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Abstract. Advances in wireless and mobile technology flood us with amounts
of moving object data that preclude all means of manual data processing. The
volume of data gathered from position sensors of mobile phones, PDAs, or ve-
hicles, defies human ability to analyze the stream of input data. On the other
hand, vast amounts of gathered data hide interesting and valuable knowledge pat-
terns describing the behavior of moving objects. Thus, new algorithms for mining
moving object data are required to unearth this knowledge. An important func-
tion of the mobile objects management system is the prediction of the unknown
location of an object. In this paper we introduce a data mining approach to the
problem of predicting the location of a moving object. We mine the database of
moving object locations to discover frequent trajectoriesand movement rules.
Then, we match the trajectory of a moving object with the database of movement
rules to build a probabilistic model of object location. Experimental evaluation of
the proposal reveals prediction accuracy close to 80%. Our original contribution
includes the elaboration on the location prediction model,the design of an effi-
cient mining algorithm, introduction of movement rule matching strategies, and
a thorough experimental evaluation of the proposed model.

1 Introduction

Moving objects are ubiquitous. Portable devices, personaldigital assistants, mobile
phones, laptop computers are quickly becoming affordable,aggressively entering the
market. This trend is parallel to the widespread adoption ofwireless communication
standards, such as GPRS, Bluetooth, or Wi-Fi networks. Recent advances in position-
ing technology compel manufacturers to equip their deviceswith positioning sensors
that utilize Global Positioning System (GPS) to provide accurate location of a device.
Accurate positioning of mobile devices paves the way for thedeployment of location-
based services and applications. Examples of location-based services include location-
aware information retrieval, emergency services, location-based billing, or tracking of
moving objects. It is important to note that location-basedservices are not limited to
mobile devices, such as mobile phones, PDAs or laptops; these services can be suc-
cessfully deployed for other types of moving objects, e.g.,vehicles or even humans. In
order to fully exploit the possibilities offered by location-aware services, it is crucial to
determine the current position of a moving object at any given point in time.



Typically, a moving object is equipped with a transmitting device that periodically
signals its position to the serving wireless carrier. Between position disclosures the ex-
act location of a moving object remains unknown and can be determined only approx-
imately. Unfortunately, the periodicity of position acknowledgments can be interrupted
by several factors. For instance, the failure can be caused by power supply shortage of
a moving object. Positioning systems have known limitations that can result in com-
munication breakdown. Signal congestions, signal losses due to natural phenomena, or
the existence of urban canyons lead to temporal unavailability of a moving object po-
sitioning information. Whenever the location of a moving object is unknown, a robust
method of possible location prediction of a moving object isrequired.

Predicting the location of a moving object can be a difficult task. Firstly, the sheer
amount of data to be processed precludes using traditional prediction methods known
from machine learning domain. The stream of data generated by positioning sensors of
thousands of moving objects requires new, robust and reliable data mining processing
methods. The location prediction mechanism must allow for fast scoring of possible
moving object location. The method must work online and should not require expen-
sive computations. Furthermore, the performance of the prediction method should not
degrade significantly with the increase of the number of moving objects. We also re-
quire that, given the prediction accuracy is satisfactory and does not drop below a given
threshold, the prediction method should favor prediction speed over prediction accu-
racy. We believe that this feature is crucial for the development of successful location-
based services. The success of a location-based service depends on whether the ser-
vice is delivered to a particular object at a particular location and on particular time.
If objects move quickly and change their location often, then the speed of computa-
tion must allow to deliver the service while the object stilloccupies a relevant location.
For instance, complex models of movement area topology and movement interactions
between objects may produce accurate results, but their computational complexity is
unfeasible in mobile environment. Similarly, prediction methods based on simulation
strongly depend on numerous input parameters that affect the quality of the resulting
movement model. The cost of computing the model can be prohibitively high and the
model itself may not scale well with the number of moving objects.

Another important drawback of currently used prediction methods is the fact that
most of these methods do not utilize historical data. The rawdata collected from mov-
ing objects hide useful knowledge patterns that describe typical behavior of moving
objects. In particular, trajectories frequently followedby moving objects can be mined
to discover movement patterns. Movement patterns, represented in the form of human-
readable movement rules can be used to describe and predict the movement of objects.

Data mining techniques have been long considered inappropriate and unsuitable for
online location prediction due to long processing times andcomputational expensive-
ness of these techniques. In this paper we prove that this assumption is entirely incorrect
and that data mining techniques can be successfully used forlocation prediction. We
build a probabilistic model of an unknown position of a moving object based on histor-
ical data collected from other objects moving on the same area. We mine logs of histor-
ical position acknowledgments to discover frequent trajectories of objects representing
popular movement routes, and then we transform frequent trajectories into movement



rules. In order to predict the location of a moving object, for which only a part of its
movement history is known, we score the movement history of the object against the
database of movement rules to find possible locations of the object. For each possible
location we compute the probability of prediction correctness based on the support and
confidence of discovered movement rules. Our method is fast and reliable. Frequent
trajectories and movement rules are discovered periodically in an offline manner. The
scoring process is performed online. Our experiments show that the scoring process can
be performed within milliseconds. The presented method is independent of the move-
ment area topology and scales well with the number of moving objects. The idea of
using movement rules for location prediction was first presented in [15]. The work pre-
sented in this paper continues and extends our previous initial findings in a number of
ways. The original contribution of this paper includes:

– refinement of the frequent trajectory model,
– design of an efficientTraj-PrefixSpanalgorithm for mining frequent trajectories,
– modification of theFP-Treeindex structure for fast lookup of trajectories,
– experimental evaluation of the proposal.

The paper is organized as follows. Section 2 presents the related work on the sub-
ject. In section 3 we introduce notions and definitions used throughout the paper. The
Traj-PrefixSpanalgorithm and frequent trajectory matching methods are presented in
section 4. Section 5 contains the results of the experimental evaluation of our proposal.
The paper concludes in section 6 with a brief summary.

2 Related Work

Both spatial data mining and mobile computing domains attract significant research
efforts. The first proposal for spatial data mining has been formulated in [11]. Since
then, many algorithms for spatial data mining have been proposed [5]. Authors in [6]
introduce a spatial index for mining spatial trends using relations of topology, distance,
and direction. A comprehensive overview of current issues and problems in spatial and
spatio-temporal databases can be found in [7], and recent advances in spatio-temporal
indexing are presented in [14]. However, the problem of mining trajectories of mov-
ing objects in spatial databases remained almost unchallenged until recently. Examples
of advances in this field include the idea of similar trajectory clustering [12] and the
proposal to use periodic trajectory patterns for location prediction [13]. The aforemen-
tioned works extend basic frameworks of periodic sequential patterns [8] and frequent
sequential patterns [1].

An interesting area of research proposed recently focuses on moving object databases
[2]. In [17] authors consider the effect of data indeterminacy and fuzziness on moving
objects analysis. According to the authors, an inherent uncertainty of moving objects
data influences attribute values, relations, timestamps, and time intervals. Advances in
mobile object databases can be best illustrated by the development of the Path-Finder
system, a prototype moving object database capable of mining moving object data. The
idea of using floating car data of an individual moving objectto describe movement
patterns of a set of objects is presented in [3].



Several proposals come from mobile computing domain. Most notably, tracking of
moving objects resulted in many interesting methods for location prediction. Authors in
[10] present a probabilistic model of possible moving object trajectories based on road
network topology. The solution presented in [21] advocatesto use time-series analy-
sis along with simulation of traveling speed of moving objects to determine possible
trajectory of an object. A modification of this approach consisting in using non-linear
functions for movement modeling is presented in [19]. A movement model that em-
ploys recursive motion functions mimicking the behavior ofobjects with unknown mo-
tion patterns is introduced in [18]. Another complex model with accuracy guarantees
is presented in [20]. Recently, [22] consider predicting location in presence of uncer-
tain position signals from moving objects. The authors present amin-maxproperty that
forms the basis for theirTrajPatternalgorithm for mining movement sequences of mov-
ing objects.

3 Definitions

Given a database of moving object locations, where the movement of objects is con-
strained to a specified areaA. Let O = {o1, . . . , oi} be the set of moving objects. Let
p denote the position of a moving object w.r.t. a system of coordinatesW , p ∈ W .
ThepathP = (p1, . . . , pn) is an ordered n-tuple of consecutive positions of a moving
object. Unfortunately, the domain of position coordinatesis continuous and the gran-
ularity level of raw data is very low. Therefore, any patterndiscovered from raw data
cannot be generalized. To overcome this problem we choose totransform original paths
of moving objects into trajectories expressed on a coarser level. Thenet divides the
two-dimensional movement areaA into a set of rectangular regions of fixed size. We
refer to a single rectangular region as acell. Each cell has fouredges. Cells form a
two-dimensional matrix covering the entire areaA, so each cell is uniquely identified
by discrete coordinates〈i, j〉 describing the position of the cell in the matrix. A moving
object always occupies a single cell at any given point in time. When moving, an object
crosses edges between neighboring cells. Each edge can be traversed in two directions,
vertical edges can be traversed eastwards and westwards, whereas horizontal edges can
be traversed northwards and southwards.

Fig. 1.Edge enumeration



Figure 1 presents the enumeration scheme of edges of the cell〈i, j〉 used by our
algorithm. Intuitively, the enumeration scheme preservesthe locality of edges and al-
lows for a fast lookup of all edges adjacent to a given edge. Byan adjacent edge we
mean an edge that can be traversed next after traversing a given edge. Each edge re-
ceives two sets of coordinates that are relative to its cell coordinates. The two sets of
coordinates represent two possible directions of edge traversal. For instance, consider
an object occupying the cell〈2, 4〉. When the object moves northwards, it traverses an
edge labeled〈3, 5〉. The same edge, when traversed southwards, is identified as the edge
〈2, 6〉. The reason for this enumeration scheme is straightforward. An edge cannot have
a single coordinate, because the set of possible adjacent edges depends on the direction
of traversal. We have also considered other enumeration schemes, such as Hilbert curve
or z-ordering. The main advantage of the presented edge enumeration scheme is the fact
that any two neighboring edges differ by at most 2 on a dimension. In addition, any two
edges within a single cell differ by at most 1 on any dimension.

Each pathPi of a moving objectoi can be unambiguously represented as a se-
quence of traversed edges. Atrajectory of an objectoi is defined as an ordered tuple
Ri = (E1, E2, . . . , En) of edges traversed by the pathPi. The length of a trajec-
tory Ri, denotedlength(Ri), is the number of edges constituting the trajectoryRi.
We refer to a trajectory of the lengthn as n-trajectory. We say that the trajectory
X = (X1, X2, . . . , Xm) is contained in the trajectoryY = (Y1, Y2, . . . , Yn), denoted
X ⊆ Y , if there existi1 < i2 < . . . < im such thatX1 = Yi1 , X2 = Yi2 , . . .,
Xm = Yim . A trajectoryX is maximalif it is not contained in any other trajectory. We
say that a trajectoryY supportsa trajectoryX if X ⊆ Y . TheconcatenationZ of tra-
jectoriesX = (X1, X2, . . . , Xm) andY = (Y1, Y2, . . . , Yn), denotedZ = X ⊗ Y , is
the trajectoryZ = (X1, X2, . . . , Xm, Y1, Y2, . . . , Yn). Given a database of trajectories
DT = {R1, . . . , Rq}. Thesupportof a trajectoryRi is the percentage of trajectories in
DT that support the trajectoryRi.

support(Ri) =
|{Rj ∈ DT : Ri ⊆ Rj}|

|DT |

A trajectoryRi is frequentif its support exceeds user-defined threshold of minimum
support, denotedminsup. Given a trajectoryRi = (E1, E2, . . . , En). Thetail of the tra-
jectoryRi, denotedtail(Ri, m), is the trajectoryTi = (E1, E2, . . . , Em). Theheadof
the trajectoryRi, denotedhead(Ri, m), is the trajectoryHi = (Em+1, Em+2, . . . , En).
Concatenation of the tail and head yields the original trajectory, i.e.,tail(Ri, m) ⊗
head(Ri, m) = Ri.

Frequent trajectories are transformed into movement rules. A movement rule is an
expression of the formTi ⇒ Hi whereTi andHi are frequent adjacent trajectories
andTi ⊗ Hi is a frequent trajectory. The trajectoryTi is called the tail of the rule,
the trajectoryHi is called the head of the rule. Contrary to the popular formulation
from association rule mining, we do not require the tail and the head of a rule to be
disjunct. For instance, an object may traverse edgesEi, Ej , Ek and then make a U-turn
to go back through edgesEk, Ej . Thus, the same edge may appear both in the tail and
the head of a rule. However, this difference does not affect the definition of statistical
measures applied to movement rules, namely, support and confidence.



Thesupportof the movement ruleTi ⇒ Hi is defined as the support ofTi ⊗ Hi,

support (Ti ⇒ Hi) =
|Tj ∈ DT : Tj ⊇ (Ti ⊗ Hi)|

|DT |

Theconfidenceof the movement ruleTi ⇒ Hi is the conditional probability ofHi

givenTi,

confidence (Ti ⇒ Hi) = P (Hi|Ti) =
support (Ti ⊗ Hi)

support (Ti)

4 Proposed Solution

Formally, the location prediction problem can be decomposed into two subproblems:

– discover movement rules with support and confidence greaterthan user-defined
thresholds ofminsupandminconf, respectively,

– match movement rules against the trajectory of a moving object for which the cur-
rent location is to be determined.

In section 4.1 we present theTraj-PrefixSpanalgorithm that aims at efficient dis-
covery of frequent trajectories and movement rules. Section 4.2 describes the modified
FP-Treeindex structure. In section 4.3 we introduce three matchingstrategies for move-
ment rules.

4.1 Traj-PrefixSpan Algorithm

The algorithm presented in this section is a modification of awell-knownPrefixSpan
algorithm [16]. The difference consists in the fact that, contrary to the original formu-
lation, we do not allow multiple edges as elements of the sequence (each element of a
sequence is always a single edge). In addition, each sequence is grown only using adja-
cent edges, and not arbitrary sequence elements. The following description presents an
overview of thePrefixSpanalgorithm, already augmented to handle trajectories.

Given a trajectoryX = (X1, X2, . . . , Xn), theprefixof the trajectoryX is a tra-
jectoryY = (Y1, Y2, . . . , Ym), m ≤ n, such thatYi = Xi for i = 1, 2, . . . , m − 1. The
projectionof the trajectoryX over prefixY is a sub-trajectoryX ′ of the trajectoryX ,
such thatY is the prefix ofX ′ and no trajectoryX ′′ exists such thatY is the prefix of
X ′′, X ′′ is the sub-trajectory ofX , andX ′′ 6= X ′.

Let X ′ = (X1, . . . , Xn) be a projection ofX over Y = (Y1, . . . , Ym−1, Xm).
The trajectoryZ = (Xm+1, . . . , Xn) is a postfix ofX over the prefixY , denoted
Z = X/Y . In other words, for a given prefixY and a given postfixZ, X = Y ⊗ Z.

Let Y be a frequent trajectory in the database of trajectoriesDT . An Y -projected
trajectory database, denoted byDT/Y , is the set of all postfixes of trajectories inDT

over the prefixY . Let X be a trajectory with the prefixY . Thesupport countof X in
Y -projected trajectory database, denoted bysupportDT/Y

(X), is the number of trajec-
toriesZ in DT/Y , such thatX is a sub-trajectory ofY ⊗ Z.



procedureTrajPrefixSpan(Y, l, DT/Y )

1: scanDT/Y to find edgese such, that
if (l > 0) then e is adjacent to the last edge ofY

elseY can be extended bye to form a frequent trajectory
2: foreach edgee createY ′ = Y ⊗ e

3: foreachY ′ build DT/Y ′

4: run TrajPrefixSpan(Y ′, l + 1, DT/Y ′)

end procedure

Fig. 2.Traj-PrefixSpan algorithm

Traj-PrefixSpanalgorithm consists of three phases. In the first phase the algorithm
performs a full scan of the trajectory databaseDT to discover all frequent 1-trajectories.
In the second phase each frequent 1-trajectoryY is used to create anY -projected tra-
jectory database. Every pattern contained in anY -projected trajectory database must
have the prefixY . The third phase of the algorithm consists in recursive generation of
further Y ′-projected trajectory databases from frequent trajectoriesY ′ found in pro-
jections. The pseudocode of the algorithm is presented in Figure 2. The initial call is
TrajPrefixSpan(<>, 0, DT ).

4.2 FP-Tree

The physical indexing structure used in our algorithm is a slightly modifiedFP-Tree[9].
The main change consists in storing sequences of elements (as opposed to sets of el-
ements), and allowing a bi-directional traversal of the tree. FP-Tree is an undirected
acyclic graph with a single root node and several labeled internal nodes. The root of the
tree is labelednull, and internal nodes are labeled with edge numbers they represent.
Each internal node of the tree has a label, a counter representing the support of a se-
quence from the root to the given node, and a pointer to the next node with the same
label (or anull pointer if no such node exists). In addition, the index contains a header
table with edges ordered by their support and pointers to thefirst occurrence of an edge
within theFP-Tree. The tree is constructed during the execution of theTraj-PrefixSpan
algorithm by pattern growth. Each frequent trajectory discovered by theTraj-PrefixSpan
algorithm is inserted intoFP-Treeindex for fast lookup. After the frequent trajectory
discovery process finishes, theFP-Treecontains all frequent trajectories discovered in
the database. Generation of movement rules is a straightforward task. For each frequent
n-trajectoryX = (X1, X2, . . . , Xn), (n−1) movement rules can be generated by split-
ting the trajectory in every possible place,T1 ⇒ H1, T2 ⇒ H2, . . . , Tn−1 ⇒ Hn−1.

4.3 Matching strategies

After frequent trajectories have been found and stored in theFP-Tree, they can be used
to predict the unknown location of a moving object. For each moving object its known
trajectory has to be compared with movement rules generatedfrom frequent trajecto-
ries. In the next sections we introduce three matching strategies for scoring a partial



trajectory of a moving object with the database of movement rules. In all examples
let X = (X1, X2, . . . , Xm) be a partial trajectory of a moving object, for which we
are seeking its most probable location. For a given partial trajectoryX the set of all
matched movement rules is denoted byLX .

Whole Matcher TheWhole Matcherstrategy consists in finding all movement rules
Ti ⇒ Hi such, thatX = Ti (i.e., the tail of the rule entirely covers the partial trajectory
X). The headHi can be used as a prediction of a possible location of a moving object.
The probability that a moving object followsHi is given byconfidence (Ti ⇒ Hi). The
Whole Matcher strategy yields accurate results, but disallows any deviations of matched
rules from the partial trajectoryX . Furthermore, in case of long partial trajectories, the
Whole Matcher strategy may fail to find a matching movement rule.

Last Matcher TheLast Matcherstrategy discards all information from the partial tra-
jectoryX except for the last traversed edgeXm. The strategy finds all movement rules
Ti ⇒ Hi such, thatXm = Ti. The result of the strategy is the list of edges (move-
ment rule headsHi) ordered by descending values ofconfidence (Ti ⇒ Hi). The Last
Matcher strategy finds matching movement rules even for veryshort partial trajectories,
but the predictions inLX are less reliable, because they ignore the movement history
of a moving object.

Longest Last Matcher TheLongest Last Matcherstrategy is a compromise between
the two aforementioned strategies. For a given partial trajectoryX it finds all movement
rulesTi ⇒ Hi such, thatTi covers a part of the partial trajectoryX , i.e., there exists
j, 1 ≤ j < m such, thatTi = head(X, j). The strategy outputs, as the result, the
movement rule headsHi weighted by the relative coverage of the partial trajectory
X . For a given movement ruleTi ⇒ Hi the strength of the prediction is defined as
confidence (Ti ⇒ Hi)∗

length(Ti)
length(X) . Edges contained inLX are ordered according to the

descending value of the prediction strength.

5 Experiments

In this section we report on the results of the experimental evaluation of the pro-
posed approach. All experiments were conducted on a PC equipped with AMD Athlon
XP 2500+ CPU, 521 MB RAM, and a SATA hard drive running under Windows XP
SP2 Home Edition. Algorithms and the front-end applicationwere implemented in C#
and run within Microsoft .NET 2.0 platform. Synthetic datasets were generated using
Network-based Generator of Moving Objects by T.Brinkhoff [4]. Experiments were
conducted using the map of Oldenburg. The number of moving objects varied from
1 000 to 10 000, the number of classes of moving objects was setto 10, and the number
of time units in each experiment was 200. We set the maximum velocity of moving
objects to 50, locations of objects were registered usingPositionReportermethod. All
results reported in this section are averaged over 30 different instances of datasets. The



experiments measure: the time of mining frequent trajectories, the number of discov-
ered frequent trajectories, the time of matching a partial trajectory with the database of
moving rules, and the quality of location prediction.
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Fig. 3.Minimum support

Figure 3 shows the number of frequent trajectories (depicted on the left-hand side
axis of ordinates) and the time of mining frequent trajectories (depicted on the right-
hand side axis of ordinates) with respect to the varying value of theminsupthreshold.
Both measured values decrease with the increase of theminsupthreshold. As can be
clearly seen, the correlation between the number of frequent trajectories and the time
it takes to mine them is evident. We are pleased to notice thateven for low values of
minsupthreshold the algorithm requires less than 20 seconds to complete computations
and the number of discovered frequent trajectories remainsmanageable.

Figure 4 presents the number of frequent trajectories (depicted on the left-hand side
axis of ordinates) and the time of mining frequent trajectories (depicted on the right-
hand side axis of ordinates) with respect to the varying number of moving objects for a
set value ofminsup = 0.025. Firstly, we notice that the time of mining frequent trajec-
tories is linear w.r.t. the number of moving objects, which is a desirable property of our
algorithm. Secondly, we observe a slight decrease in the number of discovered move-
ment rules as the number of moving objects grows (a fivefold increase in the number
of moving objects results in a 20% decrease of the number of discovered movement
rules). This phenomenon is caused by the fact that a greater number of moving objects
is spread more or less uniformly over the movement area, and theminsupthreshold is
expressed as the percentage of the number of all moving objects. Thus, less edges be-
come frequent. For a smaller number of moving objects edges in the center of the city
tend to attract more moving objects, and less restrictiveminsupthreshold makes more
of these edges frequent, resulting in more movement rules.

Figure 5 shows the number of frequent trajectories (depicted on the left-hand side
axis of ordinates) and the time of mining frequent trajectories (depicted on the right-
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hand side axis of ordinates) with respect to the varying sizeof an edge cell. The size
of a cell is expressed in artificial units. The time of mining steadily decreases with the
growth of the cell size. This result is obvious, because larger cells result in less frequent
trajectories. On the other hand, the decrease is not linear.For larger cell sizes the num-
ber of discovered frequent trajectories is indeed lower. However, discovered frequent
trajectories have higher support and tend to be longer, contributing to the overall com-
putation time. The interpretation of the second curve, the number of discovered frequent
trajectories, is more tricky. One can notice atypical deviations for cell sizes of 400 and
600 units. These random effects are probably caused by accidental structural influence
of larger and smaller cell sizes on areas of intensified traffic. The results presented in
Figure 5 emphasize the importance of correct setting of the cell size parameter (e.g., the
difference in the number of discovered frequent trajectories is 10 when changing the
cell size from 300 to 400 units, and it grows to 40 when changing the cell size from 400



to 500 units). Unfortunately, our model does not permit to choose the optimal value of
the cell size parameter other than experimentally.

The next two figures present the results of experiments evaluating the accuracy of
prediction of the location using movement rules. These experiments were conducted as
follows. First, a database of moving objects was generated using a set of fixed parame-
ters. Then, 50 trajectories were randomly drawn from each database. Each test trajectory
was then split into a tail and a head. The tail was used as a partial trajectory, for which
future location of an object was to be predicted. Finally, the prediction returned from
each matching strategy was compared to the known head of the test trajectory and the
quality of prediction was computed. LetX = (X1, X2, . . . , Xm) be a randomly se-
lected trajectory of a moving object, divided intotail(X, k) andhead(X, k). The tail
is used as a partial trajectory for matching. If the next traversed edge, which isXk+1 is
not contained in the set of matching strategy answersLX , then the quality of location
predictionQuality(X, LX) = 0. Otherwise, the quality of matching is computed as the
probability of traversingXk+1 diminished by weighted incorrect predictions fromLX

that had prediction strength greater thanXk+1, i.e.,

Quality(X, LX) = P (Xk+1) ∗ (1 −

∑

j≤k:Xj∈LX

P (Xj) − P (Xk+1)

k + 1
(1)

In the above formula we assume thatLX is ordered by the decreasing prediction
strength, so stronger predictions have lower indices.
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Figure 6 presents the average time required to match a partial trajectory with the
database of movement rules with respect to the varyingminsupthreshold (and, conse-
quently, to the number of discovered movement rules). TheWhole MatcherandLast
Matcherstrategies perform almost identically, because both strategies can fully utilize
the FP-Treeindex structure. TheLongest Last Matcherstrategy performs slower, be-
cause it must traverse a larger part of theFP-Tree. Nevertheless, in case of all strategies
the matching time is very fast and never exceeds0.3 ms. We are particularly satisfied



with this result, because it supports our thesis that data mining methods can be em-
ployed for real-time location prediction.
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Fig. 7. Quality of prediction

Figure 7 depicts the average quality of prediction as computed by Equation 1. The
prediction quality of theWhole MatcherandLast Matcherstrategies reaches even 95%
of accuracy for highminsupthreshold values. For general settings of theminsupthresh-
old the accuracy of both methods remains satisfactory between 75% and 85%. It is
worth mentioning that the results depicted in the figure are computed according to our
formula, which might be too penalizing for theLongest Last Matcherstrategy, so the
presented numbers are somehow biased towards simple matching strategies. The quality
achieved by theLongest Last Matcherstrategy varies from 35% to over 60%. Surpris-
ingly, the quality of prediction increases with the decrease of theminsupthreshold. This
can be explained by the fact that low values of theminsupthreshold produce more fre-
quent trajectories and more often the correct prediction isplaced high in the resulting
setLX . Nevertheless, from the experimental evaluation we conclude that theLongest
Last Matcherstrategy is inferior to theWhole Matcherand Last Matcherstrategies
under all conditions.

6 Conclusions

In this paper we have introduced a new data mining model aiming at the efficient pre-
diction of unknown location of moving objects based on movement patterns discovered
from raw data. The model represents frequent trajectories of moving objects as move-
ment rules. Movement rules provide a simplification and generalization of a large set of
moving objects by transforming original continuous domainof moving object positions
into a discretized domain of edges of a superimposed grid. The main thesis of the paper,
well proved by conducted experiments, is that data mining techniques can be success-
fully employed for real-time location prediction in mobileenvironments. Indeed, while



most expensive and burdensome computations (e.g. the discovery of frequent trajecto-
ries) can be performed offline and periodically, the online matching of partial trajecto-
ries with the database of movement rules is executed very fast. The quality of location
prediction is satisfying, but we aim at developing more efficient matching strategies for
even better accuracy.

Our future work agenda includes:

– replacing uniform grid cells with differently sized areas that adaptively divide the
area of movement based on the density and congestion of moving objects,

– developing new matching strategies,
– including temporal aspects in discovered movement rules,
– including spatial information in movement rules,
– providing more informed decisions to location-based services based on discovered

movement rules.
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