
Index-Based Processing of Similarity Queries for

Set and Sequence-Valued Attributes

Bogdan Czejdo1, Zbyszko Królikowski2, MikoÃlaj Morzy2, and Tadeusz Morzy2

1 Department of Mathematics and Computer Science
Loyola University, 6363 St. Charles Avenue

New Orleans, LA 70118
czejdo@loyno.edu

2 Institute of Computing Science
Poznań University of Technology, Piotrowo 3A

60-965 Poznań, Poland
{zkrolikowski,mmorzy,tmorzy}@cs.put.poznan.pl

Abstract. Many complex real world objects can be easily modeled using
sets or sequences. Attributes containing sets or sequences of elements ap-
pear in various application domains, e.g. in telecommunication and retail
databases, multimedia systems, web server logs, genetic and molecular
databases, etc. However, the support for such attributes is usually lim-
ited to definition and storage in flat relational tables. Currently available
database systems support neither indexing nor advanced querying of at-
tributes containing sets or sequences. SQL language does not offer any
primitives to express set containment or set similarity queries.
In this paper we investigate similarity queries for set and sequence-valued
attributes. We present the notion of a similarity query and we review
similarity measures proposed so far for sets and sequences. We present
hierarchical bitmap index, an efficient indexing technique for sets, and
we show how the hierarchical bitmap index framework can be extended
to incorporate sequences as well. We introduce a new similarity measure
that can be successfully used with sequences. We present algorithms for
efficient similarity query processing using hierarchical bitmap index and
its variants. Our paper concludes with the results of conducted experi-
ments.

1 Introduction

Set-valued attributes provide a concise manner to represent complex objects ap-
pearing in many different application domains. Depending on the application
domain a set-valued attribute can be used to represent a set of products pur-
chased by a customer during a single visit to a supermarket (retail databases),
a set of pages and links visited by a user during navigation through a web site
(web server logs), a set of objects appearing on a picture or video (multimedia
databases). Sequence-valued attributes can be used whenever time dimension
appears. They can represent e.g. the order of purchases made by a customer
in a supermarket (retail databases), a sequence of phone calls (mobile phone

company database), or occurrences of recurrent illnesses (medical database).
Set-valued attributes are a part of the SQL3 standard, yet the support for such
attributes in contemporary databases is usually limited to definition and storage
in relational databases. There are no SQL extensions to formulate set-oriented
queries and no physical structures, such as indexes, to support efficient retrieval
of sets. Although the need to extend standard SQL with set containment op-
erators has been long acknowledged, no implementations followed. To the best
of our knowledge sequence-valued attributes are currently not supported by any
general-purpose commercial database management system (of course, dedicated
database management systems exist that aim at processing of solely sequence
data; examples of such dedicated systems include Gen Bank, EMBL, PROSITE,
among others).

The ability to perform set-oriented queries can be utilized by many advanced
applications. Queries concerning set-valued attributes can be categorized into
four main classes (similar four classes of sequence-oriented queries can be for-
mulated with respect to sequence-valued attributes). Given a query set provided
by a user. Equality queries search for all tuples that are identical with the query
set. Equality queries are useful in accurate medical diagnosis, e.g., to find pa-
tients with exactly defined symptoms. The second class of set-oriented queries
are subset queries. These queries search for all tuples that entirely contain the
query set. Subset queries can be used to create target groups of customers and
to find customers who bought specific set of products and could be targeted
for some promotional offer. The third class of set-oriented queries are superset

queries, which find all tuples that are entirely contained in the query set. Let
us assume that the query set contains all products offered at a reduced price. A
superset query can be used to find those customers who visited the supermarket
only to profit from a discount. The last class of set-oriented queries are similarity

queries. Similarity queries search for all tuples that are sufficiently similar to the
query set, according to some similarity measure.

Similarity queries have numerous practical applications. Consider an on-line
music store. Each customer purchasing an album is presented with a set of
automatic recommendations. These recommendations are built based on the
history of previous purchases made by that customer. The system generates the
set of recommendations that are of medium similarity to the albums already
purchased by the customer. Highly similar recommendation would include most
albums already possessed by the customer, while lowly similar recommendation
would not be relevant to the customer profile. Other applications of similarity
queries may require finding highly similar tuples, e.g. airport security system
should identify suspicious individuals based on the images from the surveillance
cameras. On the other hand, some applications may depend on efficient querying
for strongly dissimilar tuples, e.g. to quickly discover fraud credit card usages.

1.1 Organization of the Paper

This paper is organized as follows. In Section 2 we review the solutions proposed
so far in the literature. Section 3 contains basic definitions. In this section we

introduce a new similarity measure for sequences and discuss its usability. We
present a hierarchical bitmap index in Section 4 and we show how the hierar-
chical bitmap index can be used to efficiently process similarity queries on sets
in Section 5. We show how to extend the hierarchical bitmap index to enable
efficient indexing and similarity-based querying of sequences of elements in Sec-
tion 6. Section 7 contains results of experiments conducted on the hierarchical
bitmap index and its sequential variations. We conclude in Section 8 with a
summary and a future research agenda.

2 Related Work

Processing of set-oriented queries attracted a lot of work from the scientific
community and resulted in many proposals. Set containment operators were
proposed in [8]. In [5] the authors proposed to process similarity queries on sets
by transforming sets into vectors in Hamming space and to reduce the problem
to finding similar vectors in Hamming space using similarity filter index. Other
proposals for set indexing resulted in the development of many index types,
among them inverted files [15], signature trees [3], hierarchical bitmap indexes [9],
and signature tables [5]. For an overview of similarity measures for set proposed
so far see [10].

Indexing of sequences has been much researched and resulted in several pro-
posals. In [1] authors present the F-Index and use Discrete Fourier Transform
to convert sequences into the frequency domain and manage them as points in
a multidimensional space using an R*-tree. This technique can also be extended
to allow for similar sequence search [4]. Another technique for answering se-
quence similarity queries using R-trees was presented in [12]. Most approaches
rely on the edit distance between compared sequences [2, 6], although other ap-
proaches are also possible, e.g., using time warping distance [14]. An example of
an index-based approach using time warping function is presented in [11]. Sev-
eral solutions to the sequence matching problem come from biological databases,
where sequence alignment and protein matching problems have been addressed
[13].

3 Definitions

Given a database D of tuples, let D = {t1, t2, . . . , tn}, where each tuple ti con-
tains a set. Let q denote a finite set of elements (called the query set). The
focus of our interest is to efficiently process similarity queries of the form:
{ti ∈ D : sim(ti, q) ≥ α} for some similarity measure sim() and similarity
threshold α. To compute the similarity between two sets S1, S2 it is necessary
to provide a similarity measure. Until now, many different measures have been
proposed, e.g.:

– matching: CM (S1, S2) = |S1 ∩ S2|
– dice: CD (S1, S2) = 2∗|S1∩S2|

|S1|+|S2|

– Jaccard’s coefficient: CJ (S1, S2) = |S1∩S2|
|S1∪S2|

– overlap: CO (S1, S2) = |S1∩S2|
min|S1|,|S2|

– cosine: Ccos (S1, S2) = |S1∩S2|√
|S1|×|S2|

In our research we have adopted the Jaccard’s coefficient. It is simple and
intuitive and can be successfully used in many real-world applications. Although
it is not a metric3, it can be easily converted to a metric as

d (S1, S2) = 1 − CJ (S1, S2)

.
Given a database of sequences, let D = {s1, s2, . . . , sn} where each sequence

si is an ordered list of event pairs si = (e1, t1) (e2, t2) , . . . , (en, tn) and every
event pair contains the event type ej and the time of the event occurrence tj . Let
q denote a finite sequence of event pairs (called the query sequence). The focus of
our interest is to efficiently process similarity queries of the form: Q = {si ∈ D :
sim (si, q) ≥ α} for some similarity measure sim() and similarity threshold α.
In our experiments we have adopted the following similarity function. Let tS(ei)
denote the time of occurrence of the event ei in sequence S. Given sequences
P ,Q, let

– P ∪ Q = {ei | ei ∈ P ∨ ei ∈ Q}
– P ∩ Q = {ei | ei ∈ P ∧ ei ∈ Q}
– P ∩̂Q = {(ei, ej) | ei ∈ P ∧ ej ∈ P ∧ ei ∈ Q ∧ ej ∈ Q}
– P ∩̃Q = {(ei, ej) | ei ∈ P ∧ ej ∈ P ∧ ei ∈ Q ∧ ej ∈ Q ∧

tP (ei) ≤ tP (ej) ∧ tQ (ei) ≤ tQ (ej)}

There are three factors that affect the similarity ratio between the two se-
quences:

element similarity: simE =
|P ∩ Q|
|P ∪ Q| (1)

order similarity: simO =

∣∣P ∪̂Q
∣∣

∣∣P ∪̃Q
∣∣ (2)

period similarity: simP =

∑ |tP (ei)−tP (ej)|
|tQ(ei)−tQ(ej)|∣∣P ∪̃Q

∣∣ for all (ei, ej) ∈ P ∪̃Q (3)

The overall similarity between the two sequences P ,Q is a weighted sum of
element, order, and period similarity:

sim (P,Q) = w1 ∗ simE (P,Q) + w2 ∗ simO (P,Q) + w3 ∗ simP (P,Q)

3 recall that the metric is a distance function d(x, y) such that d(x, x) = 0, d(x, y) =
d(y, x) and d(x, z) ≤ d(x, y) + d(y, z)

where w1 + w2 + w3 = 1.

The element similarity factor (1) measures the pure set similarity and it does
not consider the order and time constraints of events in P and Q. The order
similarity factor (2) measures the percentage of event pairs (ei, ej) which occur in
both sequences and preserve the same order in both sequences. Finally, the period
similarity factor (3) computes the relative difference of time gaps between all
pairs of events (ei, ej) occurring in both sequences. Although the above presented
function is not a measure (because period similarity is not symmetrical), this
intuitive function captures well the similarity between sequences.

4 Hierarchical Bitmap Index

Hierarchical bitmap index (HBI) originates from the well-known S-tree struc-
ture. The main difference is the way indexed sets are represented in index keys.
To remove the ambiguity of set representation a hierarchical structure is built
for every indexed set. The index consists of a set of index keys, each of them
representing an indexed set. Given a set-valued attribute A. Every index key
contains a very long bitmap B. The length of the bitmap B is determined by
the size of the domain of indexed set |dom (A)| and the length of the machine
word l. The bitmap B must be long enough to map every element ai ∈ dom (A)

to a distinct bit, i.e. the length of the bitmap b = l ∗
⌈
|dom(A)|

l

⌉
. The bitmap

B is then divided into m = b
l

nodes, called index key leaves. Every element in
the domain of the indexed set ai ∈ dom (A) is mapped via a mapping function
f (ai) to a kth position in the bitmap B, k ∈ 〈1, b〉.

Given an indexed set S = {a1, a2, . . . , an}. For the sake of simplicity we
assume the mapping function f (ai) = i. An element ai sets the ith bit of the
bitmap B to ‘1’. This bit is in fact the j th bit in the kth index key leaf, where
k =

⌈
i
l

⌉
and j = i−

(⌈
i
l

⌉
− 1

)
∗ l. Every element in the indexed set is represented

analogously. Therefore, the entire set S is represented by n bits set to ‘1’ on
appropriate positions in index key leaves. Index key leaves which contain at
least one bit set to ‘1’ are called non-empty leaves whereas index key leaves that
are entirely set to ‘0’ are called empty leaves.

The number of index key leaves must be large enough to uniquely represent
every element from the indexed domain. For most applications this equals tens or
hundreds of thousands of bits. On the other hand, even for sets with large average
size most index key leaves are empty. This leads to the idea of compressing the
information about index key leaves by the next level of inner nodes. Every bit
in an inner node corresponds to a single index key leaf. If the referenced leaf
is non-empty, then the appropriate bit in the inner node is set to ‘1’, otherwise
it is set to ‘0’. The ith index key leaf is represented by the j th bit in the kth
inner node, where k =

⌈
i
l

⌉
and j = i −

(⌈
i
l

⌉
− 1

)
∗ l. Every next level of the

inner nodes contains l-times less nodes then the prior level. This procedure is
repeated recursively until the level is reached on which only one node is sufficient

to represent all inner nodes at the subsequent level. This single node at the
highest level is called the index key root.

The maximum number of elements that can be indexed in a single index key
is determined by two parameters, namely, the size of a single index key node l
and the depth of the index key d. Shallow index keys are faster to process, but
they limit the maximum number of distinct elements that can be represented
in an index key. Deep index keys are slower to process, but allow to uniquely
represent huge domains. Note that the average size of the indexed sets, which
does not have to be known in advance, is not relevant to the construction of
the index. For example, let us assume l = 32 and d = 4. The root of a single
index key can store information about 32 inner nodes at level 2. Each of those
nodes stores information about another 32 inner nodes at level 3, which results in
322 = 1024 inner nodes at level 3. Each inner node at level 3 represents 32 inner
nodes at level 4. This gives 323 = 32768 index key leaves, each representing 32
different elements from the indexed domain. As the result, a single index key of
the hierarchical bitmap index with l = 32 and d = 4 allows to uniquely represent
sets with domain of the size 324 = 1048576 elements.

To better illustrate the idea of the hierarchical bitmap index let us consider
the following example of a single index key construction.

Fig. 1. Hierarchical bitmap index

Example 1. Let us assume index key node length l = 4 and index depth d =
3. Let us also assume the mapping function f (ai) = i. Given the set S =
{2, 3, 9, 12, 13, 14, 38, 40}. The index key of the set S is depicted in Figure 1. At
the lowest level 8 bits corresponding to the elements of the set S are set to ‘1’,
so index key leaf nodes 1,3,4 and 10 become non-empty (they are marked with
a solid line). At the upper level 4 bits representing non-empty leaf nodes are set
to ‘1’. In the root of the index key only first and third bits are set to ‘1‘, which
means that only first and third inner nodes at the level 2 are non-empty. Notice
that the index consists of only 4 index key leaf nodes, 2 inner index key nodes at
the level 2 and a single index key root. Empty nodes (marked with a dotted line)
are not stored anywhere in the index and are shown in the figure for explanation
purpose only.

All index keys combined form the hierarchical bitmap index. Index keys are
divided into groups based on the number of non-empty nodes (both inner nodes

and index key leaves). Only non-empty nodes are physically stored in the index.
All index keys with equal number of non-empty nodes are stored in a single file
of fixed-size records. This greatly simplifies the management and maintenance of
the index. Index key roots with pointers to the remaining parts of index keys are
stored in the signature tree. The leaves of the signature tree contain index key
roots and pointers to the remaining parts of each index key, while the internal
nodes contain the descriptions of the referenced leaves. Each leaf of the signature
tree is represented by the superposition of all index key roots contained in that
leaf. Additionally, signature tree leaves are connected via pointers to form a
linked list which enables a linear scan of all index key roots of the hierarchical
bitmap index.

5 Similarity Queries Using Hierarchical Bitmap Index

Let q denote a finite set of elements drawn from the domain dom (A) of the set-
valued attribute. We will further refer to q as the query set. Given a database
D = {t1, t2, . . . , tn}. Each tuple ti contains a set. Let us assume that there is a
hierarchical bitmap index defined on the database D. Let K (ti) denote the index
key for the tuple ti. Let Nm

n (ti) denote the nth node at the mth level of the
index key of ti. Let & denote the bitwise AND operation. The following algorithm
is used to perform similarity search using the provided similarity threshold α.

1: for all K (ti) do
2: c = 0;
3: for all levels l do
4: for all index key nodes n at level l in q do
5: p = skip (ti, l, n) ;
6: x = N l

p+1 (ti) &N l
n (q) ;

7: c = c + count (x) ;
8: end for
9: end for

10: s = count (K (q)) + count (K (ti)) − c;
11: if c

s
≥ α then

12: return(true);
13: else
14: return(false);
15: end if
16: end for

The main idea of the algorithm is to compare all pairs of corresponding nodes
and count the number of positions on which both nodes contain ‘1’s. If the ratio
of common ‘1’s to the number of ‘1’s in compared sets is higher than the user
defined threshold α then the tuple is added to the answer, else the tuple is
rejected. For every tuple ti the algorithm iterates over all nodes of K (q) and
bitwisely ANDs those nodes with corresponding nodes in K (ti).

Determining the corresponding node to be compared with a given node of
K (q) is difficult and is performed by the function skip (ti, l, n). Both compared
index keys may contain different number of nodes as there are nodes in K (ti)
which represent elements in ti that are not relevant to the query q. So, for every

node N l
n (q) from the index key K (q) the function skip (ti, l, n) computes the

number of nodes that have to be skipped in K (ti) in order to reach the node
which corresponds to N l

n (q). This computation is performed in the parent node
of the N l

n (ti), which is the node N l−1
n%d+1 (ti) (where % denotes the modulo

operator). The number of nodes that must be skipped at the lth level of the
index key K (ti) is equal to the number of bits in N l−1

n%d+1 (ti) set to ‘1’ and
preceding the position n%d + 1 (these bits represent nodes at the level l which
are not relevant to the query q).

The function count (x) computes the number of bits set to ‘1’ in x. When
applied to an index key the function count (K (ti)) returns the number bits set
to ‘1’ in the base bitmap B of the index key K (ti). After the comparison of all
node pairs is finished the ratio of common positions is calculated. If this ratio
exceeds the user defined similarity threshold α the algorithm adds the given
tuple to the result. Notice that HBI can be easily adopted to other similarity
measures. The key feature of the index, which is the unique and unambiguous
representation of the elements of the indexed sets, makes it suitable for other
similarity measures as well.

6 Sequence-Oriented Indexes and Similarity Queries on

Sequences

In this section we present two modifications of the hierarchical bitmap index
that allow to efficiently index sequences and store time gaps between consecutive
elements of the indexed sequences.

6.1 Sequential Hierarchical Bitmap Index

The first structure is similar to the original hierarchical bitmap index and varies
only in the representation of the leaf nodes of the index key. We will refer to
it as the sequential hierarchical bitmap index (SHBI). Recall that in case of the
original hierarchical bitmap index each index key leaf contains a part of the
base bitmap B. With sequences it is also necessary to store the occurrence time
of each event as well. In the sequential hierarchical bitmap index each index
key leaf occupies one page of memory. The first word on the page is the part
of the base bitmap B. The rest of each page is filled with time occurrences of
every event indexed by the current index key leaf. Above the leaf level all inner
nodes of the index key are identical to the original hierarchical bitmap index
framework, namely, they contain bit descriptions of lower leaves with a bit set
to ‘1’ to signify a non-empty index key leaf page. The sequential hierarchical
bitmap index can be successfully used to process subsequence, supersequence,
and similarity sequence queries.

The structure of SHBI results in a two-phase search algorithm. First, the
index is scanned to find the index keys which contain a sufficient number of
common elements with the query sequence provided by a user. This is done
exactly in the same way as in case of the traditional hierarchical bitmap index.

Next, index key leaf pages are scanned to compute the order and period similarity
between the compared sequences. The order of two events ei, ej in a sequence S
can be determined easily on the basis of the time occurrences of their elements,

i.e., ei
S→ ej iff tS (ej) − tS (ei) > 0 .

Let q denote a finite sequence of events. We will further refer to q as the query

sequence. Given a database of sequences D = {s1, s2, . . . , sn}. Let tsi
(ei) denote

the occurrence time of an event ei in the sequence si. Let us assume that there
is a sequential hierarchical bitmap index defined on the database D. Let K (si)
denote the index key for the sequence si. Let Nm

n (si) denote the nth node at
the mth level of the index key of si. Let & denote the bitwise AND operation.
The following algorithm is used to perform similarity search using the provided
similarity threshold α.

1: for all K (si) do
2: c = 0; d = 0; e = 0;
3: for all levels l do
4: for all index key nodes n at level l in q do
5: p = skip (si, l, n) ;
6: x = N l

p+1 (si) &N l
n (q) ;

7: c = c + count (x) ;
8: d = d + number of positions p in x where tq (p) < tsi

(p) /count (x)
9: e = e + SumDist(x,N l

p+1(si), N
l
n(q));

10: end for
11: end for
12: s = count (K (q)) + count (K (si)) − c;
13: simE = c/s; simO = d; simP = e;
14: if w1 ∗ simE + w2 ∗ simO + w3 ∗ simP ≥ α then
15: return(true);
16: else
17: return(false);
18: end if
19: end for

The main idea of the algorithm is the following. For every index key the
element similarity between the index key and the query sequence is computed.
While scanning the index key leaf pages the algorithm computes in parallel the
order similarity and the period similarity. The latter is computed by the function
SumDist

(
x,N l

p+1 (si) , N l
n (q)

)
which analyzes all positions in the common part

x and computes the difference of the distances in si and q between all elements
represented by x.

6.2 Two-Dimensional Hierarchical Bitmap Index

The second structure that can be derived from the hierarchical bitmap index is a
two-dimensional hierarchical bitmap index (HBI2). The idea of the hierarchical
compression of a sequence representation remains the same, while the meaning of
the compressed bitmap changes. In HBI, the underlying bit vector contains bits
set to ‘1’ at positions representing sequence elements. In HBI2, the underlying
structure is a n × n matrix M , where n = |dom (S)| and S is the attribute

containing sequences. For a base matrix representing a sequence sk, an element
M [i, j] is set to ‘1’ iff ei

sk→ ej , i.e., if an event ei precedes an event ej in the
sequence sk. Each base matrix M is divided into rectangles of the size x × y,
where x ∗ y ≤ machine word. Each of those rectangles becomes an index key
leaf at the lowest level of the HBI2 tree. Upper levels of the HBI2 tree are
created analogously to the HBI framework, so only non-empty rectangles of the
lower levels are represented at higher levels. This representation of an indexed
sequence is more coherent and concise than that of SHBI, but requires usually
more space, especially in case of long sequences, because the number of bits set
to ‘1’ in the base matrix M grows quadratically with the length of the sequence.
The main drawback of HBI2 is the fact, that it does not allow to encode time
gaps between consecutive elements of a sequence and it does not allow multiple
occurrences of an element within a sequence. To overcome those obstacles we
have developed an extension of HBI2, a three-dimensional hierarchical bitmap

index (HBI3) that contains an additional dimension of time. We are currently
investigating the properties of HBI3 and conducting experiments with this novel
indexing structure.

HBI2 can be used to process similarity queries on sequences. The algorithm
is very similar to the algorithm presented in Section 5 for HBI. Due to the lack
of space we will skip minor differences between the two. For the same reason
we have to resign from presenting the implementation details of all four indexes
mentioned in this paper. In the next section we present the results of the exper-
imental evaluation of HBI, SHBI, and HBI2 indexes of their ability to efficiently
process similarity queries on sets and sequences.

7 Experiments

The experiments where conducted on top of the Athlon 1,4 GHz PC with 512 MB
of memory. Data sets were created using DBGen from the IBM Quest Project.
The parameters of synthetic data sets were chosen to imitate the real data sets
occurring in retail databases. The number of distinct elements varies from 1000
to 200 000 elements, the number of indexed sets varies from 1000 to 1 million
sets, the average set size varies from 10 elements to 50 elements. We measured
also the influence of data distribution on the hierarchical bitmap index. The
data correlation was simulated by varying the number of frequent itemsets in
the source data, this number changes from 5000 to 100 000 patterns (for 200 000
sets and 100 000 different products). The queries were generated based on the
patterns appearing in a given data set. All measurements are given in processor
ticks. For similarity queries on sequences we used a database of 1000 sequences
with the domain size of 10 000 different elements and the sequence length varying
from 3 to 25 elements on average.

Figure 2 presents the search times for similarity queries on sets with regard
to the number of indexed sets varying from 1000 to 1 million. It can be easily
noticed that HBI performs better than the brute force approach (the full table
scan) and that the performance is linear with regard to the number of indexed

sets. In the next experiment (Figure 3) we have varied the size of the indexed
domain from 1000 to 200 000 different elements. Again, HBI is superior in these
circumstances. An interesting feature is the saturation of the index, starting from
some threshold value the search time does not depend anymore on the number of
different elements (this happens when adding new elements to the domain does
not influence the average number of non-empty HBI key nodes in HBI keys).
Figure 4 presents the search times for similarity queries when the average size of
indexed sets changes from 10 elements to 50 elements. Finally, Figure 5 displays
the search times for similarity queries on sequences. In this experiment we have
compared SHBI and HBI2 with SEQC [7].

Fig. 2. Number of sets Fig. 3. Size of the domain

Fig. 4. Average size of a set

0

500

1000

1500

2000

2500

3000

3500

4000

4500

0 5 10 15 20 25

T
im

e
[m

s]

Sequence length

HBI
HBI2

SEQC

Fig. 5. Sequence similarity

8 Conclusions

Similarity query processing on sets and sequences is very important from the
point of view of modern applications. However, the support for such functionality
in commercially available database systems is very limited. In this paper we
argued that new indexing techniques must be developed and new algorithms
implemented in order to allow advanced set and sequence querying in relational

database systems. We also revised a suitable solution, the hierarchical bitmap
index. It is very efficient at processing different classes of set-oriented queries,
in particular, it is capable of efficient similarity querying on sets using different
similarity measures. We also proposed a modification of HBI in order to allow
it to efficiently index sequence data.

Our future work agenda includes, among others, experimental evaluation of
the newly proposed similarity function for sequences, experimental comparison of
the sequential hierarchical bitmap index with the entire family of SEQ indexes
[7], and using adjacency matrices with labeled distances between elements to
index sequences.

References

1. Agrawal, R., Faloutsos, C., Swami, A.: Efficient Similarity Search In Sequence

Databases. Proc. of the 4th International Conference on Foundations of Data Or-
ganization and Algorithms FODO’93, pages 69–84, Chicago, Illinois, USA, October
13-15, 1993.

2. Bozkaya, T., Yazdani, N., Meral Özsoyoglu, Z.: Matching and Indexing Sequences

of Different Lengths. Proceedings of the Sixth International Conference on Infor-
mation and Knowledge Management CIKM’97, pages 128–135, ACM Press, Las
Vegas, Nevada, USA, November 10-14, 1997.

3. Deppisch, U.: S-tree: a dynamic balanced signature index for office retrieval. Proc.
of the 9th Annual International Conference on Research and Development in In-
formation Retrieval ACM SIGIR, pages 77–87, ACM Press, Pisa, Italy, 1986.

4. Faloutsos, C., Ranganathan, M., Manolopoulos, Y.: Fast Subsequence Matching in

Time-Series Databases. Proc. of the 1994 ACM SIGMOD International Conference
on Management of Data pages 419–429, ACM Press, Minneapolis, Minnesota, USA,
May 24-27, 1994.

5. Gionis, A., Gunopulos, D., Koudas, N.: Efficient and tunable similar set retrieval.
Proc. of the 2001 ACM SIGMOD International Conference on Management of
Data ACM Press, Santa Barbara, California, USA, May 21-24, 2001.

6. Mannila, H., Ronkainen, P.: Similarity of event sequences. Proc. of the 4th Interna-
tional Workshop on Temporal Representation and Reasoning TIME’97, Daytona
Beach, Florida, USA, May 10-11, 1997.

7. Manolopoulos, Y., Morzy, M., Morzy, T., Nanopoulos, A., Wojciechowski, M., Za-
krzewicz, M.: Indexing Techniques for Web Access Logs. Web Information Systems,
Idea Group Publishing, 2004.

8. Melnik, S., Garcia-Molina, H.: Adaptive algorithms for set containment joins. ACM
Transactions on Database Systems (TODS) Volume 28 , Issue 1 (March 2003): 56–
99 ACM Press, New York, USA

9. Morzy, M., Morzy, T., Nanopoulos, A., Manolopoulos, Y.: Hierarchical Bitmap In-

dex: an Efficient and Scalable Indexing Technique for Set-Valued Attributes. Proc.
of the 7th East-European Conference on Advances in Databases and Informations
Systems ADBIS’2003, pages 236–252, Dresden, Germany, September 3-6, 2003.

10. Nanopoulos, A., Manolopoulos, Y.: Efficient similarity search for market basket

data. VLDB Journal, 11(2):138-152, 2002.
11. Park, S., Chu, W., Yoon, J., Hsu, C.: Efficient Searches for Similar Subsequences

of Different Lengths in Sequence Databases. Proc. of the 16th International Con-

ference on Data Engineering ICDE’00, pages 23–32, IEEE Computer Society, San
Diego, California, USA, 28 February–3 March, 2000.

12. Rafiei, D., Mendelzon, A.O.: Similarity-Based Queries for Time Series Data. Proc.
of the 1997 ACM SIGMOD International Conference on Management of Data pages
13–25, ACM Pess, Tucson, Arizona, USA, May 13-15, 1997.

13. Tsong-Li Wang, J., Chirn, G-W., Marr, T., Shapiro, B., Shasha, D., Zhang, K.:
Combinatorial Pattern Discovery for Scientific Data: Some Preliminary Results.
Proc. of the 1994 ACM SIGMOD International Conference on Management of
Data pages 115–125, ACM Press, Minneapolis, Minnesota, USA, May 24-27, 1994.

14. Yi, B. K., Jagadish, H. V., Faloutsos, C.: Efficient Retrieval of Similar Time Se-

quences Under Time Warping. Proc. of the Fourteenth International Conference
on Data Engineering ICDE’98, pages 201–208, IEEE Computer Society, Orlando,
Florida, USA, February 23-27, 1998.

15. Zobel, J., Moffat, A., Sacks-Davis, R.: An efficient indexing technique for full text

databases. Proc. of the 18th International Conference on Very Large Data Bases
VLDB’92, pages 352–362, Morgan Kaufmann, Vancouver, Canada, August 23-27,
1992.

