2.1. Traditional Views vs. Materialized Views 
 

A view is a derived relation defined in terms of base 
relations. Formally, a view defines a function from the set of 
base relations to the derived relation. This function is usually 
computed on each reference to the view. A view can be 
materialized by storing tuples in the database. Because all 
data available in a materialized view are stored on a disk in a 
database, users can create indexes on materialized views, 
thus shortening the time needed to access tuples. This time 
can be significantly shorter than the time needed to 
recompute a view. In a way a materialized view resembles 
cache – it is a copy of the data that can be quickly accessed. 
The contents of a materialized view become invalid after any 
modification to base relations. In such cases view 
maintenance techniques are necessary to reflect the changes 

that happen in base relations of a materialized view. 
Sometimes updates of base relations affect only a part of a 
materialized view. In these cases recomputation of an entire 
view would be a waste of time and resources. It is faster and 
cheaper to perform incremental view maintenance, i.e., to 
recompute only the part of a materialized view affected by 
the base relation updates. It is worth noticing that in general 
incremental view maintenance requires some additional data 
and metadata to work properly, and in some cases 
(depending on the materialized view definition and base 
relation properties) incremental maintenance is impossible 
[10]. 
 
2.2. Frequent Sets 
 

Let L={l1, l2, …, ln} be a set of literals called items. Let D 
be a set of variable length transactions and ∀T∈D:T⊆L. We 
say that the transaction T supports an item x if x∈T. We say 
that the transaction T supports an itemset X if T supports 
every element in X. The support of the itemset X is the ratio 
of the number of transactions supporting the itemset to the 
total number of transactions. An itemset containing k items is 
called a k-itemset. 
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The problem of discovering frequent itemsets can be 
formulated as follows. Given a database D and a minimum 
support threshold supplied by a user (called minsup) find all 
itemsets occurring in a database D with the support higher 
than minsup. An itemset with the support higher than minsup 
is called a frequent itemset. 
 
2.3. Association Rules 
 

An association rule is an implication of the form X→Y 
where X⊂L, Y⊂L and X∩Y=∅. X is called the head of a rule 
whilst Y is called the body of a rule. Two statistical measures 
define its statistical significance and strength. 

The support of a rule X→Y is the ratio of the number of 
transactions supporting the rule to the total number of 
transactions. In other words, a rule X→Y has the support of s 
in a database D if s% of transactions support X∪Y. 
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The confidence of a rule X→Y is the ratio of the number 
of transactions supporting the rule to the number of 
transactions that support the head of the rule. In other words, 
a rule X→Y has the confidence of c in a database D if c% of 
transactions supporting X also support Y. 
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The problem of discovering association rules can be 
formulated as follows. Given a database D and the minimum 
thresholds of support and confidence supplied by a user 
(called minsup and minconf respectively) find all association 
rules occurring in a database D with support and confidence 
higher than minsup and minconf. 
 
2.4. Sequential Patterns 
 

Let L={l1, l2, …,ln} be a set of literals called items. A 
sequence is an ordered list of sets of items and is denoted as 



<X1, X2, …,Xn> where Xi is a set of items, Xi⊆L. Sets Xi are 
called sequence elements. The size of a sequence is the 
number of items in a sequence. The length of the sequence is 
the number of elements in a sequence. Each element has a 
timestamp associated with it. We say that the sequence 
X=<X1,…,Xn> is contained in the sequence Y=<Y1,…,Ym> if 
there exist integer numbers i1<…<in such that X1<Yi1, …, 
 Xn<Yin. The sequence <Yi1,…,Yin> is called an occurrence of 
X in Y. There are three main time constraints involved in 
sequential pattern discovery, namely, the minimum and 
maximum time gap between consecutive occurrences of 
elements in a sequence (min-gap and max-gap respectively) 
and the size of the time window which allows for merging 
identical sequence elements (provided the timestamps of 
those elements are contained in one window). The size of the 
window is denoted as window-width. 

The support of a sequence X=<X1,…,Xn> in a database D 
is the ratio of the number of transactions containing the 
sequence to the total number of transactions. The problem of 
sequential pattern search can be formulated as follows. Given 
a database D and the minimum support threshold supplied by 
a user (called minsup) find all sequences occurring in the 
database D with support higher than minsup. A sequence 
with support higher than minsup is called a sequential 
pattern. 
 
2.5. Related Work 
 

The work on materialized views started in the 80s. The 
basic concept was to use materialized views as a tool to 
speed up queries and serve older copies of data. Multiple 
algorithms for view maintenance were developed [18]. 
Further research led to the creation of cost models for 
materialized view maintenance and determining the impact 
of materialized views presence on query processing 
performance. Some research has been conducted on applying 
views to force integrity constraints in databases. A summary 
of view maintenance techniques can be found in [9]. For a 
full presentation of subjects related to materialized views see 
[10]. 

The problem of association rule mining has been 
introduced in [1]. The notion of frequent set has been 
introduced in [2]. The authors proposed an algorithm called 
Apriori that became the basis for several data mining 
algorithms. The apriori principle reflects a simple 
observation: an itemset can be frequent if and only if all its 
subsets are frequent. In other words, only frequent sets are 
needed for generating larger frequent sets. The algorithm 
works as follows. In the first step all 1-itemsets are found 
and their support is determined during a full database scan. 
In all consecutive steps candidate itemsets (itemsets which 
are potentially large) of size n are generated based on 
frequent (n-1) itemsets. Support values of all candidate 
itemsets of size n are determined during a database scan and 
the itemsets with support lower than minsup threshold are 
purged from the collection of frequent itemsets. The main 
drawback of the Apriori algorithm is the fact that it uses 
(k+1) full database scans (which are costly and time-
consuming operations) to find all frequent sets of size k. 

In [6] a novel algorithm called FUP was proposed. This 
algorithm took over traditional Apriori technique by 
implementing an incremental frequent itemset search. FUP 
algorithm exploited previously discovered frequent itemsets 
and performed pattern search only in the modified part of the 
database. The next proposal presented in [19] performed 

incremental frequent itemset search in both reduced and 
extended databases. This algorithm exploited properties of 
the negative itemset boundary introduced in [20]. 

The idea of sequential patter discovery was first presented 
in [3]. An algorithm called GSP was introduced. GSP 
algorithm considered various time-related constraints and 
was capable of discovering a wide range of sequential pattern 
classes (including generalized sequential patterns). In [4] the 
authors proposed to materialize sequential patterns with 
reduced support and time constraints and to use these 
materialized patterns to answer incoming queries. 
Nevertheless, most work on sequential pattern discovery 
focused on improving the performance of the algorithm. 

The notion of interactive and iterative knowledge 
discovery first appeared in [16]. The authors postulated to 
create a knowledge cache that would keep recently 
discovered frequent itemsets along with their support value. 
Such knowledge cache could be shared among multiple users 
and multiple applications, allowing them to use reciprocally 
partial results of their queries. Besides presenting the notion 
of knowledge cache the authors introduced several 
maintenance techniques for such cache. 

In [21] an interesting idea of prior computation of 
frequent itemsets in database partitions was formulated. This 
method utilized the fact that an itemset can be frequent in the 
database if it is frequent in at least one partition. The authors 
presented an algorithm that divided the original database into 
several smaller partitions, each of them fitting into available 
main memory. The algorithm would find frequent itemsets in 
each partition independently. Frequent itemsets found during 
this process were materialized and used to identify itemsets 
that were frequent in an entire database. 

The concept of Knowledge Data Management System was 
first introduced in [13]. In the opinion of the authors KDMS 
should replace contemporary database management systems 
by integrating data and knowledge related activities in one 
central place. The authors defined also the notion of a data 
mining query and suppressed the need to tightly integrate 
knowledge discovery systems with the existing database and 
data warehouse infrastructure to provide a framework for 
advanced applications. 
 
3. Data Mining Queries 
 
3.1. Queries 
 

In [15] a declarative data mining language called 
MineSQL was introduced. MineSQL enables to express 
knowledge discovery problems in terms of data mining 
queries. This language separates user applications from a 
data mining algorithm. MineSQL syntax mimics that of 
standard SQL and allows for tight and seamless integration of 
data mining queries with traditional database queries. 
MineSQL currently allows to issue commands that discover 
frequent itemsets, association rules and sequential patterns. 
MineSQL defines a set of additional data types (e.g., SET, 
ITEMSET, RULE) as well as set of operators and functions 
for those data types (e.g., CONTAINS, BODY(x), 
HEAD(x)). The following data mining query discovers all 
frequent itemsets with support higher than 20% and 
containing an item ‘milk’. Mining takes place in the part of 
the database that contains transactional data for the 4th 
quarter of 2001. 



MINE ITEMSET, SUPPORT(ITEMSET) 
FOR ITEMS FROM ( 
SELECT SET(PURCHASED_ITEM) AS ITEMS 
FROM PURCHASES 
WHERE DATE_OF_PURCHASE > ’01.07.2001’ 
AND DATE_OF_PURCHASE < ’31.12.2001’ 
GROUP BY TRANSACTION_ID ) 
WHERE SUPPORT(ITEMSET) > 0.2 
AND ITEMSET CONTAINS TO_SET(‘milk’); 
 

Similarly one can use MineSQL to discover all association 
rules with support higher than 10%, confidence higher than 
30% and containing item ‘butter’ in the head of a rule. 

 
MINE RULE R, HEAD(R), BODY(R) 
FOR ITEMS FROM ( 
SELECT SET(PURCHASED_ITEM) AS ITEMS 
FROM PURCHASES 
GROUP BY TRANSACTION_ID ) 
WHERE SUPPORT(R) > 0.1 
AND CONFIDENCE(R) > 0.3 
AND HEAD(R) CONTAINS TO_SET(‘butter); 
 
3.2. Relationships Between Results of Data Mining 
Queries 
 

In [5] three relationships, which occur between two data, 
mining queries Q1 and Q2 have been identified and described. 
These relationships include equality, containment and 
domination. 
• We say that two data mining queries are equal if for 

every database the result sets of patterns returned by 
both queries are identical and for every pair of patterns 
the values of statistical coefficients (e.g., values of 
support and confidence) are equal 

• We say that a data mining query Q2 contains a query Q1 
if for every database each pattern returned by Q1 is also 
returned by Q2 and the values of statistical coefficients 
are equal in both result sets 

• We say that a data mining query Q2 dominates a query 
Q1 if for every database each pattern returned by Q1 is 
also returned by Q2 and the values of statistical 
coefficients determined by Q1 are not less than the 
values of respective coefficients determined by Q2 

Equality of data mining queries is a special case of 
containment relation, and containment is a special case of 
more general dominance relation. 

Relations described above occur between the results of 
data mining queries and can be used to identify the situations 
in which a query Q1 can be efficiently answered using the 
materialized results of another query Q2. Those relations are 
general in nature and can be applied to various types of 
patterns (frequent sets, association rules, sequential patterns) 
and various constraint models. General idea of using 
materialized query results is the following. If for a given 
query Q1 exist materialized results of another query Q2 equal 
to Q1 then no processing is required and Q1 can be answered 
entirely from the results of Q2 (recall that both queries return 
the same set of patterns for the same database). If 
materialized results are available from the query Q2 
containing the original query Q1 then a full result set scan is 
required to filter out those patterns from Q2 that do not 
satisfy constraints imposed on Q1. If materialized results are 
available from the query Q2 dominating the original query Q1 
then a full database scan is required to determine the values 

of statistical coefficients of patterns present in Q2 (those 
values may vary from Q1). Additionally, a scan of result set 
is required to filter out those patterns from Q2 that do not 
satisfy the constraints imposed on Q1. 
 
3.3. Data mining views 
 

Traditional views are used mainly to hide difficult query 
structures from a user and to simplify access data. Views also 
provide independence of application from the changes 
happening in the database. All changes must be reflected 
only in the definition of the view and no modification is 
required in the end-user application. Every access to the view 
triggers the execution of the query that defines this view. 

Data mining is an interactive and iterative process and 
data mining queries tend to be fairly complicated. Data 
mining views hide the complexity of the algorithm from an 
application and simplify access to discovered patterns. The 
notion of a data mining view was introduced in [14]. Below 
is a MineSQL statement that creates a data mining view 
V_ASSOC_RULES. 

 
CREATE VIEW V_ASSOC_RULES AS 
MINE RULE, BODY(RULE), SUPPORT(RULE) 
FOR ITEMS FROM ( 
SELECT SET(PURCHASED_ITEMS) AS ITEMS 
FROM PURCHASES 
WHERE TRANSACTION_DATA > ’01.01.2001’ 
AND TRANSACTION DATA < ’31.12.2001’ 
GROUP BY TRANSACTION_ID  
HAVING COUNT(*) >= 3 ) 
WHERE SUPPORT(RULE) > 0.2 
AND HEAD(RULE) CONTAINS TO_SET(‘bread’); 
 

Two classes of constraints can be seen in the definition 
above. Database constraints are placed within WHERE 
clause in the SELECT subquery. Database constraints define 
a data view, i.e., the subset of the original database in which 
data mining is performed. Mining constraints are placed 
within the WHERE clause in the MINE statement. Mining 
constraints define the conditions that must be met by 
discovered patterns. 

The use of data mining view provides additional 
independency layer between the database and the end-user 
application. Slight modifications of algorithm parameters or 
explored data view are reflected only in the view definition 
whilst the application does not notice any changes. Besides, 
the user is separated from the technical details of the 
algorithm. As with traditional views, every access to the data 
mining view triggers the execution of the underlying 
algorithm. 

Algorithms for pattern discovery are usually very time-
consuming. Processing time of a data mining query could 
easily become unacceptable from the point of view of 
interactive process of knowledge discovery. The solution of 
this problem is materialization of previously obtained results 
of data mining queries. A materialized data mining view is a 
database object storing patterns (frequent sets, association 
rules, sequential patterns) discovered during data mining 
queries. Every pattern in a materialized view has a timestamp 
representing its creation time and validity period. With every 
materialized view a time period can be associated, after 
which the contents of the view is automatically refreshed. 
Below is a MineSQL statement that creates the materialized 
data mining view MV_ASSOC_RULES. 

 



CREATE MATERIALIZED VIEW  
V_ASSOC_RULES REFRESH 7 AS 
MINE RULE, SUPPORT(RULE), CONFIDENCE(RULE) 
FOR ITEMS FROM ( 
SELECT SET(PURCHASED_ITEMS) AS ITEMS 
FROM PURCHASES 
WHERE ITEM_GROUP=’beverages’ 
GROUP BY TRANSACTION_ID ) 
WHERE SUPPORT(RULE) > 0.3 
AND CONFIDENCE(RULE) > 0.5; 

 
Materialized data mining view can be refreshed either 

automatically or on user’s demand. In most cases such 
refresh can be performed by one of the incremental refresh 
algorithms [6,7,19] instead of running the algorithm from 
scratch. Additional advantage of materialized view is the fact 
that data mining usually takes place in the data warehouse 
environment in which changes to base relations (and thus to 
the stored patterns) do not happen continually over time but 
are accumulated and loaded to the data warehouse during 
data warehouse refresh process. The patterns discovered and 
stored in the materialized view remain valid for a long period 
of time until next data warehouse refresh. Validation of 
patterns can be postponed until next warehouse refresh event. 
 
4. Data mining query optimization 
 
4.1. Frequent sets and association rules 
 

In many cases contents of the materialized view can be 
used to answer a query that is similar to a query defining the 
view. If the query defining the view Qv dominates or 
contains given query Q then the later can be answered by 
simply reading the contents of the view and purging those 
patterns that do not meet the conditions formulated in Q. In 
order to use the contents of a materialized view for data 
mining query optimization additional formulations are 
required. First of all, it is necessary to define the conditions 
that must be met for an answer using materialized patterns to 
be correct. Those conditions are based on relations occurring 
between data mining queries. Below four main relationships 
regarding both database and mining constraints are 
identified. 

Given materialized view based on query Qv and a data 
mining query Q we say that: 
• query Q extends database constraints of Qv if 

o Q adds additional WHERE or HAVING clauses to 
the database constraints of Qv 

o Q adds an ANDed condition to the database 
constraints of Qv in the WHERE or HAVING 
clauses 

o Q removes an ORed condition from the database 
constraints of Qv in the WHERE or HAVING 
clauses 

• query Q reduces database constraints of Qv if 
o Q removes WHERE or HAVING clauses from the 

database constraints of Qv 
o Q removes an ANDed condition from the database 

constraints of Qv in the WHERE or HAVING 
clauses 

o Q adds an ORed condition to the database 
constraints of Qv in the WHERE or HAVING 
clauses 

• query Q extends mining constraints of Qv if 

o Q adds additional WHERE or HAVING clauses to 
the mining constraints of Qv 

o Q adds an ANDed condition to the mining 
constraints of Qv in the WHERE or HAVING 
clauses 

o Q removes an ORed condition from the mining 
constraints of Qv in the WHERE or HAVING 
clauses 

o replaces mining constraint present in Qv with a more 
restrictive constraint (e.g., higher minsup value) 

• query Q reduces mining constraints of Qv if 
o Q removes WHERE or HAVING clauses from the 

mining constraints of Qv 
o Q removes an ANDed condition from the mining 

constraints of Qv in the WHERE or HAVING 
clauses 

o Q adds an ORed condition to the mining constraints 
of Qv in the WHERE or HAVING clauses 

o replaces mining constraint present in Qv with a less 
restrictive constraint (e.g., lower minsup value) 

Conceptually extending database constraints means 
shrinking the dataset whilst reducing database constraints 
means extending the data set to be mined. Extending mining 
constraints means narrowing whilst reducing mining 
constraints means extending the result set of patterns. 

Depending on circumstances several mining methods are 
available. Full mining refers to the situation when the 
contents of a view cannot be used to answer the query and 
the mining algorithm must be run from scratch. This 
situation occurs when the query Q extends database 
constraints of the query Qv defining the view. Incremental 
mining refers to the situation when one of the incremental 
discovery algorithms is executed on extended data view. This 
method is used when the query Q reduces database 
constraints of Qv. Another possibility is complementary 
mining. Patterns are discovered based on previously 
discovered patterns. This method can be utilized when the 
query reduces mining constraints of Qv (all patterns available 
in the view will be present in the answer to the query). 
Finally, verifying mining consists in reading materialized 
view and pruning away those patterns that do not satisfy 
extended mining constraints of Q. Below an example of 
using a materialized data mining view to answer a data 
mining query is presented. 

Given the following definition of materialized data mining 
view Qv: 

 
MINE ITEMSET, SUPPORT(ITEMSET) 
FOR ITEMS FROM ( 
SELECT SET(PURCHASED_ITEM) AS ITEMS 
FROM PURCHASES 
GROUP BY TRANSACTION_ID  
HAVING COUNT(*) > 5 ) 
WHERE SUPPORT(ITEMSET) > 0.3; 

 
and the following data mining query Q: 
 



MINE ITEMSET, SUPPORT(ITEMSET) 
FOR ITEMS FROM ( 
SELECT SET(PURCHASED_ITEM) AS ITEMS 
FROM PURCHASES 
GROUP BY TRANSACTION_ID ) 
WHERE SUPPORT(ITEMSET) > 0.5 
AND ITEMSET CONTAINS TO_SET(‘butter’,’milk’); 
 

The query Q extends mining constraints of Qv by setting a 
more restrictive (higher) value of minimum support and 
adding a clause containing mining constraints (narrowing 
pattern set to those patterns that contain items ‘butter’ and 
‘milk’). Conversely, the query Q reduces mining constraints 
of Qv by removing a HAVING clause from the view 
definition. To answer Q using the contents of Qv the 
following steps need to be taken. First, verifying mining is 
performed to prune patterns with support lower than 0.5 and 
not containing items ‘butter’ and ‘milk’. Next, incremental 
mining is performed on the part of the database consisting of 
transactions shorter than 5 items. 
 
4.2. Sequential patterns 
 

Similarly to frequent itemset and association rule 
discovery, materialized views can be successfully utilized in 
sequential pattern search. In order to be able to use the 
results materialized in a query it is necessary to first 
determine the type of relationship occurring between the two 
queries (the query being answered and the query defining a 
materialized view). This relationship depends strongly on 
liaisons between classes of constraints in the queries. Basic 
formulation of the sequential pattern search identifies three 
constraint classes. 
• database constraints are used to limit the original 

database to the interesting subset of data 
• mining constraints are the parameters of discovery 

algorithms, currently only minimal support threshold 
(denoted as minsup) is used 

• time constraints are used to set the processing window 
size, currently only minimum and maximum gaps 
between consecutive elements are used along with the 
window width (denoted as min-gap, max-gap and 
window-width respectively) 

For any data mining queries Q1 and Q2 two reciprocal 
relationships can be observed with respect to the above 
defined constraint classes. 
• query Q2 extends mining constraints of Q1 if the mining 

constraints of Q1 can be obtained from the mining 
constraints of Q2 by adding new elementary predicates 
or replacing existing predicates of Q2 by stronger (more 
restrictive) predicates 

• query Q2 extends time constraints of Q1 if it tightens one 
of the time parameters min-gap, max-gap or window-
width without relaxing any remaining parameters 

These remarks concern the syntax of data mining queries. 
The implications of syntactic differences between data 
mining queries were examined in detail in [22]. With respect 
to sequential pattern queries the following relationships exist. 
• let the queries Q1 and Q2 have identical data views (i.e., 

both queries operate on the same data set and have 
identical database constraints). Let the queries Q1 and Q2 
have the same time constraints. If the query Q2 extends 
mining constraints of Q1 then Q1 contains Q2 

• let the queries Q1 and Q2 operate on the same data set 
and have the same mining constraints. If the query Q2 
extends time constraints of Q1 then Q1 dominates Q2 

• let the queries Q1 and Q2 operate on the same data set. If 
the query Q2 extends both time and mining constraints of 
Q1 then Q1 dominates Q2 

Those relationships form the basis for the algorithms that 
use materialized results of previous queries to answer a given 
query. Below we present a short description of various 
techniques using materialized data mining views. For a more 
detailed presentation of the subject please refer to [22]. In all 
examples Q denotes a data mining query expressing 
sequential pattern search and Qv denotes the query defining 
the contents of a materialized data mining view MV. 

If Q and Qv operate on the same data set and have 
identical mining and time constraints then the equality occurs 
and no processing is required. The results of both queries are 
identical and entirely contained in the materialized view MV. 

If Q and Qv operate on the same data set and have the 
same time constraints and the query Q extends mining 
constraints of Qv then the query Q can be answered from the 
materialized view by purging those patterns from Qv that do 
not satisfy the more restrictive constraints of Q (Qv contains 
Q). The algorithm performs one scan of the materialized 
view and for each pattern it verifies whether the pattern 
satisfies additional mining constraints imposed on Q. 

If Q and Qv operate on the same data set and have 
identical mining constraints and the query Q extends time 
constraints of Qv then Q can be answered by reading the 
contents of the view and verifying patterns materialized in 
the view against time constraints of Q (by definition Qv 
dominates Q). 

If Q and Qv operate on the same data set and the query Q 
extends both mining and time constraints of Qv (in other 
words, Qv dominates Q) then Q can be answered by reading 
all patterns materialized in the view and recomputing their 
support using time constraints of Q and considering extended 
mining conditions of Q. The algorithm performs full scan of 
the materialized view and purges all patterns that do not 
satisfy the mining constraints of Q. Then the algorithm 
performs a full database scan and computes the support of 
the remaining patterns using time constraints of Q. Finally, 
patterns that have support value below the threshold imposed 
on Q are removed from the result set. 

These methods allow for answering a sequential patterns 
data mining query without the need to run time-consuming 
algorithm. Rather, they reuse patterns found in previous 
sessions and materialized in views. Experiments show 
clearly that this approach leads to significant improvements 
in processing time of sequential pattern data mining queries. 
 
5. Conclusions 
 

In this paper we addressed the problem of data mining 
query optimization using materialized views. We presented 
methods for speeding up processing times in frequent itemset 
search, association rule discovery and sequential pattern 
search. Still many questions remain opened and several 
challenging issues need to be addressed. For example, most 
of the presented algorithms assume that interactive 
exploration takes place in the same data set from which the 
materialized view has been derived. Moreover, those 
methods assume that the shape of transactions remain 
constant. Questions concerning efficient view maintenance 
methods for data mining views remain unanswered. Another 



open research area is the domain of cost models for data 
mining query optimization. 

Our future work will focus on extending the usability of 
described methods to queries that differ from the view 
definition in explored data view and on constructing cost 
models for data mining query processing. A cost model is a 
necessary condition for ambitious plan of creating a fully 
featured cost-based data mining query optimizer module. 
 
6. References 
 
[1]  Agrawal, R., Imielinski, T., Swami, A., “Mining association 

rules between sets of items in large databases”, In Proc. of 
the ACM SIGMOD International Conference on 
Management of Data, Washington, USA, May 1993 

[2]  Agrawal, R., Srikant, R., “Fast Algorithms for Mining 
Association Rules”, In Proc. of the 20th International 
Conference on Very Large Data Bases (VLDB'94), 
Santiago, Chile, 1994. 

[3]  Agrawal, R., Srikant, R., “Mining Sequential Patterns”, In 
Proc. of the 11th International Conference on Data 
Engineering (IDCDE'95), Taipei, Taiwan, March 1995 

[4]  Agrawal, R., Srikant, R., “Mining Sequential Patterns: 
Generalizations and Performance Improvements”, In Proc. 
of the 5th International Conference on Extending Database 
Technology (EDBT'96), Avignon, France, September 1996 

[5]  Baralis, E., Psaila, G., “Incremental refinement of mining 
queries”, In Proc. of the 1st International Conference on 
Data Warehousing and Knowledge Discovery (DaWaK'99), 
Florence, Italy, September 1999 

[6]  Cheung, D.W., Han, J., Ng, V., Wong, C.Y., “Maintenance 
of discovered association rules in large databases: An 
incremental updating technique”, In Proc. of the 12th 
International Conference on Data Engineering (ICDE'96), 
New Orleans, USA, February 1996 

[7]  Cheung, D. W., Lee, S. D. and Kao, B., “A General 
Incremental Technique for Maintaining Discovered 
Association Rules”, In Proc. of the 5th International 
Conference on Database Systems for Advanced 
Applications (DASFAA'97), Melbourne, Australia, April 
1997 

[8]  Fayyad, U.M., Piatetsky-Shapiro, G., Smyth, P., 
Uthurusamy, R., (Eds.) Advances in Knowledge Discovery 
and Data Mining, AAAI/MIT Press 1996, 

[9]  Gupta, A., Mumick, I.S., “Maintenance of Materialized 
Views: Problems, Techniques, and Applications”, IEEE 
Data Engineering Bulletin, Special Issue on Materilaized 
Views and Data Warehousing, 18(2), June 1995 

[10]  Gupta, A., Mumick, I.S., Materialized Views: Techniques, 
Implementations, and Applications, The MIT Press, 1999 

[11]  Han, J., Pei, J., Mortazavi-Asl, B., Chen, Q., Dayal, U., 
Hsu, M.-C., “FreeSpan: frequent pattern-projected 
sequential pattern mining”, In Proc. of the 6th ACM 
SIGKDD International Conference on Knowledge 
Discovery and Data Mining (KDD'2000), Boston, USA, 
August 2000 

[12]  Han, J., Pei, J., Mortazavi-Asl, B., Pinto, H., Chen, Q., 
Dayal, U., Hsu, M.-C., “Prefixspan: Mining sequential 
patterns efficiently by prefix-projected pattern growth”, In 
Proc. of the 17th International Conference on Data 
Engineering (ICDE'01), Heidelberg, Germany, April 2001 

[13]  Imielinski, T., Mannila, H., „A Database Perspective on 
Knowledge Discovery”, Communications of the ACM, 
Vol.39, No.11, 1996 

[14]  Morzy, T., Wojciechowski, M., Zakrzewicz, M., “Data 
Mining Query Optimization Using Materialized Views” 

[15]  Morzy, T., Zakrzewicz, M., “SQL-like Language for 
Database Mining”, In Proc. of the 1st East European 
Symposium on Advances in Databases and Information 
Systems (ADBIS'97), St-Petersburg, Russia, September 
1997 

[16]  Nag, B., Deshpande, P., DeWitt, D.J., “Using a Knowledge 
Cache for Interactive Discovery of Association Rules”, In 
Proc. of the 5th ACM SIGKDD International Conference on 
Knowledge Discovery and Data Mining (KDD'99), San 
Diego, USA, August 1999 

[17]  Parthasarathy, S., Zaki, M.J., Ogihara, M., Dwarkadas, S., 
“Incremental and interactive sequence mining”, In Proc. of 
the ACM International Conference on Information and 
Knowedge Management (CIKM'99), November 1999 

[18]  Roussopoulos, N., “Materialized Views and Data 
Warehouses”, SIGMOD Record vol.27 no 1, 1998,  

[19]  Thomas, S., Bodagala, S., Alsabti, K., Ranka, S., “An Ecient 
Algorithm for the Incremental Updation of Association 
Rules in Large Databases”, In Proc. of the 3rd ACM 
SIGKDD International Conference on Knowledge 
Discovery and Data Mining (KDD'97), Newport Beach, 
USA, August 1997 

[20]  Toivonen, H., “Sampling large databases for association 
rules”, In Proc. of the 22th International Conference on Very 
Large Data Bases (VLDB'96), Bombay, India, September 
1996 

[21]  Wojciechowski, M., Zakrzewicz, M., “Itemset Materializing 
for Fast Mining of Association Rules”, In Proc. of the 2nd 
East European Conference on Advances in Databases and 
Information Systems (ADBIS'98), Poznań, Poland, 
September 1998 

[22]  Wojciechowski, M., “Interactive Constraint-Based 
Sequential Pattern Mining”, In Proc. of the 5th East 
European Conference on Advances in Databases and 
Information Systems (ADBIS'01), Vilnius, Lithuania, 
September 2001 


