
1

Bogdan CZEJDO, Kenneth MESSA, Tadeusz MORZY,
Mikolaj MORZY, Janusz CZEJDO

DATA WAREHOUSES WITH DYNAMICALLY CHANGING SCHEMAS AND DATA
SOURCES

Summary: Research in the data warehousing area focuses on design issues, data maintenance and query
optimization. Recently new research areas appeared that are related to dynamicity of data sources. Dynamicity of
data sources can be categorized into: data updates , schema and instance changes, and constraint modifications.
Existing data warehouse systems manage data updates. However, they are unable to follow schema and instance
changes and constraint modifications.
In this paper we analyze schema and instance changes caused by dynamically changing external data sources.
We advocate the need to apply the external data source schema changes to a data warehouse and we present
modeling issues involving star schema evolution and data warehouse versioning. Finally, we show query
processing in presence of different data warehouse versions.

Key words : temporal data warehouses, advanced OLAP queries, schema change in data warehouse

1. INTRODUCTION

Integration of different, autonomous and heterogeneous external data sources (EDS) is
crucial for today’s businesses. Two basic approaches to consolidate distributed EDSs and
provide integrated information to users [1,2,3] are the query-driven approach and the data
warehousing approach. In the query-driven approach EDSs are integrated only at the logical
level by merging all local schemas into a single global logical schema (no integration of EDS
contents takes place, all data is stored only locally inside the EDSs). User queries executed
against the global schema are translated by mediators into one or more queries executed
against local EDSs. The mediators join the answers from the EDSs and return the final answer
to the user. This approach has several advantages. No central database is required to
physically integrate data from external data sources. There are no extract-transform-load
processes to move data from EDSs to centralized data repository. There is no latency in data,
all data is up-to-date.

The data warehousing approach is based on the centralized data repository. Data is
extracted from EDSs, transformed (i.e. filtered, cleansed, enriched), and loaded into a
centralized data repository called a data warehouse. As opposed to the query-driven approach,
the data warehouse integrates at the global level both schemas and data. Integrated global
schema consists of a collection of tables/views defined over export schemas of EDSs. Queries
submitted to the data warehouse are executed locally, without accessing original EDSs, which
considerably increases the query performance. It improves the availability of data and protects
the data warehouse from the network delays or even the inaccessibility of external data. Local
processing at EDSs is not affected by global applications running in the data warehouse. The
data warehouse provides users with additional information such as aggregates, summaries or
historical data. These are the main reasons why the data warehousing approach became such
popular technology for numerous enterprises requiring high query performance and high data
availability [4,5,6].

Until now research in data warehousing concentrated mainly on design issues, query
performance and optimization, data maintenance, data refresh strategies and implementation
issues. New file organizations have been proposed along with new access methods and new
index structures (e.g. bitmap indexes). Most data warehouse models assumed, that data
sources and data warehouse schema are static and that only the data changes. However, this

2

assumption doesn't hold in the real world applications. Changes occur frequently both in
EDSs and in the data warehouse schema and instance. Most often those changes concern
dimensions and dimension members (e.g., assigning a dimension member to another parent
member, merging two dimension members, etc.). After such change queries touching data
affected by the change begin to yield incorrect results. Contemporary data warehouses are
unable to handle such changes, which hinders their functionality.

In this paper we discuss the data warehouse evolution triggered by changes in EDSs and
data warehouse schema/instance. We present how EDS schema changes affect data
warehouse schema, middleware level, and data warehouse content. We illustrate our
discussion by an example of the TurboMachine Company data warehouse. We describe the
effects of data warehouse evolution on various applications and we examine the necessary
changes that have to be propagated to the applications in order to make them work.

This paper is organized as follows. In Section 2 we present the generic data warehouse
architecture. In Section 3, we discuss the impact of EDSs changes on the data warehouse
schema, the data warehouse content, and the evolution of the middleware under those
changes. Section 4 presents an example of the data warehouse system for the TurboMachine
Company. Section 5 illustrates the evolution of the sample data warehouse and its middleware
under EDSs changes. The paper is concluded in Section 6 with a summary and a future work
agenda.

2. DATA WAREHOUSE ARCHITECTURE

Picture 1 depicts the architecture of a data warehouse. The data warehouse is designed to

integrate autonomous and heterogeneous external data sources. The component EDSs may
vary from proprietary applications and legacy systems to modern relational, object or object-
relational database systems. They may include flat files, spreadsheets, XML documents, news
wires or multimedia contents. All EDSs usually differ in data models, require different user
interfaces, and present different functionality.

Picture 1. Logical architecture of a data warehouse system

RDBMS Flat File XML

Wrapper Wrapper Wrapper

Middleware
data integration data transformation
data loading data cleaning
data refreshment
metaknowledge management

Data
warehouse

Metadata
repository

Clients

3

EDSs are connected to the data warehouse through wrappers which form a part of the

middleware level. Wrappers extract data from EDSs, transform extracted data into the
common data warehouse model, monitor changes to EDSs and propagate these changes to the
data warehouse. The middleware is responsible for data cleansing and discovering
inconsistencies in the source data, integration and transformation of data, data loading and
refreshment, archiving, performing periodical backups, ensuring data quality, etc. Data
warehouses are usually implemented in a multi- tier architecture, with the bottom tier being a
relational database working as the data warehouse server. Internal tiers contain local data
marts with copies of related fragments of the data warehouse. Top tiers contain only query
and reporting tools, data mining tools, etc. Sometimes the top tier is a thin client containing
only the web browser.

3. DYNAMIC EDSS

The data warehouse integrates autonomous and heterogeneous EDSs. Autonomy means

that the EDSs preserve the autonomous and full control over its data. Heterogeneity means
that the EDSs use different data models and different user and programming interfaces. Local
autonomy and heterogeneity of EDSs mean that they were developed independently and are
not aware of the integration issues. An important consequence of the autonomy of EDSs is
that they may evolve in time independently and that they change their data and schemas
without being controlled from the global data warehouse level.

The changes in the EDSs can be categorized into [7]:
• content changes such as insert/update/delete a tuple
• schema changes such as create/alter/drop a column or create/drop a table
• instance changes such as create/merge/split/drop a dimension
• constraint changes such as create/alter/drop an integrity constraint.

The existing data warehousing systems deal only with the first type of changes, namely,

with the content changes. The content changes of EDSs are detected and propagated to the
data warehouse in one of the following ways. For EDSs that are database systems the source
can collect all updates that occurred during a specified interval of time and send all updates
periodically to the data warehouse. All updates can be shipped either as a collection of data
(data shipment) or as a collection of transactions (transaction shipment). The size of the
refresh period depends on the data warehouse usage type, types of data source, the balance of
work, etc. Changes shipped to the data warehouse can be applied either all at once (batch
update) or incrementally (incremental update). The entire process of extracting, filtering,
transforming, cleaning, transmitting, and loading updates into the data warehousing system is
called data warehouse refreshment.

Most of the research in the data warehouse refreshment has focused on transactional
incremental data warehouse refresh under content changes of EDSs. However, little research
has examined the data warehouse refresh under schema changes and constraints
modifications. In this paper we focus on the schema and instance changes propagation from
the EDSs to the data warehouse. Due to the lack of space we omit the issue of propagating
constraint modifications and the issue of the data warehouse maintenance under the evolving
constraints.

Schema changes of EDSs are very common in the real world applications [8]. Integrating
data from evolving EDSs raises new challenges in the maintenance and evolution of data
warehouse systems. These challenges can be classified into four groups:

4

• modifying data warehouse schema according to data source schema changes
• modifying middleware level according to data source schema changes
• modifying data warehouse content according to data source schema changes
• modifying data warehouse content according to data source semantic changes

1.1. EDS SCHEMA CHANGES AND THE DATA WAREHOUSE SCHEMA

A data warehouse schema is usually defined as a set of materialized views over schemas of

EDSs participating in the warehouse. Every change in the schema of an EDS invalidates the
schema of the entire data warehouse. One possible solution is to isolate and hide those
changes from the data warehouse. Isolation can be achieved by the modification of the
middleware level, but this solution is limited by the time as further changes of the EDS
schema would lead to even greater inconsistency between the EDSs schemas and the data
warehouse global schema. Besides, hiding the changes from the data warehouse hinders the
functionality of the data warehouse because as the result some important data may be
inaccessible to data warehouse applications.

Another solution is to propagate all changes happening in the EDSs to the data warehouse.
Changes should be incorporated into the metadata repository of the data warehouse. The
metadata repository stores administrative data necessary to manage the data warehouse, such
as: descriptions of external data sources, their contents and schemas, data warehouse schema,
view and derived data definitions, dimensions, categories and hierarchies, descriptions of pre-
defined queries and reports, data mart locations and contents, data partitions, data extraction,
cleansing, and transformation rules, defaults, data refresh and purge rules, user profiles, user
groups, etc.

1.2. EDS SCHEMA CHANGES AND THE MIDDLEWARE

Adopting middleware level to changes taking place in the EDSs is a difficult task. Many

external data sources are not capable of signaling changes to the middleware level and the
data warehouse (the so-called non-cooperating data sources). In such cases it is necessary to
develop new solutions and algorithms to allow for dynamic adaptation of the middleware to
the changes. To detect changes in the EDSs schemas the following techniques can be applied:
analysis of the log files (if the source allows for logging changes or transactions), polling
(issuing queries to detect changes in the data structure), custom made programs or screen
scraping. For external sources that are capable of notifying middleware and data warehouse
levels of changes in source schema (the so-called cooperating data sources) the most popular
technique are triggers (small programs that execute automatically whenever a defining
condition is fulfilled).

After the change has been discovered it must be propagated to the middleware level, which
is the most difficult task. Changes applied to middleware wrappers must ensure that the
wrappers preserve their capabilities to query external sources, translate queries and updates
from the EDSs to the data warehouse and vice versa, perform data cleansing and data
transformations, backup and archive source data, etc.

1.3. EDS SCHEMA CHANGE AND THE DATA WAREHOUSE CONTENT

All changes occurring in the EDSs schemas affect also the data warehouse content and

must be properly handled. One possible solution is to create a separate instance of the data
warehouse content for each instance of the data warehouse schema. This leads to the idea of a
multi-versioning of the data warehouse and creates new challenges with respect to the

5

maintenance, evolution, and query processing in such multi-version data warehouse. As we
will show later, this approach is feasible mainly for data warehouses that are subject to
dimension and hierarchy changes. For EDSs schema changes related to creating, altering, or
dropping attributes and tables more appropriate is to adjust the data warehouse content to the
change. This requires additional knowledge that must be provided by a user, e.g., when
creating new attribute in a given table the user must provide correct values of the newly
created attribute for all tuples already stored in the data warehouse. Moreover, it also may be
necessary to update some aggregates and summaries contained in the data warehouse. The
adjustment of the data warehouse content can be performed either in batch or incremental
mode.

The biggest problem is how to process a change in the EDS that is related to modifying the
meaning of an attribute or an aggregate. This must be answered in order to provide the logical
independence between the conceptual level of the data warehouse and the external level
consisting of the front-end applications. In other words, the problem is how to accommodate
changes in the data warehouse in such a way that the existing access and reporting tools are
not affected by the changes and keep delivering correct results. To some extent, this problem
can be solved by the proper data warehouse schema design and new data warehouse models
that are aware of the changes and modifications in both data warehouse schema and the
meaning of attributes, aggregates and summaries.

1.4. EDS SEMANTIC CHANGE AND THE DATA WAREHOUSE CONTENT

The most popular architecture for data warehouses are multidimensional data cubes, where

transaction data (called cells, fact data or measures) are described in terms of master data
(also called dimension members) hierarchically organized in dimensions, where the facts of
the upper levels are computed from the facts of the lower levels by some consolidation and
aggregation functions. This multi-dimensional view provides long term data that can be
analyzed along the time axis, whereas most EDSs only supply snapshots of data at one point
of time. Available warehouse systems are therefore prepared to deal with changing measures,
e.g., changing profit or turnover. Surprisingly, they are not able to deal with modifications in
dimensions, although from the EDS point of view there is nothing fundamentally different
between the measures data and the dimensions data stored in external data sources.

Consider the following example: data warehouse contains data about sales and production
for a given company in different European countries. All data (for measures, dimensions and
categories) is shipped from EDSs that are operational database systems managing production
and sales in each country. One day the change appears: two dimension members "West
Germany" and "East Germany" are merged together to form one dimension member
"Germany". On the other side one dimension member "Czechoslovakia" is split into two
distinct members "Czech Republic" and "Slovakia". Another possible change is the extension
of the hierarchy member "European Union" with 10 new dimension members (namely the
East European countries). The question is now: is it possible to get correct results for queries
like “show a comparison of production in France and Germany during last 20 years” (at some
point in time the numbers for "Germany" will increase due to the added production of the
"East Germany") or "examine the sales in Czech Republic during last 20 years" (there was no
dimension member "Czech Republic" 15 years ago). Without knowing the above changes
such queries end up with incorrect results.

The problem here lies in the implicitly underlying assumption that the dimensions are
orthogonal. Orthogonality with respect to the dimension time means that the other dimensions
ought to be time- invariant. This silent assumption inhibits the proper treatment of changes in
dimension data. One has to be aware that the dimensions data, i.e., the structure, the schema

6

and the instances of the dimensions of a data warehouse may change over time. This problem
has recently attracted a lot of research attention [9,10,11]. One of the proposed solutions is
multi-versioning of the data warehouse instances joined with temporal extensions to the
existing data warehouse model. For example, the COMET model fulfills these assumptions
and offers the following features:

• representation of changes in data warehouses schema,
• identification of periods without a significant change,
• mapping and transformation functions between structure versions,
• processing queries reading data that is contained in several versions,

The detail description of the proposed solution is beyond the scope of this paper.
Nevertheless, it is worth noticing that this approach allows the data warehouse content
adjustment in response to changes occurring in the EDSs that modify the meaning of selected
attributes, in particular changes that modify the content and structure of dimensions.

4. CREATION OF DATA WAREHOUSE FROM DIFFERENT DATA SOURCES

Let us consider a database for the TurboMachine Company that leases machines to other

companies (the other companies are referred here as locations) and collects (usually once a
week) a leasing fee that is based on a meter describing the extent of use of each machine. For
each location the weekly (but can be more often) leasing fees are grouped into a collection
ticket. The TurboMachine Company has many branches. The database for one of the branches
includes four tables: Machines, Locations, CollectionTickets, and
MeterReadings as shown in Picture 2.

Picture 2. The database for a branch of the TurboMachine Company

The role of each table is as follows. Machines contains and keeps records of the

information for a specific machine. Locations contains the information about each
company which has/had leased a machine. Table Yearly Taxes includes the important
attribute AssignedTaxes that can change every year for each machine. MeterReadings

Locations
LNumber
Name
Street
City
State
Zip
Contact
Phone
Taxes

MeterReadings
MID
Money
Tnumber
CollectedTaxes

CollectionTickets
TNumber
LNumber
Date
TCategory

Machines
MID
SerialNumber
Description
Category
Cost

1
∞

1

1

∞

∞

Yearly Taxes
MID
Year
Assigned Taxes ∞

1

7

has a log of all collections made at a location for a particular date and for a specific machine.
It includes an important attribute, CollectedTaxes. Even though there is some guidance
on how to compute this attribute for each collection, practically, it is often determined
individually. Therefore it is necessary to have it as a regular (not derived) attribute.
CollectionTickets has a log of summary information about all collections made at a
location for a given date. One of the obvious constraints is that the collected taxes should not
exceed the assigned taxes.

All branches of the TurboMachine Company contain identical set of tables. In the process
of the creation of a data warehouse, data from all branches was used to populate the data
warehouse. Let us assume that the data warehouse schema for the TurboMachine Company is
a relatively typical star schema as shown in Picture 3.

Picture 3. The initial star schema for the data warehouse for the TurboMachine Company

Conceptually, the model includes dimension tables: Machines, Locations, and Time,

and the fact tables Facts_CollTax and Facts_AsTax. Here, for simplicity, we assume
that the table Time does not need to be included in the following discussion, since all time
attributes can be identified in the fact table Facts_CollTax. Populating the dimension
tables Machines and Locations, and the fact table Facts_AsTax by data contained in
the local databases is conceptually straightforward. Populating the fact table
Facts_CollTax is a little more complicated. It involves creating a join of each pair of
MeterReadings and CollectionTickets, and then union all of the results. The
reason for performing a join is to create a fact table that is in the center of the star (needs to
have foreign keys for all dimension tables).

Very often, a data warehouse schema contains summary tables in order to improve
performance. The discussion on the choice of summary tables is beyond the scope of this
paper, but many aspects are already described in. The summary tables are obtained by
grouping Facts_CollTax by various index attributes. Table T23 is obtained by grouping
Facts_CollTax by the index attributes LNumber, Year, Month, Day and aggregating
Money to obtain SumOfMoney and Taxes to obtain SumOfTaxes. During this operation
the MID attribute is removed, thus we will refer to this operation as R, for remove, with the
appropriate argument. The summary table T23 can be defined using the following statement.

Facts_CollTax
LNumber
MID
Year
Month
Day
Money
CollectedTaxes

Machines
MID
SerialNumber
Description
Category
Cost

Locations
LNumber
Name
StreetAdd
City
State
Zip
Contact
Phone
Taxes

TIME
Year
Month
Day

Facts_AsTax
MID
Year
Assigned Taxes

8

CREATE TABLE T23
 (LNumber, Year, Month, Day, SumOfMoney, SumOfTaxes) AS
SELECT LNumber, Year, Month, Day, SUM(Money), SUM(Taxes)
FROM T11 GROUP BY LNumber, Year, Month, Day;

Similarly we can create table T24 by grouping Facts_CollTax by index attributes

LNumber, MID, Year and Month, and aggregating Money to obtain SumOfMoney.

CREATE TABLE T24 (LNumber, Year, Month, MID, SumOfMoney) AS
SELECT LNumber, MID, Year, Month, SUM(Money),
FROM Facts_CollTax GROUP BY LNumber, MID, Year, Month;

The next level (third level) tables can be created from table Facts_CollTax from the

first level or from some already computed tables from the second level. For example, to create
table T35 we can use table Facts_CollTax, T23, or T24. If we choose table T24, then
we need to do a grouping of T24 by index attributes LNumber, Year and Month, and
aggregating Money to obtain SumOfMoney. The following statement can be used to define
the summary table T35.

CREATE TABLE T35 (LNumber, Year, Month, SumOfMoney) AS
SELECT LNumber, Year, Month, SUM(SumOfMoney),
FROM T24 GROUP BY LNumber, Year, Month;

5. IMPACT OF EVOLVING DATA SOURCES ON DATA WAREHOUSE SYSTEM

The schema of external data sources can change significantly, as we mentioned previously.

In our case, let us assume that the new method of computing and collecting taxes was
introduced based on taxing the locations rather than machines. This results in changing
several attributes in existing tables: Yearly Taxes, CollectionTickets, and
MeterReadings as shown in Picture 4.

Picture 4. Database for a branch of the TurboMachine Company

Locations
LNumber
Name
StreetAdd
City
State
Zip
Contact
Phone

CollectionTickets
TNumber
LNumber
Date
TCategory
CollectedTaxes

Machines
MID
SerialNumber
Description
Category
Cost

1
∞

1

1

∞

∞

MeterReadings
MID
Money
Tnumber

Yearly Taxes
LNumber
Year
Assigned Taxes ∞

1

9

Yearly Taxes also contains the information about assigned taxes, but this time it is

related to location for the specific year. Also MeterReadings does not contain the
information about collected taxes any more but rather CollectionTickets includes
important for our consideration attribute CollectedTaxes. Here again, the constraint is
that the collected taxes should not exceed the assigned taxes is still valid but it should be
expressed differently.

Conceptually, the model includes dimension tables: Machines, Locations, and Time,
and fact tables Facts_CollTax and Facts_AsTax. Populating the dimension tables
Machines and Locations would not change. Population of the fact tables
Facts_CollTax and Facts_AsTax is done differently, but changes are conceptually
straightforward.

Population of the summary table T23 needs to be more significantly changed. This table is
obtained in several steps. First, T23A is obtained by grouping Facts_CollTax by
appropriate index attributes of Facts_CollTax.

CREATE TABLE T23A(LNumber, Year, Month, Day, SumOfMoney) AS
SELECT LNumber, Year, Month, Day, SUM(Money), SUM(Taxes)
FROM Facts_CollTax
GROUP BY LNumber, Year, Month, Day;

Then, the table T23A is joined with the fact table Facts_CollTax in order to include in
the resulting table T23 the attribute SumOfTaxes. The creation of the table T35 and T43
would be done without change. However, creation of the tables T24 and T36 would be
slightly modified reflecting the fact that they do not have the SumOfTaxes attribute.

CREATE TABLE T24 (LNumber, Year, Month, MID, SumOfMoney) AS
SELECT LNumber, MID, Year, Month, SUM(Money),
FROM Facts_CollTax
GROUP BY LNumber, MID, Year, Month;

As was discussed before, the new data warehouse schema requires some data warehouse
content adjustments. The first approach is based on archiving the original data warehouse
schema, and corresponding data. This solution leads to multi-version data warehouse system
and raises new challenges in the maintenance and evolution of such data warehousing systems
and applications.

Another approach is based on adjustment of the data warehouse content accordingly to
changes in the data warehouse schema caused by EDS changes. For example, adding,
removing or modifying the existing attribute in the data warehouse may be necessary as
shown below.

CREATE TABLE T23
(LNumber, Year, Month, Day, SumOfMoney, Taxes) AS
SELECT LNumber, Year, Month, Day, SumOfMoney, SumOfTaxes
FROM OLD_Facts_CollTax;

In order to distinguish here between old and new table Facts_CollTax we referred to

the old Facts_CollTax table OLD_Facts_CollTax. Similarly removing the
SumOfTaxex attribute from the old table T24 (called OLD_T24) is necessary as shown
below.

10

CREATE TABLE T24 (LNumber, MID, Year, Month, SumOfMoney) AS
SELECT LNumber, MID, Year, Month, SumOfMoney)
FROM OLD_Facts_CollTax;

Moreover, it may be possible to create new fact tables, and/or summary tables. A good

example is the creation of new Facts_AsTax table from old Facts_AsTax table.
Depending on the way the taxes collection changed it may or may not be possible.

6. CONCLUSIONS

In this paper, we discussed the problem of the data warehouse evolution resulting from the

changes in the underlying external data sources. We show how source schema changes affect
the data warehouse schema, the middleware level and the data warehouse content. We
presented issues concerning the changes in dimension hierarchy and their impact on correct
query processing. We showed a process of creation of a data warehouse on the example of the
TurboMachine Company. We illustrated the evolution of the sample data warehouse schema
and its middleware under data sources changes on the example of the same TurboMachine
Company.

Bibliography

[1] Chaudhuri S. and Dayal U.: An overview of data warehousing and OLAP technology, ACM SIGMOD
Record, 26, 1997.
[2] A. Elmagarmid, M. Rusinkiewicz, and A. Sheth, eds. Management of Heterogeneous and Autonomous
Database Systems. San Francisco, CA : Morgan Kaufmann Publishers, Inc., 1999.
[3] Wiederhold G.: Mediators in the architecture of future information systems, IEEE Computer C-25, 1, 1992.
[4] Adamson C. and Venerable M.: Data Warehouse Design Solutions, John Wiley & Sons, Inc. 1998.
[5] Kimball R.: The Data Warehouse Toolkit, John Wiley & Sons, Inc. 1996.
[6] Bischoff J. and Alexander T.: Data Warehouse: Practical Advice from the Experts, New Jersey
Prentice-Hall, Inc., 1997.
[7] Rudensteiner E. A., Koeller A., and Zhang X.: Maintaining Data Warehouses over Changing
Information Sources, Communications of the ACM, vol. 43, No. 6, 2000.
[8] Quass D. and Widom J.: On-Line Warehouse View Maintenance , Proceedings of the SIGMOD, 1997.
[9] Eder J., Koncilla C., Morzy T.: The COMET Metamodel for Temporal Data Warehouse, Proceedings of the
CAISE 2002, pp.83-99
[10] Eder J., Koncilla C., Changes of Dimensions Data in Temporal Data Warehouses, Proceedings of the
DaWak Conf. 2001, pp.85-94
[11] Eder J., Koncilla C., Morzy T.: A Model for a Temporal Data Warehouse, Proceedings of the Intl. OESSEO
2001 Conf. Rome, Italy, 2001, pp.86-97

Bogdan Czejdo, Kenneth Messa
Department of Mathematics and Computer Science
Loyola University New Orleans, USA
{czejdo,messa}@loyno.edu

Tadeusz Morzy, Mikolaj Morzy
Institute of Computing Science
Poznan University of Technology, Poland
{Tadeusz.Morzy,Mikolaj.Morzy}@cs.put.poznan.pl

Janusz Czejdo
Edinboro University of Pennsylvania, USA
jczejdo@edinboro.edu

