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Abstract. Advances in wireless and mobile technology flood us with amsu
of moving object data that preclude all means of manual dedeegsing. The
volume of data gathered from position sensors of mobile papRDAS, or ve-
hicles, defies human ability to analyze the stream of inpté.dan the other
hand, vast amounts of gathered data hide interesting andhlalknowledge pat-
terns describing the behavior of moving objects. Thus, Hgarihms for mining
moving object data are required to unearth this knowledgeimportant func-
tion of the mobile objects management system is the predictf the unknown
location of an object. In this paper we introduce a data ngiripproach to the
problem of predicting the location of a moving object. We enthe database of
moving object locations to discover frequent trajectoaesl movement rules.
Then, we match the trajectory of a moving object with the base of movement
rules to build a probabilistic model of object location. Eximental evaluation of
the proposal reveals prediction accuracy close to 80%. @ginal contribution
includes the elaboration on the location prediction mothed,design of an effi-
cient mining algorithm, introduction of movement rule nfatg strategies, and
a thorough experimental evaluation of the proposed model.

1 Introduction

Moving objects are ubiquitous. Portable devices, persdigital assistants, mobile
phones, laptop computers are quickly becoming affordaggressively entering the
market. This trend is parallel to the widespread adoptiowiogless communication
standards, such as GPRS, Bluetooth, or Wi-Fi networks. iRemb/ances in position-
ing technology compel manufacturers to equip their dewedis positioning sensors
that utilize Global Positioning System (GPS) to providewaate location of a device.
Accurate positioning of mobile devices paves the way fordeployment of location-

based services and applications. Examples of locatioaebservices include location-
aware information retrieval, emergency services, locabiased billing, or tracking of

moving objects. It is important to note that location-basedvices are not limited to
mobile devices, such as mobile phones, PDAs or laptopse thexvices can be suc-
cessfully deployed for other types of moving objects, eghicles or even humans. In
order to fully exploit the possibilities offered by locati@aware services, it is crucial to
determine the current position of a moving object at anymgpeint in time.



Typically, a moving object is equipped with a transmittingyte that periodically
signals its position to the serving wireless carrier. B&position disclosures the ex-
act location of a moving object remains unknown and can berohéhed only approx-
imately. Unfortunately, the periodicity of position ackmedgments can be interrupted
by several factors. For instance, the failure can be caug@dwer supply shortage of
a moving object. Positioning systems have known limitaditimat can result in com-
munication breakdown. Signal congestions, signal losaeganatural phenomena, or
the existence of urban canyons lead to temporal unavaijabfla moving object po-
sitioning information. Whenever the location of a movingeu is unknown, a robust
method of possible location prediction of a moving objeceiguired.

Predicting the location of a moving object can be a difficatiikd Firstly, the sheer
amount of data to be processed precludes using traditioadlgtion methods known
from machine learning domain. The stream of data generatpaitioning sensors of
thousands of moving objects requires new, robust and tel@ddita mining processing
methods. The location prediction mechanism must allow &st coring of possible
moving object location. The method must work online and #thowot require expen-
sive computations. Furthermore, the performance of thdigiien method should not
degrade significantly with the increase of the number of mg\abjects. We also re-
quire that, given the prediction accuracy is satisfactowy @es not drop below a given
threshold, the prediction method should favor predictipeesl over prediction accu-
racy. We believe that this feature is crucial for the develept of successful location-
based services. The success of a location-based servieadiepn whether the ser-
vice is delivered to a particular object at a particular taraand on particular time.
If objects move quickly and change their location oftenntilee speed of computa-
tion must allow to deliver the service while the object siifcupies a relevant location.
For instance, complex models of movement area topology angment interactions
between objects may produce accurate results, but theipatational complexity is
unfeasible in mobile environment. Similarly, predictioretinods based on simulation
strongly depend on numerous input parameters that affeaquiality of the resulting
movement model. The cost of computing the model can be pittelly high and the
model itself may not scale well with the number of moving alge

Another important drawback of currently used predictiorthmods is the fact that
most of these methods do not utilize historical data. Thedata collected from mov-
ing objects hide useful knowledge patterns that descripeay behavior of moving
objects. In particular, trajectories frequently followleglmoving objects can be mined
to discover movement patterns. Movement patterns, reptedé the form of human-
readable movement rules can be used to describe and pieglitidvement of objects.

Data mining techniques have been long considered inappte@nd unsuitable for
online location prediction due to long processing times emthputational expensive-
ness of these techniques. In this paper we prove that thisgudn is entirely incorrect
and that data mining techniques can be successfully usdddation prediction. We
build a probabilistic model of an unknown position of a mayobject based on histor-
ical data collected from other objects moving on the sama. &k mine logs of histor-
ical position acknowledgments to discover frequent ttajees of objects representing
popular movement routes, and then we transform frequgettmies into movement



rules. In order to predict the location of a moving object, idnich only a part of its
movement history is known, we score the movement historjhefabject against the
database of movement rules to find possible locations of et For each possible
location we compute the probability of prediction correxss based on the support and
confidence of discovered movement rules. Our method is fastraliable. Frequent
trajectories and movement rules are discovered periddicain offline manner. The
scoring process is performed online. Our experiments shatittie scoring process can
be performed within milliseconds. The presented methoddspendent of the move-
ment area topology and scales well with the number of movinjgats. The idea of
using movement rules for location prediction was first pnése in [15]. The work pre-
sented in this paper continues and extends our previoual ifiitdings in a number of
ways. The original contribution of this paper includes:

refinement of the frequent trajectory model,

design of an efficientraj-PrefixSparalgorithm for mining frequent trajectories,
modification of the=P-Treeindex structure for fast lookup of trajectories,
experimental evaluation of the proposal.

The paper is organized as follows. Section 2 presents tageteork on the sub-
ject. In section 3 we introduce notions and definitions usedughout the paper. The
Traj-PrefixSparalgorithm and frequent trajectory matching methods aregried in
section 4. Section 5 contains the results of the experirhemduation of our proposal.
The paper concludes in section 6 with a brief summary.

2 Related Work

Both spatial data mining and mobile computing domains ettsggnificant research
efforts. The first proposal for spatial data mining has beemulated in [11]. Since
then, many algorithms for spatial data mining have beengseg [5]. Authors in [6]
introduce a spatial index for mining spatial trends usirgtrens of topology, distance,
and direction. A comprehensive overview of current issues@oblems in spatial and
spatio-temporal databases can be found in [7], and receanhads in spatio-temporal
indexing are presented in [14]. However, the problem of ngrtrajectories of mov-
ing objects in spatial databases remained almost unclgaiteumntil recently. Examples
of advances in this field include the idea of similar trajegtdustering [12] and the
proposal to use periodic trajectory patterns for locaticedjction [13]. The aforemen-
tioned works extend basic frameworks of periodic sequepéterns [8] and frequent
sequential patterns [1].

Aninteresting area of research proposed recently focuseswing object databases
[2]. In [17] authors consider the effect of data indeterminand fuzziness on moving
objects analysis. According to the authors, an inherenedainty of moving objects
data influences attribute values, relations, timestanmbtiene intervals. Advances in
mobile object databases can be best illustrated by the ajmveint of the Path-Finder
system, a prototype moving object database capable of gnimoving object data. The
idea of using floating car data of an individual moving objectiescribe movement
patterns of a set of objects is presented in [3].



Several proposals come from mobile computing domain. Motthly, tracking of
moving objects resulted in many interesting methods faation prediction. Authors in
[10] present a probabilistic model of possible moving objemjectories based on road
network topology. The solution presented in [21] advocébesse time-series analy-
sis along with simulation of traveling speed of moving olgetlo determine possible
trajectory of an object. A modification of this approach dstisg in using non-linear
functions for movement modeling is presented in [19]. A mmoeat model that em-
ploys recursive motion functions mimicking the behavioobjects with unknown mo-
tion patterns is introduced in [18]. Another complex modéhvaccuracy guarantees
is presented in [20]. Recently, [22] consider predictingalion in presence of uncer-
tain position signals from moving objects. The authors@néamin-maxproperty that
forms the basis for theifrajPatternalgorithm for mining movement sequences of mov-
ing objects.

3 Definitions

Given a database of moving object locations, where the mewnéwf objects is con-
strained to a specified areh Let O = {o4,...,0;} be the set of moving objects. Let
p denote the position of a moving object w.r.t. a system of doatesiV, p € W.
ThepathP = (py,...,pn) is an ordered n-tuple of consecutive positions of a moving
object. Unfortunately, the domain of position coordindtesontinuous and the gran-
ularity level of raw data is very low. Therefore, any pattediscovered from raw data
cannot be generalized. To overcome this problem we chodsarisform original paths
of moving objects into trajectories expressed on a coaesal.| Thenet divides the
two-dimensional movement arefinto a set of rectangular regions of fixed size. We
refer to a single rectangular region agell. Each cell has fouedges Cells form a
two-dimensional matrix covering the entire atéaso each cell is uniquely identified
by discrete coordinatgs, j) describing the position of the cell in the matrix. A moving
object always occupies a single cell at any given point iretidhen moving, an object
crosses edges between neighboring cells. Each edge cavbesed in two directions,
vertical edges can be traversed eastwards and westwardeaghhorizontal edges can
be traversed northwards and southwards.
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Fig. 1. Edge enumeration



Figure 1 presents the enumeration scheme of edges of thé cgllused by our
algorithm. Intuitively, the enumeration scheme presetiiedocality of edges and al-
lows for a fast lookup of all edges adjacent to a given edgeaBydjacent edge we
mean an edge that can be traversed next after traversingea gige. Each edge re-
ceives two sets of coordinates that are relative to its aglldinates. The two sets of
coordinates represent two possible directions of edgeitsal. For instance, consider
an object occupying the celR, 4). When the object moves northwards, it traverses an
edge labeled3, 5). The same edge, when traversed southwards, is identifibe aslge
(2, 6). The reason for this enumeration scheme is straightforwaredge cannot have
a single coordinate, because the set of possible adjacges e@pends on the direction
of traversal. We have also considered other enumeratie@mses, such as Hilbert curve
or z-ordering. The main advantage of the presented edgeaation scheme is the fact
that any two neighboring edges differ by at most 2 on a dingens$n addition, any two
edges within a single cell differ by at most 1 on any dimension

Each pathP; of a moving objeclt; can be unambiguously represented as a se-
quence of traversed edges.trajectory of an objecto; is defined as an ordered tuple
R, = (F1,Es,...,E,) of edges traversed by the path. The length of a trajec-
tory R;, denotedlength(R;), is the number of edges constituting the trajectfyy
We refer to a trajectory of the length as n-trajectory. We say that the trajectory
X = (X1,Xs,...,X,,) is contained in the trajectoy = (Y1,Y>,...,Y,), denoted
X C Y, if there existi; < ia < ... < iy such thatX; =Y, Xo = Y,,, ...,
X, =Y, . AtrajectoryX is maximalif it is not contained in any other trajectory. We
say that a trajectory” supportsa trajectoryX if X C Y. Theconcatenatior? of tra-
jectoriesX = (X1, Xo,...,X;n) andY = (Y1,Y,,...,Y,), denoted = X ® Y, is
the trajectoryZ = (X1, Xo,..., X, Y1,Ys,...,Y,). Given a database of trajectories
Dr ={Ry,...,R,}. Thesupportof a trajectoryR; is the percentage of trajectories in
Dy that support the trajectori; .

|{RJ e Dr:R; C RJ}|
|Dr|

support(R;) =

AtrajectoryR; is frequentf its support exceeds user-defined threshold of minimum
support, denotedhinsup Given a trajecton®; = (E1, Ea, ..., E,). Thetalil of the tra-
jectory R;, denotediail(R;, m), is the trajectoryl; = (F4, Eo, ..., E,,). Theheadof
the trajectoryR;, denotedvead (R;, m), is the trajectonH; = (Ent1, Em+2, - - -, Fn).
Concatenation of the tail and head yields the original ttaje, i.e., tail(R;,m) ®
head(R;,m) = R;.

Frequent trajectories are transformed into movement.rdl@sovement rule is an
expression of the fori; = H; whereT; and H; are frequent adjacent trajectories
andT; ® H; is a frequent trajectory. The trajectofly is called the tail of the rule,
the trajectoryH; is called the head of the rule. Contrary to the popular foatioh
from association rule mining, we do not require the tail amel head of a rule to be
disjunct. For instance, an object may traverse edge#®;, £, and then make a U-turn
to go back through edgds;, E;. Thus, the same edge may appear both in the tail and
the head of a rule. However, this difference does not affexefinition of statistical
measures applied to movement rules, namely, support aridienne.



Thesupportof the movement ruld; = H, is defined as the support 8f ® H;,

|T; € Dr : T; 2 (T; @ H;)|
[ Dz

support (T; = H;) =
Theconfidencef the movement ruld; = H; is the conditional probability of{;
givenTs;,

support (T; @ H;)
support (T;)

confidence (T; = H;) = P (H;|T;) =

4 Proposed Solution

Formally, the location prediction problem can be decomgase two subproblems:

— discover movement rules with support and confidence greéhser user-defined
thresholds ofninsupandminconf respectively,

— match movement rules against the trajectory of a movingablipe which the cur-
rent location is to be determined.

In section 4.1 we present thigaj-PrefixSparalgorithm that aims at efficient dis-
covery of frequent trajectories and movement rules. Seeti@ describes the modified
FP-Treeindex structure. In section 4.3 we introduce three matckirgjegies for move-
ment rules.

4.1 Traj-PrefixSpan Algorithm

The algorithm presented in this section is a modification wofedl-known PrefixSpan
algorithm [16]. The difference consists in the fact thantcary to the original formu-
lation, we do not allow multiple edges as elements of the secel (each element of a
sequence is always a single edge). In addition, each segisegmwn only using adja-
cent edges, and not arbitrary sequence elements. The fof@escription presents an
overview of thePrefixSparalgorithm, already augmented to handle trajectories.

Given a trajectoryX = (X1, Xs,..., X,,), theprefix of the trajectoryX is a tra-
jectoryY = (Y1,Y3,...,Y), m <n,suchthal; = X;fori=1,2,...,m — 1. The
projectionof the trajectoryX over prefixY is a sub-trajectonX’ of the trajectoryX,
such thafY” is the prefix of X’ and no trajectonyX” exists such that” is the prefix of
X", X" is the sub-trajectory ok, and X" # X'.

Let X' = (Xy,...,X,) be a projection ofX overY = (Y1,...,Ym-1,Xm).
The trajectoryZ = (X,41,-..,Xn,) IS @ postfix of X over the prefixY’, denoted
Z = X/Y. In other words, for a given prefiX and a given postfiZ, X =Y ® Z.

Let Y be a frequent trajectory in the database of trajectafles An Y -projected
trajectory databasedenoted byDr /vy, is the set of all postfixes of trajectories iny
over the prefixy’. Let X be a trajectory with the prefiX. Thesupport counof X in
Y -projected trajectory database, denotecbiayportDT/Y (X), is the number of trajec-
toriesZ in Dy, such thatX is a sub-trajectory ot @ Z.



procedure TrajPrefirSpan(Y, 1, Dr;v)
1. scanDy,y to find edges: such, that
if (I > 0) then e is adjacent to the last edge Bf
elseY can be extended kyto form a frequent trajectory
2: foreachedgee createY’ =Y ®@ e
3: foreach Y’ build Dy
4: run TrajPrefizSpan(Y', 1+ 1, Dy y)
end procedure

Fig. 2. Traj-PrefixSpan algorithm

Traj-PrefixSparalgorithm consists of three phases. In the first phase trogitign
performs a full scan of the trajectory datab@seto discover all frequent 1-trajectories.
In the second phase each frequent 1-trajectoiig used to create ari-projected tra-
jectory database. Every pattern contained inYaprojected trajectory database must
have the prefix’. The third phase of the algorithm consists in recursive gioan of
further Y’-projected trajectory databases from frequent trajeesdri found in pro-
jections. The pseudocode of the algorithm is presentedgnrEi2. The initial call is
TrajPrefixSpan(<>,0, D).

4.2 FP-Tree

The physical indexing structure used in our algorithm isghsly modifiedFP-Treg[9].
The main change consists in storing sequences of elementpfwsed to sets of el-
ements), and allowing a bi-directional traversal of the tFeP-Treeis an undirected
acyclic graph with a single root node and several labelesiiiai nodes. The root of the
tree is labeledull, and internal nodes are labeled with edge numbers theysepire
Each internal node of the tree has a label, a counter repiegehe support of a se-
quence from the root to the given node, and a pointer to themade with the same
label (or anull pointer if no such node exists). In addition, the index comsta header
table with edges ordered by their support and pointers tfirdteoccurrence of an edge
within the FP-Tree The tree is constructed during the execution ofTreg-PrefixSpan
algorithm by pattern growth. Each frequent trajectory ogsed by thdraj-PrefixSpan
algorithm is inserted inté-P-Treeindex for fast lookup. After the frequent trajectory
discovery process finishes, th®-Treecontains all frequent trajectories discovered in
the database. Generation of movement rules is a straiglafdrtask. For each frequent
n-trajectoryX = (X1, Xs,..., X,), (n—1) movementrules can be generated by split-
ting the trajectory in every possible plada, = Hy,1T> = Ha,...,Tn_1 = Hy,_1.

4.3 Matching strategies

After frequent trajectories have been found and storeddfrE Tree they can be used
to predict the unknown location of a moving object. For eaavimg object its known
trajectory has to be compared with movement rules genefadadfrequent trajecto-
ries. In the next sections we introduce three matchingegii@s for scoring a partial



trajectory of a moving object with the database of movematds: In all examples
let X = (X1,X,,...,X,,) be a partial trajectory of a moving object, for which we
are seeking its most probable location. For a given partgdctory X the set of all
matched movement rules is denotediby.

Whole Matcher The Whole Matchesstrategy consists in finding all movement rules
T; = H,; such, thatX = T; (i.e., the tail of the rule entirely covers the partial tgy
X). The headH; can be used as a prediction of a possible location of a mowjert
The probability that a moving object follow3; is given byconfidence (T; = H;). The
Whole Matcher strategy yields accurate results, but disallany deviations of matched
rules from the partial trajectory( . Furthermore, in case of long partial trajectories, the
Whole Matcher strategy may fail to find a matching movemelatru

Last Matcher ThelLast Matcherstrategy discards all information from the partial tra-
jectory X except for the last traversed edge,. The strategy finds all movement rules
T; = H; such, thatX,, = T;. The result of the strategy is the list of edges (move-
ment rule head#l;) ordered by descending values@hfidence (T; = H;). The Last
Matcher strategy finds matching movement rules even forsieoyt partial trajectories,

but the predictions il x are less reliable, because they ignore the movement history
of a moving object.

Longest Last Matcher TheLongest Last Matchestrategy is a compromise between
the two aforementioned strategies. For a given partiadtayy X it finds all movement
rulesT; = H; such, thatl; covers a part of the partial trajecto’, i.e., there exists
j» 1 < j < m such, thatl; = head(X,j). The strategy outputs, as the result, the
movement rule head#; weighted by the relative coverage of the partial trajectory
X. For a given movement rul& = H; the strength of the prediction is defined as

confidence (T; = H;) % Edges contained ih x are ordered according to the

descending value of the prediction strength.

5 Experiments

In this section we report on the results of the experimentaluation of the pro-
posed approach. All experiments were conducted on a PCgegiipith AMD Athlon
XP 2500+ CPU, 521 MB RAM, and a SATA hard drive running undentdws XP
SP2 Home Edition. Algorithms and the front-end applicati@re implemented in C#
and run within Microsoft .NET 2.0 platform. Synthetic dagtsswere generated using
Network-based Generator of Moving Objects by T.Brinkhdif. [Experiments were
conducted using the map of Oldenburg. The number of movingctdvaried from
1000 to 10000, the number of classes of moving objects wde 4€& and the number
of time units in each experiment was 200. We set the maximuocitg of moving
objects to 50, locations of objects were registered uBmgjtionReportemethod. All
results reported in this section are averaged over 30 diifenstances of datasets. The



experiments measure: the time of mining frequent trajeespthe number of discov-
ered frequent trajectories, the time of matching a paméttory with the database of
moving rules, and the quality of location prediction.
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Fig. 3. Minimum support

Figure 3 shows the number of frequent trajectories (degiotethe left-hand side
axis of ordinates) and the time of mining frequent trajeefdepicted on the right-
hand side axis of ordinates) with respect to the varyingevalitheminsupthreshold.
Both measured values decrease with the increase ahthsupthreshold. As can be
clearly seen, the correlation between the number of frequajectories and the time
it takes to mine them is evident. We are pleased to noticeeent for low values of
minsupthreshold the algorithm requires less than 20 seconds tpled@computations
and the number of discovered frequent trajectories renmarsgageable.

Figure 4 presents the number of frequent trajectories ¢tieghon the left-hand side
axis of ordinates) and the time of mining frequent trajee®(depicted on the right-
hand side axis of ordinates) with respect to the varying remobmoving objects for a
set value ofninsup = 0.025. Firstly, we notice that the time of mining frequent trajec-
tories is linear w.r.t. the number of moving objects, whiglaidesirable property of our
algorithm. Secondly, we observe a slight decrease in thebeuwf discovered move-
ment rules as the number of moving objects grows (a fivefatdeiase in the number
of moving objects results in a 20% decrease of the numbersagbaered movement
rules). This phenomenon is caused by the fact that a greatelber of moving objects
is spread more or less uniformly over the movement area, l@winsupthreshold is
expressed as the percentage of the number of all movingtebjguus, less edges be-
come frequent. For a smaller number of moving objects edytei center of the city
tend to attract more moving objects, and less restrictivesupthreshold makes more
of these edges frequent, resulting in more movement rules.

Figure 5 shows the number of frequent trajectories (deghiotethe left-hand side
axis of ordinates) and the time of mining frequent trajee®(depicted on the right-
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hand side axis of ordinates) with respect to the varying sfzen edge cell. The size
of a cell is expressed in artificial units. The time of miningalily decreases with the
growth of the cell size. This result is obvious, becausedacglls result in less frequent
trajectories. On the other hand, the decrease is not likeatarger cell sizes the num-
ber of discovered frequent trajectories is indeed lowemveéleer, discovered frequent
trajectories have higher support and tend to be longerriboiting to the overall com-

putation time. The interpretation of the second curve, tiralmer of discovered frequent
trajectories, is more tricky. One can notice atypical diwies for cell sizes of 400 and
600 units. These random effects are probably caused byeataidstructural influence
of larger and smaller cell sizes on areas of intensified traffne results presented in
Figure 5 emphasize the importance of correct setting of¢eliesize parameter (e.g., the
difference in the number of discovered frequent trajeeis 10 when changing the
cell size from 300 to 400 units, and it grows to 40 when chamtfie cell size from 400



to 500 units). Unfortunately, our model does not permit toage the optimal value of
the cell size parameter other than experimentally.

The next two figures present the results of experiments atiafyithe accuracy of
prediction of the location using movement rules. These expnts were conducted as
follows. First, a database of moving objects was generatgdja set of fixed parame-
ters. Then, 50 trajectories were randomly drawn from eatdbdee. Each test trajectory
was then split into a tail and a head. The tail was used as &lpaajectory, for which
future location of an object was to be predicted. Finallg ginediction returned from
each matching strategy was compared to the known head oésh&rajectory and the
quality of prediction was computed. L&f = (X, X, ..., X,,) be a randomly se-
lected trajectory of a moving object, divided int@il( X, k) and head (X, k). The tall
is used as a partial trajectory for matching. If the nextdéraed edge, which &%, is
not contained in the set of matching strategy ansuigrsthen the quality of location
predictionQuality(X, Lx ) = 0. Otherwise, the quality of matching is computed as the
probability of traversingXy.; diminished by weighted incorrect predictions frany
that had prediction strength greater thgp,,, i.e.,

Quality(X,Lx) = P(Xyt1) * (1 — Z P(Xj)];+P1(Xk+1) )

j<k:X;€ELx

In the above formula we assume thiat is ordered by the decreasing prediction
strength, so stronger predictions have lower indices.
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Fig. 6. Prediction time

Figure 6 presents the average time required to match a Ip@aagiactory with the
database of movement rules with respect to the vamgingsupthreshold (and, conse-
quently, to the number of discovered movement rules). Wmle Matcherand Last
Matcherstrategies perform almost identically, because bothegjies can fully utilize
the FP-Treeindex structure. Théongest Last Matchestrategy performs slower, be-
cause it must traverse a larger part of Bie Tree Nevertheless, in case of all strategies
the matching time is very fast and never exce@dans. We are particularly satisfied



with this result, because it supports our thesis that datangimethods can be em-
ployed for real-time location prediction.
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Fig. 7. Quality of prediction

Figure 7 depicts the average quality of prediction as coetbby Equation 1. The
prediction quality of thaVhole MatcheandLast Matcherstrategies reaches even 95%
of accuracy for higminsupthreshold values. For general settings ofrtiasupthresh-
old the accuracy of both methods remains satisfactory @iw&% and 85%. It is
worth mentioning that the results depicted in the figure areguted according to our
formula, which might be too penalizing for thengest Last Matchestrategy, so the
presented numbers are somehow biased towards simple n@stiategies. The quality
achieved by thé.ongest Last Matchestrategy varies from 35% to over 60%. Surpris-
ingly, the quality of prediction increases with the deceeastheminsupthreshold. This
can be explained by the fact that low values of thiesupthreshold produce more fre-
guent trajectories and more often the correct predictigpidsed high in the resulting
setLx. Nevertheless, from the experimental evaluation we catecthat theongest
Last Matcherstrategy is inferior to th&Vhole Matcherand Last Matcherstrategies
under all conditions.

6 Conclusions

In this paper we have introduced a new data mining model grairthe efficient pre-
diction of unknown location of moving objects based on mogatpatterns discovered
from raw data. The model represents frequent trajectofiesoving objects as move-
ment rules. Movement rules provide a simplification and galimation of a large set of
moving objects by transforming original continuous domafimoving object positions
into a discretized domain of edges of a superimposed griel iidin thesis of the paper,
well proved by conducted experiments, is that data minicbr&ues can be success-
fully employed for real-time location prediction in mob@avironments. Indeed, while



most expensive and burdensome computations (e.g. thevdigcof frequent trajecto-
ries) can be performed offline and periodically, the onlireching of partial trajecto-
ries with the database of movement rules is executed vetyTae quality of location
prediction is satisfying, but we aim at developing more éffit matching strategies for
even better accuracy.

Our future work agenda includes:

replacing uniform grid cells with differently sized areast adaptively divide the
area of movement based on the density and congestion of mobijects,
developing new matching strategies,

including temporal aspects in discovered movement rules,

including spatial information in movement rules,

— providing more informed decisions to location-based s&wbased on discovered
movement rules.
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