Prediction of Moving Object Location Based on Frequent Trajectories

Mikołaj Morzy

Institute of Computing Science Poznań University of Technology Piotrowo 2, 60-965 Poznań, Poland

The 21st International Symposium on Computer and Information Sciences ISCIS'2006 Istanbul, Turkey, November 2006

- 2 Related Work
- 3 Definitions
- 4 Prediction of Location
- 5 Experiments
- 6 Conclusions

Motivation

Observations

ubiquitous mobile devices

- mobile phones, PDAs, vehicles
- GPRS, Bluetooth, Wi-Fi, WiMAX

advent of location-based services

- traffic management
- way-finding
- Iocation-based advertising
- Iocation-based information retrieval

exact position of a moving object rarely known

- periodicity of position disclosure
- existence of urban canyons
- natural phenomena
- power shortages

ъ

・ コ ト ・ 雪 ト ・ 目 ト ・

Current solutions

- Complex models using network topology
 - yield accurate results, but computationally unfeasible
- Simulation-based models
 - numerous parameters governing the model
 - cost of computation may be prohibitively high
 - adaptation to dynamic changes in environment

・ ロ ト ・ 雪 ト ・ 雪 ト ・ 日 ト

Current solutions

Complex models using network topology

- yield accurate results, but computationally unfeasible
- Simulation-based models
 - numerous parameters governing the model
 - cost of computation may be prohibitively high
 - adaptation to dynamic changes in environment

Problem

Current techniques make little or no use of the huge amounts of historical data generated by moving objects

Mining mobile object data

- Prediction accuracy vs. prediction speed
- Movement data acquired from moving objects hide valuable knowledge about moving object behavior, but ...

Mining mobile object data

- Prediction accuracy vs. prediction speed
- Movement data acquired from moving objects hide valuable knowledge about moving object behavior, but ...

Question

Are data mining techniques too slow and too computationally expensive for real-time location prediction?

・ ロ ト ・ 雪 ト ・ ヨ ト ・ 日 ト

Requirements and thesis

A method for location prediction must:

- produce reliable predictions
- explain predictions
- perform in near real-time
- utilize historical data

Requirements and thesis

A method for location prediction must:

- produce reliable predictions
- explain predictions
- perform in near real-time
- utilize historical data

Thesis

Data mining techniques are appropriate and efficient in real-time location prediction under assumption that enough historical data exist

・ ロ ト ・ 雪 ト ・ 目 ト ・ 日 ト

Solution and contribution

Our solution

- 1 superimpose a grid on the movement area
- 2 transform movement paths into trajectories expressed in terms of grid edges
- 3 discover frequent trajectories
- 4 transform frequent trajectories into movement rules
- 5 match the history of an object with the database of movement rules
- 6 produce a probabilistic model of possible object locations

ヘロア 人間 アメヨア 人間 アーヨ

Solution and contribution

Our solution

- 1 superimpose a grid on the movement area
- 2 transform movement paths into trajectories expressed in terms of grid edges
- 3 discover frequent trajectories
- 4 transform frequent trajectories into movement rules
- 5 match the history of an object with the database of movement rules
- 6 produce a probabilistic model of possible object locations

Our contribution

- using historical data to build environment model
- designing the AprioriTraj mining algorithm
- development of four matching strategies
- experimental evaluation of the proposal

э

・ロット (雪) (日) (日)

- Related Work

Related work

Tracking of moving objects

- Y. Tao, C. Faloutsos, D. Papadias, and B. Liu. Prediction and indexing of moving objects with unknown motion patterns. In ACM SIGMOD'04, Paris, France, June 13-18, pp. 611–622. ACM, 2004.
- B. Xu and O. Wolfson. Time-series prediction with applications to traffic and moving objects databases. In MobiDE 2003, September 19, 2003, San Diego, California, USA, pp. 56–60. ACM, 2003.
- O. Wolfson and H. Yin. Accuracy and resource concumption in tracking and location prediction. In SSTD'03, Santorini, Greece, July 24-27, pp. 325–343. Springer, 2003.
- G. Trajcevski, O. Wolfson, B. Xu, and P. Nelson. Real-time traffic updates in moving objects databases. In DEXA'02, Aix-en-Provence, France, 2-6 September, pp. 698–704. IEEE Computer Society, 2002.

Spatio-temporal data mining

- K. Koperski and J. Han. Discovery of spatial association rules in geographic databases. In SSD'95, Portland, Maine, USA, August 6-9, pp 47–66. Springer, 1995.
- M. Ester, A. Frommelt, H.-P. Kriegel, and J. Sander. Spatial data mining: Database primitives, algorithms and efficient dbms support. Data Mining and Knowledge Discovery, 4(2/3):193–216, 2000.
- N. Mamoulis, H. Cao, G. Kollios, M. Hadjieleftheriou, Y. Tao, and D. W. Cheung. Mining, indexing, and querying historical spatiotemporal data. In ACM SIGKDD'04, Seattle, Washington, USA, August 22-25, pp 236–245. ACM, 2004.

Mining trajectories of moving objects

- J. Yang and M. Hu. Trajpattern: Mining sequential patterns from imprecise trajectories of mobile objects. In EDBT'06, Munich, Germany, March 26-31, pp 664–681. Springer, 2006.
- Y. Li, J. Han, and J. Yang. Clustering moving objects. In ACM SIGKDD'04, Seattle, Washington, USA, August 22-25, pp 617–622. ACM, 2004.

Basic notions

Given a database of moving objects locations, let

■ $I_j^i = (x_j^i, y_j^i)$ denote the *i*-th location of the *j*-th object ■ $t_j = \langle I_j^0, I_j^1, \dots, I_j^n \rangle$ denote the trajectory of the *j*-th object Movement area is covered by a grid with cells of constant size, denoted *grid_size*. Each edge, denoted e_{pq} , can be traversed in two directions as follows

Basic notions

Edges allow to move to a coarser level of granularity

■ the trajectory of the *j*-th object is $t_j = \langle (e_{p_0q_0}, d_0)_j, (e_{p_1q_1}, d_1)_j, ... \rangle$, where $d_i \in \{ne, sw\}$ denotes the direction of edge traversal

Basic notions

Edges allow to move to a coarser level of granularity

■ the trajectory of the *j*-th object is $t_j = \langle (e_{p_0q_0}, d_0)_j, (e_{p_1q_1}, d_1)_j, ... \rangle$, where $d_i \in \{ne, sw\}$ denotes the direction of edge traversal

(日)

Basic notions

Edges allow to move to a coarser level of granularity

■ the trajectory of the *j*-th object is $t_j = \left\langle (e_{p_0q_0}, d_0)_j, (e_{p_1q_1}, d_1)_j, \ldots \right\rangle$, where $d_i \in \{ne, sw\}$ denotes the direction of edge traversal

(日)

Basic notions

Edges allow to move to a coarser level of granularity

■ the trajectory of the *j*-th object is $t_j = \langle (e_{p_0q_0}, d_0)_j, (e_{p_1q_1}, d_1)_j, ... \rangle$, where $d_i \in \{ne, sw\}$ denotes the direction of edge traversal

・ロット (雪) (日) (日)

Additional issues

Issues

- support of an edge
- frequent edge
- sub-trajectory of a trajectory
- adjacency of trajectories
- concatenation of trajectories
- apriori properties of frequent trajectories

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □

Movement rules

Definition

An expression of the form $t_i \Rightarrow t_j$ where $t_i, t_j \in L$, t_i and t_j are adjacent trajectories and $t_i || t_j$ is a frequent trajectory

Properties

$$support (t_i \Rightarrow t_j) = \frac{\left|t_k \in D : t_k \supseteq (t_i || t_j)\right|}{|D|}$$
$$confidence (t_i \Rightarrow t_j) = P(t_j | t_i) = \frac{support (t_i || t_j)}{support (t_i)}$$

AprioriTraj algorithm

A modification of the well-known Apriori algorithm

- find frequent 1-trajectories
- create candidate 2-trajectories from adjacent frequent 1-trajectories
- iteratively build candidate k-trajectories from overlapping frequent (k - 1)-trajectories
- no false candidates (!)

AprioriTraj algorithm

A modification of the well-known Apriori algorithm

- find frequent 1-trajectories
- create candidate 2-trajectories from adjacent frequent 1-trajectories
- iteratively build candidate k-trajectories from overlapping frequent (k 1)-trajectories
- no false candidates (!)

Movement rules generation is straightforward

split every frequent *m*-trajectory t_i into (m-1) pairs (t'_i, t''_i)

• output rule
$$t'_i \Rightarrow t''_j$$
 if
confidence $(t'_i \Rightarrow t''_i) = support(t_i) / support(t'_i) \ge mincont$

Matching strategies

Simple strategy

$$rg\max_{t_i \Rightarrow t_j} rac{|t_i|}{|t_q|} * confidence(t_i \Rightarrow t_j)$$

- does not consider the length of the consequent
- treats the length of the antecedent linearly

イロト 不良 とくほ とくほう 二日

Matching strategies

Polynomial strategy

$$\arg\max_{t_{i}\Rightarrow t_{j}}\frac{1}{2}\left(\sqrt{\frac{|t_{i}|}{|c_{1}|}}+\sqrt{\frac{|t_{j}|}{|c_{2}|}}\right)*confidence\left(t_{i}\Rightarrow t_{j}\right)$$

fair and balanced

compromise between simple and logarithmic strategies

・ロト ・個 ト ・ ヨト ・ ヨト … ヨ

Matching strategies

Logarithmic strategy

$$\arg\max_{t_{i} \Rightarrow t_{j}} \left(w_{1} + w_{2} * \log_{|c_{1}|} |t_{i}| + w_{3} * \log_{|c_{2}|} |t_{j}| \right) * confidence\left(t_{i} \Rightarrow t_{j}\right)$$

weights shift emphasis on the confidence factor, the relative length of the antecedent, or the relative length of the consequent of the movement rule

Matching strategies

Aggregate strategy

$$\arg \max_{t_i \Rightarrow t_j} \frac{|t_i|}{|t_q|} * \frac{|t_j|}{|c_2|} * \frac{\sum_{t_x \Rightarrow t_y \in G} |t_y| * \text{confidence}(t_x \Rightarrow t_y)}{\sum_{t_x \Rightarrow t_y \in G} |t_y|}$$

- allows similar movement rules to be clustered
- considers the coverage factor, the relative length of the antecedent, and the predictive power of the group of related movement rules
- computationally expensive

- Experiments

Synthetic data: Network-based Generator of Moving Objects T.Brinkhoff, A framework for generating network-based moving objects, GeoInformatica, 6(2):153–180, 2002

- maximum velocity: 150
- number of time units: 100
- results averaged over 30 different instances

All experiments were conducted on Pentium Centrino 1.8 GHz with 1GB RAM under Windows XP Professional.

Prediction of Moving Object Location Based on Frequent Trajectories

Experiments

Experiment 1

Time and number of rules w.r.t. $grid_size$ 300 objects, minsup = 0.03

Prediction of Moving Object Location Based on Frequent Trajectories

- Experiments

Experiment 2

Time and number of rules w.r.t. *number of objects* $grid_size = 250, minsup = 0.01$

ъ

・ロット (雪) (日) (日)

Prediction of Moving Object Location Based on Frequent Trajectories

Experiments

Experiment 3

Time and number of rules w.r.t. *minsup* grid_size = 250, 4800 objects

- Experiments

Experiment 4

Quality and matching time w.r.t. minsup

・ロト ・ 日 ・ ・ ヨ ・ ・ ヨ ・ ・ ヨ

- Conclusions

Conclusions and future work

Conclusions

Movement rules

- provide simplification and generalization of movement patterns
- allow predicting the location of a moving object

Future work

Our future work agenda includes

- comparison of matching strategies
- incorporating temporal aspects
- combining movement rules with spatial data

・ロット (雪) ・ (日) ・ (日)