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L Introduction

Some Numbers. ..

m 63% of online population engaged in e-commerce in 2006
m 18% of global sales in 2006

m over 250 online auction sites (C2C business)

m over 1.3 million transactions committed daily

m the size of eBay

95 million registered users

5 million transactions per week

12 million items posted at any given time

net revenues of $ 1.1 billion (40% increase, Q2 2005)
operating income of $ 380 million (49% increase, Q2 2005)
net income of $290 million (53% increase, Q2 2005)
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L Introduction

Success factors

no constraints on time

no constraints on place

reduced prices due to abundance of sellers and buyers
business model of 24/7/365

varitety of auction protocols and offered goods
gambling experience
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L Introduction

Online Auction Fraud

First some numbers

m 73% of unconvinced: security of payment, delivery issues,
warranty terms (EuroBarometer)

m 48% of complaints concerning e-commerce involve online
auction fraud (FTC)

m total loss of $437 million in one year

m 63% of complaints about Internet fraud concerned online
auctions, $478 per capita

m popular methods: bid shielding, bid shilling, accumulation
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L Introduction

Current solution

“positive”, “neutral”, and "negative” feedbacks, but . . .
m virtual bidders drive up reputation score (ballot stuffing)
m sellers create cliques of bidders
m “bad-mouthing” can be beneficial
m reputation of buyers is of little importance
m sellers and buyers exposed to different types of risk
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L Introduction

Contribution

Our contribution

m new measure of reputation for sellers in online auctions
m clustering of densely connected sellers
m automatic recommendation generation
m experimental evaluation of the proposal
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Related Work

m reputation systems: develop long-term relationships
(Resnick et al.)

m deficiencies of feedback-based reputation systems
(Malaga)

m complaint-only trust model (Aberer et al.)

m recursive definition of credibility (Morzy et al.)

m a trusted third party (Ba et al., Snyder)

m using trust and distrust statements between individuals
(Guha et al.)
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LDensity Reputation Measure

Basic Definitions

given a set of sellers S = {s1,Sp,...,5m}
sellers s; and s; are linked if

m at least min_buyers bought from both s; and s;

m the closing price of each auction was at least min_price
strength of a link, denoted link(s;, s;), is the number of
connecting buyers
neighborhood of a seller s;, denoted N(s;), is the set of
sellers {s;} who are linked to s;
density of a seller s;, denoted density(s;), is the cardinality
of seller’s neighborhood N(S;)
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LDensity Reputation Measure

Rationale

How the thresholds are used?

m min_buyers: selects sellers with significant number of sales

®m min_price: prunes low-value transactions
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LDensity Reputation Measure

Rationale

How the thresholds are used?

m min_buyers: selects sellers with significant number of sales

®m min_price: prunes low-value transactions

Rationale behind the measure

m buyer by buying from sellers s; and s; acknowledges both
sellers

m unexperienced buyers do not link many sellers

m a link indicates similar or complementary offers (although it
might be coincidental)

m clusters uncover natural groupings around product
categories
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LDensity Reputation Measure

Score Measure

Score

Density measure does not consider the strengths of links
between sellers

score(s;) = Y density(s;) # 109 ,in puyers NK(Si, ;)
sieN(sj)
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LDensity Reputation Measure

Resistance to Fraud

Density measure is very resistant to fraud
m linking to a single seller induces a cost of
min_buyersxmin_price
m linking to multiple sellers repeats the above procedure
several times

m other sellers used to rate a current seller - harder to
influence (!)
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LDensity Reputation Measure

Recommendations

m let R denote a set of target n sellers

m let d(s;, s;) denote the distance between s; and s; (the
lenght of the shortest path between s; and s;)

Group Density

density(R) = 2_s.cr density(sr)
Z(Spvsq)ERXFi’ d(3p7 Sq)
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LDensity Reputation Measure

Recommendations

When displaying top n sellers as a recommendation for currently
selected seller s; we are trying to find the set R(s;) of sellers who
are characterized by high group density and who are close to a
given seller s;

density (R)

R(s;)) =argmax ——————————
(si) o R D serd(si,sr)
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L Experimental Results

Synthetic Datasets

B www.allegro.pl

m 440000 participants

m 400000 auctions

m 1400000 bids

m analysis: 10000 sellers, 10000 buyers, 6 months of data


www.allegro.pl
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L Experimental Results

Number of pairs and dense sellers w.r.t. min_buyers
threshold
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L Experimental Results

Number of pairs and dense sellers w.r.t. min_price
threshold
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L Experimental Results

Number of discovered clusters
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L Experimental Results

Maximum cluster size

maximum cluster size
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L Experimental Results

Density distribution

No constraints on min_buyers and min_price

Density Distribution
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L Experimental Results

Density distribution

min_buyers = 2, min_price = $ 20

Density Distribution
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L Experimental Results

Average rating w.r.t. density
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L Experimental Results

Average rating w.r.t. density

min_buyers = 2, min_price = $ 30
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L Experimental Results

Projection of density on rating

min_buyers = 2, min_price = $0

Density vs Rating
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LExperimentaIResuIts

Projection of score on rating

min_buyers = 3, min_price = $0

Score vs Rating
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L Experimental Results

Average price w.r.t. density

min_buyers = 3, min_price = $0

Density vs Average Price
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L Experimental Results

Average number of sales w.r.t. density

min_buyers = 4, min_price = $0

Density vs Average #Sales
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LConclusions

Conclusions and Future Work

Conclusions

Discovered clusters of densely connected sellers
m predict future behavior of sellers

m allow description-independent and taxonomy-independent
recommendations

m resist fraud and manipulation
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LConclusions

Conclusions and Future Work

Future Work

m effective use of negative and missing feedbacks
m context-aware recommendations
m further investigation of clusters’ properties
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