
Moppy – Mobile Object Position Prediction
Application

Łukasz Rosikiewicz
Logos sp. z o.o.

ul. Rogalínskiego 16
60-267, Poznán, Poland

Email: Lukasz.Rosikiewicz@logos.com.pl

Mikołaj Morzy
Poznan University of Technology

ul. Piotrowo 2
60-965 Poznan, Poland

Email: Mikolaj.Morzy@put.poznan.pl

Abstract—In this paper we present Moppy — an application
for mobile object position prediction. Moppy is an easy to use,
intuitive application with interactive graphical user interface and
result visualization. The main purpose of Moppy is to predict
an unknown position of a mobile object based on frequent
trajectories discovered from historical movement data. In this
paper we present an overview of Moppy’s features, including
input data formats, mining algorithms employed by Moppy,
and visualization of prediction results. Some research issues
pertaining to the development of Moppy are also briefly discussed
in this paper.

I. I NTRODUCTION

Mobile devices capable of wireless communication are
becoming ubiquitous in our everyday lives. Combined with
recent advances in positioning technology, many location-
based services are becoming available for casual end-users
of cellular phones, personal digital assistants, or vehicles
equipped with positioning sensors and tracking systems. Most
systems record positions of all tracked mobile objects, thus
enabling to construct paths of moving objects. Due to several
reasons (e.g., power loss or communication failure), an exact
location of a moving object can remain unknown for a certain
period of time. Hence, a method is required to predict a
possible position of a moving object in case the exact position
of the object is not known. There are numerous applications
of position prediction, e.g., context and location-based adver-
tisement, traffic management, way-finding, etc.

Predicting the location of a moving object can be a dif-
ficult task. The amount of data to be analyzed precludes
most traditional prediction methods, e.g., methods developed
within machine learning community. Another limitation is
the requirement for the prediction algorithm to work online,
producing position predictions instantly. This requirement
severely limits the amount of computations allowed for the
prediction algorithm. Furthermore, the performance of the
prediction method should remain independent (or almost in-
dependent) of the number of moving objects monitored by
the positioning system. We also expect that the prediction
module produces a “white box” prediction model where each
prediction is somehow “explained” to the user, e.g., in the
form of human-readable rules. Given that the model does
not drop below a certain accuracy threshold, we strongly
prefer a model that predicts faster, probably at the expense

of some accuracy. This assumption is driven by practical
requirements of location-based services, where the prediction
speed is of crucial importance. Many solutions proposed in
the literature so far do not fulfill this requirement. As an
example, consider simulation which is widely used for location
prediction. Simulation is capable of producing fairly accurate
results, but requires sophisticated models of moving objects in-
teractions and movement environment (area topology, routing
schemes, unexpected barriers, etc.). Such complex models may
be computationally too expensive for successful deployment
in mobile environment. The second assumption driving our
research and development efforts is the necessity to use
historical data of past object movements for prediction. The
raw data collected from moving objects contains knowledge
about typical behavior of moving objects. This knowledge
can be used to predict future positions of a moving object,
assuming that the object adheres to typical movement patterns
(and most objects do).

In this paper we demonstrate Moppy, a new tool for predict-
ing positions of moving objects in urban environments. Moppy
employs data mining techniques to historical data of moving
objects to discover frequent movement patterns expressed as
frequent trajectories, following the ideas expressed in [1] and
[4]. Based on discovered patterns Moppy predicts the probable
position of a moving object, for which a partial movement path
is known. Frequent patterns discovered in historical data are
matched against the known part of a moving object’s trajectory
in order to predict the location of the mobile object.

The paper is organized as follows. Section II describes the
general idea behind Moppy. In Section III we present the archi-
tecture of the application, we enumerate its main features,and
we describe Moppy’s interface. Finally, Section IV presents a
case study of Moppy’s demonstration.

II. GENERAL IDEA

Figure 1 presents the general idea of mobile object position
prediction using Moppy. Moving object positions are measured
using wireless positioning technology and recorded in the
database. Unfortunately, raw position data are expressed in
terms of continuous domains of geographical coordinates. In
order to mine raw data it must undergo the discretization pro-
cess. Moppy imposes a user-defined grid of rectangular cells



Fig. 1. Position prediction using Moppy

on the movement area. Moving object paths and positions are
transformed, using this grid, into trajectories. Each trajectory
is an ordered list of grid edges traversed by a moving object
path. Thus, a moving object path expressed using continuous
coordinates is transformed into a sequence of discrete edges.
Next, a data mining algorithm is applied to trajectory data
to find frequent trajectories that describe movement patterns
exhibited by a significant number of moving objects. These
patterns (frequent trajectories) are stored in the database using
an optimized physical structure of theMFP-Tree, which is a
modifiedFP-Tree[5] capable of storing sequences. The above
mentioned steps are computationally expensive, but can be
performed periodically and off-line.

The prediction of a mobile object position is performed on-
line. Figure 2 presents an overview of the prediction process.
For a given vehicle, let us suppose that a partial path of
the vehicle is known. Suddenly, the tracking device of the
vehicle stops sending positioning signal. In order to predict
the possible location of the vehicle, the known path of the
vehicle, referred to as the query path, is transformed into the
query trajectory. Frequent trajectories are read off the MFP-
Tree structure and matched against the query trajectory using a
matching algorithm. All matching algorithms are implemented
as plugins and can be freely replaced. The matching algorithm
returns the set of possible positions of the moving vehicle.Fur-
thermore, each prediction has a probability estimate associated
with it. The results are visualized in Moppy.

Fig. 2. Prediction process

III. A RCHITECTURE, FEATURES, AND USER INTERFACE

Moppy’s architecture follows the modular design pattern,
which results in a flexible and extensible application. The use
of plugin modules allows to easily extend the basic framework
with new solutions. Input and import modules can be added to
the application to acquire data from various sources. Position
prediction algorithms are also pluggable, thus enabling totest
new algorithms using Moppy’s transformation and discovery
engines. Most programming is done against interfaces, modu-
larizing the internal architecture of the application. Moppy is
written in C# and runnable on Microsoft .NET 2.0 Framework,
which greatly attributes to overall efficiency and speed of
execution. Below we briefly describe the most important
modules. Moppy consists of the following modules:

• Import module – this module allows loading map files
stored in*.node and*.edge formats [2], as well as
using mobile objects paths stored in*.mpf and*.mof
file formats. It is possible to transform TIGER/Lines files
and Shape files into format used by the application with
external programs.

• Transformation module – this module is responsible for
the transformation of mobile object paths acquired from
raw data into trajectories expressed in terms of grid
cells and edges according to user-defined parameters. The
transformation step can be perceived as a discretization
of the continuous domain of moving object positions into
a discrete domain of grid edges. Simplification resulting
from this step allows us to employ an efficient data min-
ing algorithm for the discovery of frequent trajectories.
As the result of this step mobile object paths stored
in *.mpf or *.mof formats are transformed into the
trajectory format. Obviously, the discretization resultsin
a loss of precision in the measurement of mobile object
positions. The transformation process is governed by grid
parameters supplied by the user. If the grid is too coarse,
then the discovered patterns might be too general to
accurately describe individual moving objects. On the
other hand, if the grid is too dense, the patterns might
not be apparent in trajectory data. In our experiments we
have used a100×100 grid covering the city of Oldenburg.

• Discovery engine – the purpose of this module is to em-
ploy data mining algorithm to the transformed trajectory
data. Moppy implements ofTraj-PrefixSpanand Traj-
PrefixSpan Neighbouralgorithms [6] that are modifica-



tions of the well-knownPrefixSpanalgorithm [7]. Thor-
ough description of both algorithms and accompanying
physical structures is beyond the scope of this paper.
Discovery engine finds frequent trajectories of mobile
objects that are further used by the prediction module.

• Prediction module – this module uses plugins that imple-
ment algorithms of position prediction based on frequent
trajectories found by the discovery engine. The use of
plugins allows the user to test a number of different pre-
diction algorithms based on frequent trajectories. Users
can freely write and use new plugins that implement
different matching strategies. Currently, Moppy ships
with three plugins:Whole Matcher, Last Matcherand
Longest Last Matcher. Moppy produces a probabilistic
prediction model, where each prediction has an accuracy
estimate associated with it. Depending on map character-
istics, parameters of the transformation grid, and available
historical data it is possible to achieve prediction quality
rate of over 90%. Prediction algorithms are very fast, the
mean prediction time for a queried mobile object is less
than one second [6].

• Graphical user interface (GUI) with visualization of pre-
diction results.

Fig. 3. Moppy GUI

Moppy is a highly usable and intuitive desktop application.
It has a graphical user interface (GUI) for performing all
operations. A screenshot of Moppy is presented in Figure 3.
Moppy allows to load a map, set grid parameters and visu-
alize a grid on top of the map, investigate movement paths
loaded from a file, transform movement paths into trajectories,
investigate trajectories and frequent trajectories. The map of
the movement area can be easily zoomed in and out. After
loading movement object data and setting discretization grid
parameters, data mining algorithm for discovering frequent
trajectories can be run. Discovered patterns can be displayed
on the map or can be exported to a disk file for future use.
Moppy allows users to quickly verify discovered patterns by
matching patterns against a user-defined query path. A user
can construct a query path by simply double-clicking on a
map to indicate subsequent positions of a moving object. The

results of the position prediction are displayed as a list of
possible locations of the moving object, ordered by prediction
accuracy. Furthermore, possible locations of a moving object
are indicated on the map using colored rectangles. The color
of the rectangle informs about the probability of the prediction
in this area making the interpretation of results more intuitive.

Moppy can be run either in graphical mode or in console
mode. Running Moppy in console mode is useful when
the user needs to perform a number of operations using a
batch script. Console mode offers similar functionality tothe
graphical mode. Loading, transformation, and the discovery of
frequent trajectories can be run from a script. Console mode
also allows to predict the location of a moving object given
the query movement path. This feature allows to incorporate
Moppy as a prediction service into larger applications.

IV. D EMONSTRATION

The outline of the demonstration of Moppy is the following.
We will present an overview of the architecture of Moppy
and we will briefly discuss the process of frequent trajectories
discovery. Next, we will demonstrate the position prediction
using Moppy, with the emphasis on the usability of different
plugins. We will present application’s graphical user interface:
viewing maps, movement paths, movement trajectories and
discovered frequent trajectories. Using an example map of
Oldenburg we will demonstrate a few test cases of how to
predict the position of a mobile object and how to work with
the results in Moppy’s user interface. We will also show how
using different matching algorithms influences the qualityof
received results. Our experiments are conducted on synthetic
data sets created using Network-based Generator of Moving
Objects [3]. For more information please visit Moppy’s home-
page, which is located at http://www.icpnet.pl/∼rosa/moppy/.
The page contains additional screenshots of the application and
the documentation of the project. Moppy is freely availablefor
download (Microsoft .NET 2.0 Framework required) both as
binary and source code. The authors welcome any questions
that may arise and will be happy to provide additional expla-
nations.

REFERENCES

[1] S. Brakatsoulas, D. Pfoser, and N. Tryfona. Modeling, storing, and
mining moving object databases. InIDEAS, pages 68–77. IEEE Computer
Society, 2004.

[2] T. Brinkhoff. Description of the format of the network files. http://www.
fh-oow.de/institute/iapg/personen/brinkhoff, 2000.

[3] T. Brinkhoff. Network-based generator of moving objects. http://www.
fhoow.de/institute/iapg/personen/brinkhoff/generator/, 2005.

[4] G. Gidófalvi and T. B. Pedersen. Spatio-temporal rule mining: Issues and
techniques. In A. M. Tjoa and J. Trujillo, editors,DaWaK, volume 3589
of Lecture Notes in Computer Science, pages 275–284. Springer, 2005.

[5] J. Han, J. Pei, and Y. Yin. Mining frequent patterns without candidate
generation. In W. Chen, J. F. Naughton, and P. A. Bernstein, editors,
SIGMOD Conference, pages 1–12. ACM, 2000.

[6] M. Morzy and Łukasz Rosikiewicz. Mining frequent trajectories of
moving objects for location prediction. Technical Report RA-01/07,
Poznan University of Technology, Institute of Computing Science, 2007.

[7] J. Pei, J. Han, B. Mortazavi-Asl, H. Pinto, Q. Chen, U. Dayal, and M. Hsu.
Prefixspan: Mining sequential patterns by prefix-projectedgrowth. In
ICDE, pages 215–224. IEEE Computer Society, 2001.


