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Abstract: Sets and sequences are commonly used to model complex entities. Attributes 
containing sets or sequences of elements appear in various application domains, e.g., in 
telecommunication and retail databases, web server log tools, bioinformatics, etc. However, the 
support for such attributes is usually limited to definition and storage in relational tables. 
Contemporary database systems don’t support either indexing or advanced querying of set or 
sequence attributes, such as executing set containment or set similarity queries. In this paper we 
focus on approximate queries on set and sequence attributes. We present the notion of an 
approximate query and we review similarity measures proposed so far for such attributes. We 
introduce a new similarity measure that can be successfully used with sequences. We present the 
hierarchical bitmap index – a novel and efficient indexing technique for sets and show how the 
hierarchical bitmap index framework can be extended to incorporate sequences as well. We 
conclude with algorithms for efficient approximate query processing using the hierarchical 
bitmap index. 

Keywords: set and sequence valued attributes, set index, sequence index, approximate queries, 
similarity measures 

1. Introduction 
Set-valued attributes provide a concise manner to represent complex objects appearing in 
many different application domains. Depending on the application domain a set valued 
attribute can be used to represent a set of products purchased by a customer during a single 
visit to the supermarket (retail databases), a set of pages and links visited by a user during 
navigation through a web site (web server logs), a set of objects appearing on a picture or 
video (multimedia databases). Sequence-valued attributes can be used whenever time 
dimension appears, e.g., sequence-valued attributes can represent the order of purchases made 
by a customer in a supermarket (retail databases), a sequence of phone calls (mobile phone 
company database), or occurrences of recurrent illnesses (medical database). Set-valued 
attributes are a part of the SQL3 standard, yet the support for such attributes in contemporary 
databases is usually limited to definition and storage of set-valued attributes in relational 
databases. In most implementations set-valued attributes are represented as attributes of user-
defined type or nested tables. There are no SQL extensions to formulate set-oriented queries 
and no physical structures, such as indexes, to support efficient retrieval of sets. Although the 
need to extend standard SQL language with set containment operators has been long 
acknowledged, no practical implementations follow. To the best of our knowledge sequence-
valued attributes are not supported by any commercial database management system. 
The ability to perform set-oriented queries can be utilized by many advanced applications. 
Queries concerning set-valued attributes can be categorized into four main classes. Given a 
searched set (or sequence) provided by a user. Equality queries search for all tuples that are 
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identical with the searched set. Equality queries are useful in accurate medical diagnosis 
(finding patients with exactly defined symptoms) or in identifying suspicious credit card 
usages (finding customers who made a set of purchases in some special order). Second class 
of set-oriented queries are subset queries. These queries search for all tuples that entirely 
contain the searched set. Subset queries can be used to create target groups of customers 
(finding customers who bought specific set of products and could be targeted for some 
promotional offer) or identifying popular navigation paths in web sites (finding frequent 
subsequences of web page requests). Third class of set-oriented queries are superset queries 
that find all tuples that are entirely contained in a searched set. This type of query can be 
useful to discover special groups of customers. Assume that the searched set contains all 
products offered at a reduced price. A superset query can be used to find those customers who 
visited the supermarket only to profit from a discount. The last class of set-oriented queries are 
approximate queries. Approximate queries search for all tuples that are sufficiently similar to 
the searched set, according to some similarity measure. 
Approximate queries have numerous practical applications. Consider an on-line music store. 
Each customer purchasing an album is presented with a set of automatic recommendations. 
These recommendations are built based on the history of previous purchases made by that 
customer. The system generates the set of records that are modestly similar to the albums 
already purchased by the customer. Highly similar recommendation would include most 
albums already possessed by the customer, while lowly similar recommendation would not be 
relevant to the customer profile. Other applications may require finding highly similar tuples, 
e.g., airport security system should identify suspicious individuals based on the images from 
the surveillance cameras. Here the airport security system should be able to quickly compute 
the similarity of passenger images using sets of characteristic features. On the other hand, 
some applications may depend on efficient querying for strongly dissimilar tuples, e.g., to 
quickly discover fraud credit card usages, to identify and analyze dissimilar customer behavior 
patterns, and so on. 
In this paper we present an overview of similarity notions proposed so far for sets and 
sequences. We introduce a new similarity measure for sequences and discuss its usability. We 
present the hierarchical bitmap index – a novel indexing structure for sets and we show how 
the hierarchical bitmap index can be extended to efficiently index sequences of elements as 
well. We conclude with a presentation of algorithms for approximate query processing using 
the hierarchical bitmap index. 

2. Related work 
Processing of set-oriented queries attracted a lot of work from the scientific community and 
resulted in many proposals. Set containment operators were proposed in [7]. In [2] the authors 
proposed to process similarity queries on sets by transforming sets into vectors in Hamming 
space and reduce the problem to finding similar vectors in Hamming space using similarity 
filter index. Other proposals for set indexing resulted in the development of many index types, 
among them inverted files [11], signature trees [1], RD-trees [3], hash group bitmap indexes 
[9], and hierarchical bitmap index [8]. An interesting comparison of different indexing 
techniques for sets can be found in [4]. Indexing of sequences was seldom researched and 
resulted only in few proposals, e.g., [6]. Many similarity measures have been proposed so far, 
both for set similarity [10] and sequence similarity [5]. 
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3. Definitions 
Given a database D of tuples, let D = {t1, t2, … , tn}, where each tuple ti contains a set. Let q 
denote a finite set of elements (called the searched set). The focus of our interest is to 
efficiently process the approximate queries of the form: {t i∈D: sim(ti,q)≥α} for some 
similarity measure sim() and similarity threshold α. To compute the similarity between two 
sets S1, S2 it is necessary to provide a similarity measure. Until now, many different measures 
have been proposed, e.g.: 

• matching: CM(S1,S2)=|S1∩S2| 
• dice: CD(S1,S2)=2*|S1∩S2| / (|S1|+|S2|) 
• Jaccard’s coefficient: CJ(S1,S2)=|S1∩S2| / |S1∪S2| 
• overlap: CO(S1,S2)=|S1∩S2| / min(|S1|,|S2|) 
• cosine: CCOS(S1,S2)=|S1∩S2| / sqrt(|S1|× |S2|) 

In our research we adopted the Jaccard’s coefficient. It is simple and intuitive and can be 
successfully used in many real-world applications. Although it is not a metric (recall that the 
metric is a distance function d(x,y) such that d(x,x)=0, d(x,y)=d(y,x) and d(x,z)≤d (x,y)+d(y,z) 
), it can be easily converted to a metric as d(S1,S2)=1-CJ(S1,S2). 
 
Given a database of sequences, let D={s1, s2, … , sn} where each sequence si is  an ordered list 
of event pairs si=(e1,t1)(e2,t2),…,(en,tn) and every event pair contains the event type ej and the 
time of the event occurrence tj. Let q denote a finite sequence of event pairs (called the 
searched sequence). The focus of our interest is to efficiently process the approximate queries 
of the form: {s i∈D: sim(s i,q)≥α} for some similarity measure sim() and similarity threshold α. 
The most popular similarity measure for sequences is the edit distance d(si,q) [5] which 
represents the distance between a sequence si and a sequence q as the amount of work that 
must be done in order to transform one sequence into another. To transform one sequence into 
another three operations can be used: 

• inserting: Ins(e,t) which adds an event e occurring at time t to the sequence 
• deleting: Del(e,t) which deletes an event e at time t from the sequence 
• moving: Mov(e,t,t’) which moves an existing event e from time t to t’ in the sequence 

Every operation has a certain cost assigned to it. The cost of an insert operation 
c(Ins(e,t))=w(e) where w(e) is a constant proportional to the reciprocal of occurrences of the 
event e in the database D (this is to make inserting of frequent events less expensive than 
inserting of rare events). The cost of a delete operation is the same as the cost of an insert 
operation, c(Del(e,t))=w(e). The cost of a move operation is c(Mov(e.t.t’))=V*|t-t’|, where V is 
a constant and |t-t’| is the length of the move (notice that this cost assumes that the compared 
sequences use the same magnitude of event occurrence times). The cost of an operation oi is 
denoted as c(o i). The cost of an operation sequence c(Oj)=Σkc(ok) for all operations ok∈Oj. The 
edit distance between two sequences d(S1,S2)=min{c(Oj) | where Oj is an operation sequence 
transforming S1 into S2}. This distance function is a measure, but it is difficult to compute and 
implement using a sequence index. 
 
For this reason we propose another similarity measure for sequences. Following is a slightly 
different formulation of the problem of approximate queries on sequences. Let a sequence be 
an ordered list of elements S=<e1,e2,…,en> and let tS(ei) denote the time of occurrence of the 
event ei in sequence S. Given sequences P, Q, let  

• P∩Q = {ei | ei∈P ∧  ei∈Q}, 
• P∪Q = {ei | ei∈P ∨  ei∈Q},  
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• P∩Q = {(ei,ej) | ei∈P ∧  ej∈P ∧  ei∈Q ∧  ej∈Q} 
• P∩→Q={(e i,ej) | ei∈P ∧  ej∈P ∧  ei∈Q ∧  ej∈Q ∧  tP(ei)≤tP(ej) ∧  tQ(ei)≤tQ(ej)} 

There are three factors that affect the similarity ratio between the two sequences: 
• element similarity:  simE(P,Q) = |P∩Q| / |P∪Q| 
• order similarity:   simO(P,Q) = |P∩Q| / |P∩→Q| 
• period similarity:  simP(P,Q) = Σ( |tP(ei)-tP(ej)| / |tQ(ei)-tQ(ej)| ) / |P∩→Q|, for all 

(ei,ej)∈ P∩→Q 
The overall similarity between the two sequences P,Q is a weighted sum of element, order, 
and period similarity:  

sim(P,Q) = w1*simE(P,Q)+ w2*simO(P,Q)+ w3*simP(P,Q), where w1+w2+w3=1. 
The element similarity factor (which is simply a Jaccard’s coefficient of similarity between the 
sets of events appearing in P and Q) measures the pure set similarity and doesn’t consider the 
order and time constraints of events in P and Q. The order similarity factor measures the 
percentage of event pairs (e i,ej) which occur in both sequences and preserve the same order in 
both sequences. Finally, the period similarity factor computes the relative difference of time 
gaps between all pairs of events (e i,ej) occurring in both sequences. In the next sections we’ll 
show how this simple and intuitive distance measure can be successfully used to answer 
approximate queries concerning sequences. 

4. Hierarchical bitmap index 
The hierarchical bitmap index originates from the well-known S-tree structure. The main 
difference is the way indexed sets are represented in index keys. To remove set representation 
ambiguity a hierarchical structure is built for every indexed set. The index consists of a set of 
index keys, each of them representing an indexed set. Given a set-valued attribute A. Every 
index key contains a very long bitmap B. The length of the bitmap B is determined by the size 
of the indexed set domain |dom(A)| and the length of the machine word l. The bitmap B must 
be long enough to map every element ai∈dom(A) to a distinct bit, i.e., the length of the bitmap 
b=l*|dom(A)| / l. The bitmap B is then divided into m=b/l nodes, called the index key leaves. 
Every element in the domain of the indexed set ai∈ dom(A) is mapped via a mapping function 
f(ai) to a kth position in the bitmap B, k∈<1,b>. 
Now we present the procedure of creating an index key for a single set. Given the indexed set 
S={a1,a2,…,an}. For the sake of simplicity we assume the mapping function f(a i)=i. An 
element ai is thus represented by the ith bit of the bitmap B set to `1'. This bit is in fact the jth 
bit in the kth index key node, where k=i/l and j=i-(i/l-1)*l. Every element in the indexed set 
is represented analogously. Therefore, the entire set S is represented by n bits set to `1' on 
appropriate positions in index key leaves. Index key leaves which contain at least one bit set to 
`1' are called non-empty leaves whereas index key leaves that are entirely set to `0' are called 
empty leaves. 
The number of index key leaves must be large enough to uniquely represent every element 
from the indexed domain. For most applications this signifies tens or hundreds of thousands of 
bits. On the other hand, even for large average indexed set size the majority of index key 
leaves would be empty. This leads to the idea of compressing the information about index key 
leaves by the next level of inner nodes. Every bit in an inner node corresponds to a single 
index key leaf. If the referenced leaf is non-empty, then the appropriate bit in the inner node is 
set to `1', otherwise it is set to `0'. The ith index key leaf is represented by the jth bit in the kth 
inner node, where k=i/l and j=i-(i/l-1)*l. Every next level of the inner nodes contains l-
times less nodes then the prior level. This procedure is repeated recursively until the level is 
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reached on which only one node is sufficient to represent all inner nodes at the subsequent 
level. This single node at the highest level is called the index key root . 
The maximum number of elements that can be indexed in a single index key is determined by 
two parameters, namely, the size of a single index key node l (usually this is a machine word, 
32 or 64 bits) and the depth of the index key d. These parameters are dynamic and depend on 
the application domain. Shallow index keys are faster to process, but they limit the maximum 
number of distinct elements that can be represented in the index key. Deep index keys are 
slower to process, but allow to uniquely represent huge domains. Note that the average size of 
the indexed sets, which doesn't have to be known in advance, is not relevant to the 
construction of the index. For example, assume l=32 and d=4. The root of a single index key 
can store information about 32 inner nodes at level 2. Each of those nodes stores information 
about another 32 inner nodes at level 3, which results in 322=1024 inner nodes at level 3. Each 
inner node at level 3 represents 32 inner nodes at level 4. This gives 323=32768 index key 
leaves, each representing 32 different elements from the indexed domain. As the result, a 
single index key of the hierarchical bitmap index with l=32 and d=4 allows to uniquely 
represent sets with domain of the size 324=1048576 elements. 
To better illustrate the idea of the hierarchical bitmap index consider the following example of 
a single index key construction. 
 

 
 

Figure 1 Single key of the hierarchical bitmap index 

Example 1. Assume index key node length l=4 and index depth d=3. Assume also the 
mapping function f(a i)=i. Given the set S={2,3,9,12,13,14,38,40}. The index key of the set S 
is depicted in Figure 1. At the lowest level 8 bits corresponding to the elements of the set S are 
set to `1', so index key leaf nodes 1,3,4 and 10 become non-empty (they are marked with a 
solid line). At the upper level 4 bits representing non-empty leaf nodes are set to `1'. In the 
root of the index key only first and third bits are set to `1`, which means that only first and 
third inner nodes at the level 2 are non-empty. Notice that the index consists of only 4 index 
key leaf nodes, 2 inner index key nodes at the level 2 and a single index key root. Empty 
nodes (marked with a dotted line) are not stored anywhere in the index and are shown in the 
figure for explanation purposes only. 
All index keys combined form the hierarchical bitmap index. Index keys are divided into 
groups based on the number of non-empty nodes (both inner nodes and index key leaves). 
Only non-empty nodes are physically stored in the index. All index keys with equal number of 
non-empty nodes are stored in a single file of fixed-size records. This greatly simplifies the 
management and maintenance of the index. Index key roots with pointers to the remaining 
parts of the index keys are stored in the signature tree. The leaves of the signature tree contain 
the index key roots and the pointers to the remaining parts of each index key, while the 
internal nodes contain the descriptions of the referenced leaves. Each leaf of the signature tree 
is represented by the superposition of all index key roots contained in that leaf. Additionally, 
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signature tree leaves are connected via pointers to form a linked list which enables a linear 
scan of all index key roots of the hierarchical bitmap index. 

5. Approximate queries using hierarchical bitmap index 
The result of an approximate query is the set of all tuples which are similar to the user's query 
q provided some similarity measure sim(ti,q), i.e, {t i∈R | sim(t i,q)≥α}, α is  the similarity 
threshold provided by the user. In this discussion we used the simple similarity measure of 
Jaccard's coefficient. 
Let q denote a finite set of elements drawn from the domain dom(A) of the set-valued 
attribute. We will further refer to q as to the user's query. Given a relation R={t1,t2,…,tn}. Each 
tuple ti contains a set. Assume that there is a hierarchical bitmap index defined on the relation 
R. Let K(t i) denote the index key for the tuple t i. Let Nn

m(ti) denote the n th node at the mth level 
of the index key of ti. Let & denote the bitwise AND operation. The following algorithm is 
used to perform approximate search using the provided similarity threshold α. 
 
for all K(ti) from the S-tree leaves /*recall that all index key roots are stored in an S-tree*/ 

c=0; 
 for all levels l 
  for all index key nodes n at level l in q 

  p=skip(ti,l,n); 
   x=Nl

p+1(ti) & Nl
n(q); 

   c=c+count(x); 
  end for; 
 end for; 
 s=count(K(q))+count(K(ti))-c; 
 if c/s ≥ α then  return(true); 

 else return(false); 
 end if; 
end for; 
 
The main idea of the algorithm is to compare all pairs of corresponding nodes and count the 
number of positions on which both nodes contain `1's. If the ratio of common `1's to the 
number of `1's in compared sets is higher than the user defined threshold α then the tuple is 
added to the answer, else the tuple is rejected. For every tuple ti the algorithm iterates over all 
nodes of q and bitwisely ANDs those nodes with corresponding nodes in K(t i). 
Determining the corresponding node to be compared with a given node of K(q) is difficult and 
is performed by the function skip(ti,l,n). Both compared index keys may contain different 
number of nodes as there are nodes in K(t i) which represent elements in t i that are not relevant 
to the query q. So, for every node Nn

l(q) from the index key K(q) the function skip(ti,l,n) 
computes the number of nodes that have to be skipped in K(t i) in order to reach the node 
which corresponds to Nn

l(q). This computation is performed in the parent node of the Nn
l(ai), 

which is  the node Nn%d+1
l-1(ti) (where % denotes the modulo operator). The number of nodes 

that must be skipped at the lth level of the index key K(t i) is equal to the number of bits in 
Nn%d+1

l-1(ti) set to `1' and preceding the position n%d+1 (these bits represent nodes at the level 
l which are not relevant to the query q). 
The function count(x) computes the number of bits set to `1' in x . When applied to an index 
key the function count(K(t i)) returns the number bits set to `1' in the base bitmap B of the 
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index key. After the comparison of all node pairs is finished the ratio of common positions is 
calculated. If this ratio exceeds the user defined similarity threshold α the algorithm adds the 
given tuple to the result. The hierarchical bitmap index can be easily adopted to other 
similarity measures. The key feature of the index, which is the unique and unambiguous 
representation of the elements of the indexed sets, makes it suitable for other similarity 
measures as well. 

6. Sequential hierarchical bitmap index and approximate 
queries on sequences 

In this section we present a modification of the hierarchical bitmap index that allows to 
efficiently index sequences and store the time gaps between the consecutive elements of the 
indexed sequences. Modified structure is similar to the original hierarchical bitmap index and 
varies only in the representation of the leaf nodes of the index key. Recall that in case of 
original hierarchical bitmap index each index key leaf contains a part of the base bitmap B 
(usually every leaf consists of one machine word). With sequences it is also necessary to store 
not only the elements of the sequence, but the occurrence time of each event as well. In the 
sequential hierarchical bitmap index each index key leaf is a one page of memory. The first 
word on the page is the part of the base bitmap B. The rest of each page is filled with time 
occurrences of every event indexed by the current index key leaf. Above the leaf level all 
inner nodes of the index key are identical to the original hierarchical bitmap index framework, 
namely, they contain bit descriptions of lower leaves with a bit set to `1’ to signify a non-
empty index key leaf page. Sequential hierarchical bitmap index can be successfully used to 
process subsequence and supersequence queries analogously to the hierarchical bitmap index. 
In this paper we concentrate on efficient processing of approximate queries using sequential 
hierarchical bitmap index. 
The structure of the index results in a two-phase search algorithm. First, the index is scanned 
to find the index keys which contain a sufficient number of common elements with the 
searched sequence provided by a user. This is done exactly in the same way as in case of 
traditional hierarchical bitmap index. Next, the index key leaf pages are scanned to compute 
the order and period similarity between the compared sequences. The order of two events ei,ej 
in a sequence S can be determined easily on the basis of their time occurrences, i.e.,  

ei→Sej iff tS(ej)-tS(ei)>0. 
The result of an approximate query is the set of all sequences which are similar to the user's 
query q provided some similarity measure sim(s i,q), i.e, {s i∈R | sim(s i,q)≥α}, α is the 
similarity threshold provided by the user. In this discussion we used our combined measure of 
element, order, and period similarity. 
Let q denote a finite sequence of events. We will further refer to q as to the user's query. Given 
a relation R={s1,s2,…,sn}. Each sequence si contains a sequence. Let tS(ei) denote the 
occurrence time of an event ei in the sequence S. Assume that there is a sequential hierarchical 
bitmap index defined on the relation R. Let K(s i) denote the index key for the sequence s i. Let 
Nn

m(s i) denote the nth node at the mth level of the index key of si. Let & denote the bitwise 
AND operation. The following algorithm is used to perform approximate search using the 
provided similarity threshold α. 
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for all K(s i) from the S-tree leaves 

c=0; d=0; e=0; 
 for all levels l 
  for all index key nodes n at level l in q 

  p=skip(s i,l,n); 
   x=Nl

p+1(si) & Nl
n(q); 

   c=c+count(x); 
   d=d+number of positions p in x where tq(p)<tsi(p) / count(x); 
   e=e+SumDist(x, Nl

n(q), Nl
p+1(si)); 

  end for; 
 end for; 
 s=count(K(q))+count(K(si))-c; 
 simE=c/s; 
 simO=d; 
 simP=e; 
 if w1*simE + w2*simE + w3*simE ≥ α  

then  return(true); 
 else return(false);  

 end if; 
end for; 
 
The main idea of the algorithm is the following. The signature tree containing the sequential 
hierarchical bitmap index is scanned and for every index key the element similarity between 
the index key and the searched sequence is computed. While scanning the index key leaf 
pages the algorithm computes in parallel the order similarity (the number of common elements 
appearing in both keys in the same order) and the period similarity. The latter is computed by 
the function SumDist(x, Nl

n(q), Nl
p+1(s i)) which analyzes all positions in the common part x 

and computes the difference of the distances in si and q between all elements represented by x. 
This algorithm is currently being implemented and tested against previously proposed 
solutions. 

7. Experiments 
The experiments where conducted on top of the Athlon 1,4GHz PC with 512MB of memory. 
Data sets were created using DBGen from the IBM Quest Project. The parameters of synthetic 
data sets were chosen to imitate the real data sets occurring in retail databases. The number of 
distinct elements varies from 1000 to 200’000 elements, the number of indexed sets varies 
from 1000 to 1 milion sets, the average set size varies from 10 elements to 50 elements. We 
measured also the influence of data distribution on the hierarchical bitmap index. The data 
correlation was simulated by varying the number of frequent itemsets in the source data, this 
number changes from 5000 to 100’000 patterns (for 200’000 sets and 100’000 di.erent 
products). The queries were generated based on the patterns appearing in a given data set. All 
measurements are given in processor ticks. Currently only the results for approximate queries 
on sets are available, the experiments on approximate queries on sequences are being 
conducted. 
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  Figure 4 
 
Figure 2 presents the search times for approximate queries on sets with regard to the number 
of indexed sets varying from 1000 to 1 milion. It can be easily seen that the hierarchical 
bitmap index performs better than the brute force approach (the full table scan) and that the 
performance is linear with regard to the number of indexed sets. In the next experiment 
(Figure 6) we varied the size of the indexed domain from 1000 different elements to 200 000 
different elements. Again, the hierarchical bitmap index is beneficial in these circumstances. 
An interesting feature is the saturation of the index, starting from some border value the search 
time doesn’t depend anymore on the numb er of different elements (this happens when 
elements become rare due to their number). Finally, Figure 4 presents the search times for 
approximate queries when the average size of the indexed sets changes from 10 elements to 50 
elements. 

8. Conclusions 
Approximate query processing on sets and sequences is very important from the point of view 
of modern applications. However, the support for such functionality in commercially available 
database systems is very limited. In this paper we argued that new indexing techniques must 
be developed and new algorithms implemented in order to allow advanced set and sequence 
querying in relational database systems. We also revised a suitable solution, the hierarchical 
bitmap index. It is very efficient at processing different classes of set-oriented queries, in 
particular, it is capable of efficient approximate querying on sets with respect to different 
similarity measures. We also proposed a modification of the hierarchical bitmap index in order 
to allow it to efficiently index sequence data. We proposed a novel similarity measure for 
sequences and showed how it can be employed using the sequential hierarchical bitmap index. 
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Our future work agenda includes, among others, experimental evaluation of the newly 
proposed similarity measure for sequences, experimental comparison of the sequential 
hierarchical bitmap index with SEQ family of indexes [6], and using adjacency matrices with 
labeled distances between elements to index sequences. 
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