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Summary: Research in the data warehousing area focuses on design issues, data maintenance and query 
optimization. Recently new research areas appeared that are related to dynamicity of data sources. Dynamicity of 
data sources can be categorized into: data updates , schema and instance changes, and constraint modifications. 
Existing data warehouse systems manage data updates. However, they are unable to follow schema and instance 
changes and constraint modifications. 
In this paper we analyze schema and instance changes caused by dynamically changing external data sources. 
We advocate the need to apply the external data source schema changes to a data warehouse and we present 
modeling issues involving star schema evolution and data warehouse versioning. Finally, we show query 
processing in presence of different data warehouse versions. 
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1. INTRODUCTION 
 

Integration of different, autonomous and heterogeneous external data sources (EDS) is 
crucial for today’s businesses. Two basic approaches to consolidate distributed EDSs and 
provide integrated information to users [1,2,3] are the query-driven approach and the data 
warehousing approach. In the query-driven approach EDSs are integrated only at the logical 
level by merging all local schemas into a single global logical schema (no integration of EDS 
contents takes place, all data is stored only locally inside the EDSs). User queries executed 
against the global schema are translated by mediators into one or more queries executed 
against local EDSs. The mediators join the answers from the EDSs and return the final answer 
to the user. This approach has several advantages. No central database is required to 
physically integrate data from external data sources. There are no extract-transform-load 
processes to move data from EDSs to centralized data repository. There is no latency in data, 
all data is up-to-date. 

The data warehousing approach is based on the centralized data repository. Data is 
extracted from EDSs, transformed (i.e. filtered, cleansed, enriched), and loaded into a 
centralized data repository called a data warehouse. As opposed to the query-driven approach, 
the data warehouse integrates at the global level both schemas and data. Integrated global 
schema consists of a collection of tables/views defined over export schemas of EDSs. Queries 
submitted to the data warehouse are executed locally, without accessing original EDSs, which 
considerably increases the query performance. It improves the availability of data and protects 
the data warehouse from the network delays or even the inaccessibility of external data. Local 
processing at EDSs is not affected by global applications running in the data warehouse. The 
data warehouse provides users with additional information such as aggregates, summaries or 
historical data. These are the main reasons why the data warehousing approach became such 
popular technology for numerous enterprises requiring high query performance and high data 
availability [4,5,6]. 

Until now research in data warehousing concentrated mainly on design issues, query 
performance and optimization, data maintenance, data refresh strategies and implementation 
issues. New file organizations have been proposed along with new access methods and new 
index structures (e.g. bitmap indexes). Most data warehouse models assumed, that data 
sources and data warehouse schema are static and that only the data changes. However, this 
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assumption doesn't hold in the real world applications. Changes occur frequently both in 
EDSs and in the data warehouse schema and instance. Most often those changes concern 
dimensions and dimension members (e.g., assigning a dimension member to another parent 
member, merging two dimension members, etc.). After such change queries touching data 
affected by the change begin to yield incorrect results. Contemporary data warehouses are 
unable to handle such changes, which hinders their functionality. 

In this paper we discuss the data warehouse evolution triggered by changes in EDSs and 
data warehouse schema/instance. We present how EDS schema changes affect data 
warehouse schema, middleware level, and data warehouse content. We illustrate our 
discussion by an example of the TurboMachine Company data warehouse. We describe the 
effects of data warehouse evolution on various applications and we examine the necessary 
changes that have to be propagated to the applications in order to make them work. 

This paper is organized as follows. In Section 2 we present the generic data warehouse 
architecture. In Section 3, we discuss the impact of EDSs changes on the data warehouse 
schema, the data warehouse content, and the evolution of the middleware under those 
changes. Section 4 presents an example of the data warehouse system for the TurboMachine 
Company. Section 5 illustrates the evolution of the sample data warehouse and its middleware 
under EDSs changes. The paper is concluded in Section 6 with a summary and a future work 
agenda. 

 
2. DATA WAREHOUSE ARCHITECTURE 

 
Picture 1 depicts the architecture of a data warehouse. The data warehouse is designed to 

integrate autonomous and heterogeneous external data sources. The component EDSs may 
vary from proprietary applications and legacy systems to modern relational, object or object-
relational database systems. They may include flat files, spreadsheets, XML documents, news 
wires or multimedia contents. All EDSs usually differ in data models, require different user 
interfaces, and present different functionality. 

 

Picture 1. Logical architecture of a data warehouse system 
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EDSs are connected to the data warehouse through wrappers which form a part of the 

middleware level. Wrappers extract data from EDSs, transform extracted data into the 
common data warehouse model, monitor changes to EDSs and propagate these changes to the 
data warehouse. The middleware is responsible for data cleansing and discovering 
inconsistencies in the source data, integration and transformation of data, data loading and 
refreshment, archiving, performing periodical backups, ensuring data quality, etc. Data 
warehouses are usually implemented in a multi- tier architecture, with the bottom tier being a 
relational database working as the data warehouse server. Internal tiers contain local data 
marts with copies of related fragments of the data warehouse. Top tiers contain only query 
and reporting tools, data mining tools, etc. Sometimes the top tier is a thin client containing 
only the web browser. 

 
3. DYNAMIC EDSS 

 
The data warehouse integrates autonomous and heterogeneous EDSs. Autonomy means 

that the EDSs preserve the autonomous and full control over its data. Heterogeneity means  
that the EDSs use different data models and different user and programming interfaces. Local 
autonomy and heterogeneity of EDSs mean that they were developed independently and are 
not aware of the integration issues. An important consequence of the autonomy of EDSs is 
that they may evolve in time independently and that they change their data and schemas 
without being controlled from the global data warehouse level. 
 

The changes in the EDSs can be categorized into [7]: 
• content changes such as insert/update/delete a tuple 
• schema changes such as create/alter/drop a column or create/drop a table 
• instance changes such as create/merge/split/drop a dimension 
• constraint changes such as create/alter/drop an integrity constraint. 

 
The existing data warehousing systems deal only with the first type of changes, namely, 

with the content changes. The content changes of EDSs are detected and propagated to the 
data warehouse in one of the following ways. For EDSs that are database systems the source 
can collect all updates that occurred during a specified interval of time and send all updates 
periodically to the data warehouse. All updates can be shipped either as a collection of data 
(data shipment) or as a collection of transactions (transaction shipment). The size  of the 
refresh period depends on the data warehouse usage type, types of data source, the balance of 
work, etc. Changes shipped to the data warehouse can be applied either all at once (batch 
update) or incrementally (incremental update). The entire process of extracting, filtering, 
transforming, cleaning, transmitting, and loading updates into the data warehousing system is 
called data warehouse refreshment. 

Most of the research in the data warehouse refreshment has focused on transactional 
incremental data warehouse refresh under content changes of EDSs. However, little research 
has examined the data warehouse refresh under schema changes and constraints 
modifications. In this paper we focus on the schema and instance changes propagation from 
the EDSs to the data warehouse. Due to the lack of space we omit the issue of propagating 
constraint modifications and the issue of the data warehouse maintenance under the evolving 
constraints. 

Schema changes of EDSs are very common in the real world applications [8]. Integrating 
data from evolving EDSs raises new challenges in the maintenance and evolution of data 
warehouse systems. These challenges can be classified into four groups: 
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• modifying data warehouse schema according to data source schema changes 
• modifying middleware level according to data source schema changes 
• modifying data warehouse content according to data source schema changes 
• modifying data warehouse content according to data source semantic changes 

 
1.1. EDS SCHEMA CHANGES AND THE DATA WAREHOUSE SCHEMA 

 
A data warehouse schema is usually defined as a set of materialized views over schemas of 

EDSs participating in the warehouse. Every change in the schema of an EDS invalidates the 
schema of the entire data warehouse. One possible solution is to isolate and hide those 
changes from the data warehouse. Isolation can be achieved by the modification of the 
middleware level, but this solution is limited by the time as further changes of the EDS 
schema would lead to even greater inconsistency between the EDSs schemas and the data 
warehouse global schema. Besides, hiding the changes from the data warehouse hinders the 
functionality of the data warehouse because as the result some important data may be 
inaccessible to data warehouse applications. 

Another solution is to propagate all changes happening in the EDSs to the data warehouse. 
Changes should be incorporated into the metadata repository of the data warehouse. The 
metadata repository stores administrative data necessary to manage the data warehouse, such 
as: descriptions of external data sources, their contents and schemas, data warehouse schema, 
view and derived data definitions, dimensions, categories and hierarchies, descriptions of pre-
defined queries and reports, data mart locations and contents, data partitions, data extraction, 
cleansing, and transformation rules, defaults, data refresh and purge rules, user profiles, user 
groups, etc. 

 
1.2. EDS SCHEMA CHANGES AND THE MIDDLEWARE 

 
Adopting middleware level to changes taking place in the EDSs is a difficult task. Many 

external data sources are not capable of signaling changes to the middleware level and the 
data warehouse (the so-called non-cooperating data sources). In such cases it is necessary to 
develop new solutions and algorithms to allow for dynamic adaptation of the middleware to 
the changes. To detect changes in the EDSs schemas the following techniques can be applied: 
analysis of the log files (if the source allows for logging changes or transactions), polling 
(issuing queries to detect changes in the data structure), custom made programs or screen 
scraping. For external sources that are capable of notifying middleware and data warehouse 
levels of changes in source schema (the so-called cooperating data sources) the most popular 
technique are triggers (small programs that execute automatically whenever a defining 
condition is fulfilled). 

After the change has been discovered it must be propagated to the middleware level, which 
is the most difficult task. Changes applied to middleware wrappers must ensure that the 
wrappers preserve their capabilities to query external sources, translate queries and updates 
from the EDSs to the data warehouse and vice versa, perform data cleansing and data 
transformations, backup and archive source data, etc. 

 
1.3. EDS SCHEMA CHANGE AND THE DATA WAREHOUSE CONTENT 

 
All changes occurring in the EDSs schemas affect also the data warehouse content and 

must be properly handled. One possible solution is to create a separate instance of the data 
warehouse content for each instance of the data warehouse schema. This leads to the idea of a 
multi-versioning of the data warehouse and creates new challenges with respect to the 
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maintenance, evolution, and query processing in such multi-version data warehouse. As we 
will show later, this approach is feasible mainly for data warehouses that are subject to 
dimension and hierarchy changes. For EDSs schema changes related to creating, altering, or 
dropping attributes and tables more appropriate is to adjust the data warehouse content to the 
change. This requires additional knowledge that must be provided by a user, e.g., when 
creating new attribute in a given table the user must provide correct values of the newly 
created attribute for all tuples already stored in the data warehouse. Moreover, it also may be 
necessary to update some aggregates and summaries contained in the data warehouse. The 
adjustment of the data warehouse content can be performed either in batch or incremental 
mode. 

The biggest problem is how to process a change in the EDS that is related to modifying the 
meaning of an attribute or an aggregate. This must be answered in order to provide the logical 
independence between the conceptual level of the data warehouse and the external level 
consisting of the front-end applications. In other words, the problem is how to accommodate 
changes in the data warehouse in such a way that the existing access and reporting tools are 
not affected by the changes and keep delivering correct results. To some extent, this problem 
can be solved by the proper data warehouse schema design and new data warehouse models 
that are aware of the changes and modifications in both data warehouse schema and the 
meaning of attributes, aggregates and summaries. 

 
1.4. EDS SEMANTIC CHANGE AND THE DATA WAREHOUSE CONTENT 

 
The most popular architecture for data warehouses are multidimensional data cubes, where 

transaction data (called cells, fact data or measures) are described in terms of master data 
(also called dimension members) hierarchically organized in dimensions, where the facts of 
the upper levels are computed from the facts of the lower levels by some consolidation  and 
aggregation functions. This multi-dimensional view provides long term data that can be 
analyzed along the time axis, whereas most EDSs only supply snapshots of data at one point 
of time. Available warehouse systems are therefore prepared to deal with changing measures, 
e.g., changing profit or turnover. Surprisingly, they are not able to deal with modifications in 
dimensions, although from the EDS point of view there is nothing fundamentally different 
between the measures data and the dimensions data stored in external data sources. 

Consider the following example: data warehouse contains data about sales and production 
for a given company in different European countries. All data (for measures, dimensions and 
categories) is shipped from EDSs that are operational database systems managing production 
and sales in each country. One day the change appears: two dimension members "West 
Germany" and "East Germany" are merged together to form one dimension member 
"Germany". On the other side one dimension member "Czechoslovakia" is split into two 
distinct members "Czech Republic" and "Slovakia". Another possible change is the extension 
of the hierarchy member "European Union" with 10 new dimension members (namely the 
East European countries). The question is now: is it possible to get correct results for queries 
like “show a comparison of production in France and Germany during last 20 years” (at some 
point in time the numbers for "Germany" will increase due to the added production of the 
"East Germany") or "examine the sales in Czech Republic during last 20 years" (there was no 
dimension member "Czech Republic" 15 years ago). Without knowing the above changes 
such queries end up with incorrect results. 

The problem here lies in the implicitly underlying assumption that the dimensions are 
orthogonal. Orthogonality with respect to the dimension time means that the other dimensions 
ought to be time- invariant. This silent assumption inhibits the proper treatment of changes in 
dimension data. One has to be aware that the dimensions data, i.e., the structure, the schema 
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and the instances of the dimensions of a data warehouse may change over time. This problem 
has recently attracted a lot of research attention [9,10,11]. One of the proposed solutions is 
multi-versioning of the data warehouse instances joined with temporal extensions to the 
existing data warehouse model. For example, the COMET model fulfills these assumptions 
and offers the following features: 

• representation of changes in data warehouses schema, 
• identification of periods without a significant change, 
• mapping and transformation functions between structure versions, 
• processing queries reading data that is contained in several versions, 

The detail description of the proposed solution is beyond the scope of this paper. 
Nevertheless, it is worth noticing that this approach allows the data warehouse content 
adjustment in response to changes occurring in the EDSs that modify the meaning of selected 
attributes, in particular changes that modify the content and structure of dimensions. 

 
4. CREATION OF DATA WAREHOUSE FROM DIFFERENT DATA SOURCES  

 
Let us consider a database for the TurboMachine Company that leases machines to other 

companies (the other companies are referred here as locations) and collects (usually once a 
week) a leasing fee that is based on a meter describing the extent of use of each machine. For 
each location the weekly (but can be more often) leasing fees are grouped into a collection 
ticket. The TurboMachine Company has many branches. The database for one of the branches 
includes four tables: Machines, Locations, CollectionTickets, and 
MeterReadings as shown in Picture 2. 

 

Picture 2. The database for a branch of the TurboMachine Company 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
The role of each table is as follows. Machines contains and keeps records of the 

information for a specific machine. Locations contains the information about each 
company which has/had leased a machine. Table Yearly Taxes includes the important 
attribute AssignedTaxes that can change every year for each machine. MeterReadings 

Locations 
LNumber 
Name 
Street 
City 
State 
Zip 
Contact 
Phone 
Taxes 

MeterReadings 
MID 
Money  
Tnumber 
CollectedTaxes 

CollectionTickets 
TNumber 
LNumber 
Date 
TCategory 

Machines 
MID 
SerialNumber 
Description 
Category 
Cost 

1 
∞

1 

1 

∞

∞

Yearly Taxes 
MID 
Year 
Assigned Taxes ∞

1 
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has a log of all collections made at a location for a particular date and for a specific machine. 
It includes an important attribute, CollectedTaxes. Even though there is some guidance 
on how to compute this attribute for each collection, practically, it is often determined 
individually. Therefore it is necessary to have it as a regular (not derived) attribute. 
CollectionTickets has a log of summary information about all collections made at a 
location for a given date. One of the obvious constraints is that the collected taxes should not 
exceed the assigned taxes. 

All branches of the TurboMachine Company contain identical set of tables. In the process 
of the creation of a data warehouse, data from all branches was used to populate the data 
warehouse. Let us assume that the data warehouse schema for the TurboMachine Company is 
a relatively typical star schema as shown in Picture 3. 

 
Picture 3. The initial star schema for the data warehouse for the TurboMachine Company 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Conceptually, the model includes dimension tables: Machines, Locations, and Time, 

and the fact tables Facts_CollTax and Facts_AsTax. Here, for simplicity, we assume 
that the table Time does not need to be included in the following discussion, since all time 
attributes can be identified in the fact table Facts_CollTax. Populating the dimension 
tables Machines and Locations, and the fact table Facts_AsTax by data contained in 
the local databases is conceptually straightforward. Populating the fact table 
Facts_CollTax is a little more complicated. It involves creating a join of each pair of 
MeterReadings and CollectionTickets, and then union all of the results. The 
reason for performing a join is to create a fact table that is in the center of the star (needs to 
have foreign keys for all dimension tables). 

Very often, a data warehouse schema contains summary tables in order to improve 
performance. The discussion on the choice of summary tables is beyond the scope of this 
paper, but many aspects are already described in. The summary tables are obtained by 
grouping Facts_CollTax by various index attributes. Table T23 is obtained by grouping 
Facts_CollTax by the index attributes LNumber, Year, Month, Day and aggregating 
Money to obtain SumOfMoney and Taxes to obtain SumOfTaxes. During this operation 
the MID attribute is removed, thus we will refer to this operation as R, for remove, with the 
appropriate argument. The summary table T23 can be defined using the following statement. 

Facts_CollTax 
LNumber 
MID 
Year 
Month 
Day 
Money  
CollectedTaxes 

Machines 
MID 
SerialNumber 
Description 
Category 
Cost 

Locations 
LNumber 
Name 
StreetAdd 
City 
State 
Zip 
Contact 
Phone 
Taxes 

TIME 
Year 
Month 
Day 

Facts_AsTax 
MID 
Year 
Assigned Taxes 
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CREATE TABLE T23 
  (LNumber, Year, Month, Day, SumOfMoney, SumOfTaxes) AS 
SELECT LNumber, Year, Month, Day, SUM(Money), SUM(Taxes) 
FROM T11 GROUP BY LNumber, Year, Month, Day; 

 
Similarly we can create table T24 by grouping Facts_CollTax by index attributes 

LNumber, MID, Year and Month, and aggregating Money to obtain SumOfMoney.  
 

CREATE TABLE T24 (LNumber, Year, Month, MID, SumOfMoney) AS 
SELECT LNumber, MID, Year, Month, SUM(Money), 
FROM Facts_CollTax GROUP BY LNumber, MID, Year, Month; 

 
The next level (third level) tables can be created from table Facts_CollTax from the 

first level or from some already computed tables from the second level. For example, to create 
table T35 we can use table Facts_CollTax, T23, or T24. If we choose table T24, then 
we need to do a grouping of T24 by index attributes LNumber, Year and Month, and 
aggregating Money to obtain SumOfMoney. The following statement can be used to define 
the summary table T35. 
 

CREATE TABLE T35 (LNumber, Year, Month, SumOfMoney) AS 
SELECT LNumber, Year, Month, SUM(SumOfMoney), 
FROM T24 GROUP BY LNumber, Year, Month; 

 
5. IMPACT OF EVOLVING DATA SOURCES ON DATA WAREHOUSE SYSTEM 

 
The schema of external data sources can change significantly, as we mentioned previously. 

In our case, let us assume that the new method of computing and collecting taxes was 
introduced based on taxing the locations rather than machines. This results in changing 
several attributes in existing tables: Yearly Taxes, CollectionTickets, and 
MeterReadings as shown in Picture 4. 

 
Picture 4. Database for a branch of the TurboMachine Company 

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Locations 
LNumber 
Name 
StreetAdd 
City 
State 
Zip 
Contact 
Phone 

CollectionTickets 
TNumber 
LNumber 
Date 
TCategory 
CollectedTaxes 

Machines 
MID 
SerialNumber 
Description 
Category 
Cost 

1 
∞

1 

1 

∞

∞ 

MeterReadings 
MID 
Money 
Tnumber 

Yearly Taxes 
LNumber 
Year 
Assigned Taxes ∞ 

1 
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Yearly Taxes also contains the information about assigned taxes, but this time it is 

related to location for the specific year. Also MeterReadings does not contain the 
information about collected taxes any more but rather CollectionTickets includes 
important for our consideration attribute CollectedTaxes. Here again, the constraint is 
that the collected taxes should not exceed the assigned taxes is still valid but it should be 
expressed differently. 

Conceptually, the model includes dimension tables: Machines, Locations, and Time, 
and fact tables Facts_CollTax and Facts_AsTax. Populating the dimension tables 
Machines and Locations would not change. Population of the fact tables 
Facts_CollTax and Facts_AsTax is done differently, but changes are conceptually 
straightforward. 

Population of the summary table T23 needs to be more significantly changed. This table is 
obtained in several steps. First, T23A is obtained by grouping Facts_CollTax by 
appropriate index attributes of Facts_CollTax. 

 
CREATE TABLE T23A(LNumber, Year, Month, Day, SumOfMoney) AS 
SELECT LNumber, Year, Month, Day, SUM(Money), SUM(Taxes) 
FROM Facts_CollTax 
GROUP BY LNumber, Year, Month, Day; 
 

Then, the table T23A is joined with the fact table Facts_CollTax in order to include in 
the resulting table T23 the attribute SumOfTaxes. The creation of the table T35 and T43 
would be done without change. However, creation of the tables T24 and T36 would be 
slightly modified reflecting the fact that they do not have the SumOfTaxes attribute. 

 
CREATE TABLE T24 (LNumber, Year, Month, MID, SumOfMoney) AS 
SELECT LNumber, MID, Year, Month, SUM(Money), 
FROM Facts_CollTax 
GROUP BY LNumber, MID, Year, Month; 
 

As was discussed before, the new data warehouse schema requires some data warehouse 
content adjustments. The first approach is based on archiving the original data warehouse 
schema, and corresponding data. This solution leads to multi-version data warehouse system 
and raises new challenges in the maintenance and evolution of such data warehousing systems 
and applications. 

Another approach is based on adjustment of the data warehouse content accordingly to 
changes in the data warehouse schema caused by EDS changes. For example, adding, 
removing or modifying the existing attribute in the data warehouse may be necessary as 
shown below. 

 
CREATE TABLE T23 
(LNumber, Year, Month, Day, SumOfMoney, Taxes) AS 
SELECT LNumber, Year, Month, Day, SumOfMoney, SumOfTaxes 
FROM OLD_Facts_CollTax; 

 
In order to distinguish here between old and new table Facts_CollTax we referred to 

the old Facts_CollTax table OLD_Facts_CollTax. Similarly removing the 
SumOfTaxex attribute from the old table T24 (called OLD_T24) is necessary as shown 
below. 
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CREATE TABLE T24 (LNumber, MID, Year, Month, SumOfMoney) AS 
SELECT LNumber, MID, Year, Month, SumOfMoney) 
FROM OLD_Facts_CollTax; 

 
Moreover, it may be possible to create new fact tables, and/or summary tables. A good 

example is the creation of new Facts_AsTax table from old Facts_AsTax table. 
Depending on the way the taxes collection changed it may or may not be possible. 

 
6. CONCLUSIONS 

 
In this paper, we discussed the problem of the data warehouse evolution resulting from the 

changes in the underlying external data sources. We show how source schema changes affect 
the data warehouse schema, the middleware level and the data warehouse content. We 
presented issues concerning the changes in dimension hierarchy and their impact on correct 
query processing. We showed a process of creation of a data warehouse on the example of the 
TurboMachine Company. We illustrated the evolution of the sample data warehouse schema 
and its middleware under data sources changes on the example of the same TurboMachine 
Company. 
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