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Abstract. Object-relational database management systems allow users
to define complex data types, such as objects, collections, and nested
tables. Unfortunately, most commercially available database systems do
not support either efficient querying or indexing of complex attributes.
Different indexing schemes for complex data types have been proposed in
the literature so far, most of them being application-oriented proposals.
The lack of a single universal indexing technique for attributes containing
sets and sequences of values significantly hinders practical usability of
these data types in user applications. In this paper we present a novel
indexing technique for sequence-valued attributes. Our index permits to
index not only sequences of values, but sequences of sets of values as well.
Experimental evaluation of the index proves the feasibility and benefit
of the index in exact and similar matching of subsequences.

1 Introduction

Through unprecedented development of computer techniques witnessed in re-
cent years, the databases are paving their way to many application areas, such
as scientific, banking, industrial, retail, and financial systems. Broad applicability
of database systems in diverse domains results in the development of novel data
types. Traditional simple data types, such as strings, numbers, and dates, are
often insufficient to describe complex structure of real-world objects. Complex
data structures, such as sets and sequences, are used to reflect the complexity
of the modeled reality. Sequential data are present in numerous different doma-
ins, including protein sequences, DNA chains, time series, and Web server logs.
Another example of common sequence data are purchases made by customers in
stores. Here, elements of a given customer sequence are not atomic, but consist of
sets of products ordered by timestamps representing the date of each purchase.
Contemporary object-relational database management systems support the de-
finition and storage of complex user-defined data types as collections and nested
tables. On the other hand, efficient querying and indexing of such data types
is currently not supported by any commercially available database management
system.



Several indexing schemes have been proposed so far, most notably for time
series and sequences of atomic values. Alas, no proposals are given for indexing
of sequences of sets. The original contribution of this paper is the proposal of a
new indexing structure capable of efficient retrieval of sequences of sets based on
non-contiguous subsequence containment and similarity. We present the physical
structure of the index and we develop algorithms for query processing based on
subsequence matching and subsequence similarity. In addition, we present a novel
algorithm for subsequence matching with tolerance thresholds on subsequence
similarity.

The rest of the paper is organized as follows. In Section 2 we introduce basic
definitions used throughout the paper. Section 3 contains an overview of the
related work. We present our index in Section 4. Experimental evaluation of the
index is presented in Section 5. Finally, the paper concludes in Section 6 with a
summary and a future work agenda.

2 Basic Definitions

An element of a sequence is a pair S; = (v(S5;),ts(S;)), where v(S;) denotes
the wvalue of the element, and ¢s(S;) denotes the timestamp of occurrence of
the element S;. A sequence S is an ordered set of elements S; arranged accor-
ding to their timestamps ts(S;). A subsequence S’ of the sequence S is a sequ-
ence created from the sequence S by removing arbitrary elements. A sequence
S = ((v(57),ts(S1)), ..., (v(S},),ts(S},))) is called a continuous subsequence of
a sequence S = ((v(S1),ts(51)), ..., (v(Sn),ts(Sy))) (denoted S’ C S) if

Jw:Vi=1,...,k v(Sitw)=0v(S)) Ats(Sitw) = ts(S})

A sequence @ such that the first element of @ has the timestamp ¢s(Q1) = 0
is called a query sequence. Each query sequence Q) has a tolerance sequence T
associated with it. The tolerance sequence T has the same cardinality as the
query sequence (. The elements of the tolerance sequence T are numbers, and
their timestamps are consecutive integers. The elements of the tolerance sequence
T form tolerance ranges for corresponding elements of the query sequence () of
the form (¢s(Q;) — v(T3),ts(Q;) +v(T;)). In addition, tolerance ranges must not
disturb the order of elements, i.e., ts(Q;) + v(T;) < ts(Qi+1) — v(Tix1)-

An allocation A(Q,S’) is a mapping of every query sequence element to an
element of S” such that Vi = 1,...,|Q| ts(S})—ts(S])—ts(Q;) € (—v(T3), +v(T})).

Given a query sequence (. The subsequence query retrieves all sequences S
having a continuous subsequence S’, such that the following condition is fulfilled

l=nAVi=1,...,n v(Q;) Cv(S;) Ats(S))—ts(S])—ts(Q;) € (—v(T3), +v(T}))

Let € denote the threshold value of minimum similarity between two sequen-
ces. Given an allocation A(Q, S”) of the query sequence @ to the sequence S’. The
similarity query retrieves all sequences S such that 35" C S : sim(Q,S’) > e,
where sim(x,y) is any measure of similarity between two sequences.



3 Related Work

Most research on indexing of sequence data focused on three distinct areas: in-
dexing of time series, indexing of strings of symbols, and indexing of text. Most
indexes proposed for time series support searching for similar or exact subse-
quences by exploiting the fact, that the elements of the indexed sequences are
numbers. This is reflected both in index structure and in similarity metrics. Most
popular similarity metrics include Minkowski distance [3, 15], compression-based
metrics [4], and time-dimension deformation metrics [12]. Often, a technique for
reduction of the dimensionality of the problem is employed, such as discrete Fo-
urier transform [1, 2]. String indexes usually support searching for subsequences
based on identity or similarity to a given query sequence. Most common distance
measure for similarity queries is the Leveshtein distance [5], and index structures
are built on suffix tree [8, 10,11, 14] or suffix table [7].

Indexing of sequences of symbols differs significantly from indexing of strings.
The main difference is the fact, that symbols in a sequence of symbols are assi-
gned a timestamp that must be taken into consideration when processing a query.
Most proposals for indexing of sequences of symbols transform the original pro-
blem into the well-researched problem of indexing of sets [9]. The transformation
of a sequence into a set first maps all sequence elements into set elements, and
then adds additional elements representing the precedence relation between the
elements of the original sequence. The main drawback of this technique is the
fact, that it ignores the timestamps associated with sequence elements. This le-
ads to an additional verification phase, where sequences returned from the index
are verified against the query sequence to prune false hits.

ISO-Depth index [13] is an indexing structure that efficiently supports sear-
ching of sequences based on subsequence containment and similarity. ISO-Depth
index stores all continuous subsequences of given length in a trie structure. Ad-
ditionally, trie nodes are numbered in a way permitting to quickly determine
the nature of the relationship between the nodes. The order of the nodes in the
trie corresponds to the order of symbols represented by those nodes in sequences
pointed at in the trie leaves. Diversification of symbols in the trie (symbols differ
depending on the distance from preceding symbols in a sequence) allows to an-
swer queries containing timestamp constraints. After creating the trie structure,
ISO-Depth lists and position lists are read off the trie to form the ISO-Depth
index.

An interesting proposal of SEQ-join index was presented in [13]. This index
uses a set of relational tables and a set of B+-tree indexes. Each table cor-
responds to a single symbol appearing in the indexed sequences and contains
ordered timestamps of the symbol together with a pointer to an appropriate
sequence. Preparing a subsequence query consists in creating a directed graph
with nodes representing query sequence elements and edges representing order
constraints between sequence elements. Answering a subsequence query consists
in performing a join between symbol tables using B+-tree index joins. Detailed
description of subsequence query algorithms using SEQ-join is presented in [6].



4 Generalized ISO-Depth Index

In this paper we extend the basic ISO-Depth index to support efficient indexing
of sequences of sets. The new structure allows to search for similar subsequences
and uses a similarity measure that is based on user-defined similarity measure
for sets. We make no further assumptions on the similarity measure used to
compare sets that are elements of sequences, but we require the measure to (i)
increase with the increase of the size of intersection of sets, and (ii) decrease
with the increase of the Hamming distance between the sets.

To the best of authors’ knowledge, there are no similarity measures for sequ-
ences of sets. Therefore we introduce two new measures that can be used when
formulating similarity queries on sequences of sets. Given a query sequence Q)
and a subsequence S’ of a sequence S, such that a valid allocation A(Q,S’) of
Q to S’ exists. Liminal similarity is defined as the minimum similarity between
any pair of sets in the allocation. Formally,

simp(Q,S") = ,_{niH‘Q‘ {setsim(Qi, ;) : (Qi, S) € A(Q, )}

yeeey

where setsim(Q;, S}) is the value of user-defined similarity measure for sets that
fulfills the above mentioned requirements. Average similarity is the average si-
milarity between all pairs of sets in the allocation A(Q,S’). This similarity is
given in the formula below.

1
sima(Q,S") = — Z setsim(Q;, S?)
| (Qi,8))€A(Q,S")

It is easy to notice that for any pair of sequences (@, S’) the value of the average
similarity is always greater or equal to the value of the liminal similarity between
the sequences.

Below we present the algorithm for constructing the Generalized ISO-Depth
index. Given a database D consisting of n sequences S* and the width of a
moving window &.

1. For every sequence of sets S* € D perform the following actions

(a) Sequence S* is transformed into a sequence of binary signatures B, such
that |S*| = |B¥| AVSF : BF = (sig(SF),ts(SF)). Timestamp values sho-
uld be discretized prior to building binary signatures. Query sequences
should be transformed analogously.

(b) A moving window is used to read all continuous subsequences of B*
of the length lesser or equal to &. For each such subsequence B’ the
sequence identifier k is stored along with the position, where B’* starts
within B*.

(c) Subsequences B’* are transformed into symbol sequences of the form z;,
where x € sig(S¥) Ai € N U{0} using the function

v(BF)o ifi=1,
f(B/k) — <$17 .. ,:17"> where: z; = { %k o
v(B; )tS(BQk)*tS(BQ’il) if 7 > 1.



(d) Symbol sequences created in the previous step are then inserted into
a modified trie structure. We modify the original trie structure in the
following way: instead of defining an additional terminator symbol we
add subsequence identifier to a trie node in which a given subsequence
terminates. In general, there can be several subsequences terminating in a
given node. Therefore, each node of the trie contains a list of subsequence
identifiers.

2. The trie is traversed and all nodes are numbered using the depth-first search
order. Additionally, each node is marked with the highest number of the
node contained in a sub-trie starting at a given node. Those two numbers
determine the range of node numbers contained in a given sub-trie. The
distance of a given node from the beginning of the subsequence is simply the
sum of indexes of symbols on the path to a given node.

3. The trie is used to extract ISO-Depth lists of the form (s, (a, b)), where s is
a signature of a set and the range (a, b) is the range of node numbers stored
in the node pointed at by the edge representing the signature s. Each ISO-
Depth list orders elements according to the value of a, and for all nodes stored
in the list the distance of the node from the beginning of the subsequence is
the same.

4. After creating ISO-Depth lists the trie is used to generate position lists. Each
position list stores information corresponding to sequences that terminate in
a given node. A position list is generated for each node where a sequence
terminates.

5. ISO-Depth lists and position lists together form the Generalized ISO-Depth
index. The trie structure is not used anymore and can be safely discarded.

Algorithms for processing of sequence-oriented queries using the Generalized
ISO-Depth index use the following lemma.

Lemma 1. Ranges of node numbers stored on a ISO-Depth list for a given di-
stance from the beginning of the sequence are disjoint. Given ISO-Depth lists for
distances dy, < d; from the beginning of the sequence. Let the entries on the lists
be of the form (s*,(a®,b*)) and (s', (a!,b!)), respectively. If a* < a' < bl < bF,
then the database contains a sequence, such that a subsequence exists that con-
tains sets with signatures s*,s', respectively. Moreover, if the timestamp of the
first element of this subsequence is subtracted from other timestamps of the sub-

sequence elements, then the timestamps of those sets are dy, d;.

The algorithm for processing of subsequence queries is given below. Let us
assume that the query sequence is given as Q = ((v(Q1),0), ..., (v(Qn),ts(Qn))).

1. For each timestamp ts(Q);) retrieve the ISO-Depth list for the distance equal
to the timestamp.

2. Search the lists recursively. For each ISO-Depth list entry (s, (a', %)) check,
if the signature sig(Q1) is contained in s'. If true, search the ISO-Depth list
corresponding to the next element of the search sequence looking for an
entry (s2, (a?,b%)), such that a* < a? < b! and find signatures s* containing



5ig(Q2). For each such s? search the list corresponding to the next element
of the query sequence retrieving only the entries contained in (a?,b?).

3. Continue this procedure until the last element of the query sequence is re-
ached. Signatures retrieved during each recursive call, along with the time-
stamps corresponding to the subsequent ISO-Depth lists, form the searched
subsequence.

4. If a signature s™ is found such that s™ contains sig(Q,,), use position lists
to find all pointers to subsequences stored in the nodes with numbers in the
range (a™,b"). Store those pointers for the sake of future verification. Return
to the recursive traversal of ISO-Depth lists.

5. Read the subsequences accessed via stored pointers to verify the actual subse-
quence containment (this is required due to ambiguity introduced by binary
signature generation procedure).

Algorithms for subsequence similarity matching are similar to the algori-
thm presented above. We design two algorithms, one capable of using tolerance
sequences when searching for a similar subsequence, and one used for strict
similarity subsequence searches. Both algorithms use the upper bound of ap-
proximation of similarity between compared sequences. This approximation is
based on the upper bound of the intersection and the lower bound of Hamming
distance between sets that are elements of the compared sequences. Using this
approximation allows for significant pruning of sequences. The upper bound ap-
proximation is used during step (2) of the algorithm, instead of checking for
the containment of sig(Q;) in B*. For queries allowing tolerance sequences, the
algorithm needs to retrieve in step (1) not only ISO-Depth lists for the distance
equal to the timestamp ts(Q;), but all ISO-Depth lists for distances from the
range (ts(Q;) —v(T;),ts(Q;) + v(T;)) and merge these lists into a single list.

5 Experimental Results

The efficiency of the index is experimentally evaluated and the results of the
conducted experiments are presented below. For each experiment 40 different
sequence databases were generated. Elements of sets contained in sequences were
generated using homogeneous and Zipf distributions. Table 1 summarizes the
parameters used in experiments.

After building indexes the sets of query sequences were generated. For each
database 7 different sets of 10 query sequences were prepared. Each set consisted
of subsequence queries and similarity queries (with and without tolerance) for
similarity thresholds of 70%, 80%, and 90%.

Experiment 1 measures the efficiency of the index with respect to increasing
the size of the database. Figure 1 presents the performance of the Generalized
ISO-Depth index (using 8 bit and 16 bit signatures) for subsequence queries
(Subseq), exact similarity queries (Sim), and similarity queries with tolerance
(Tol). Figure 2 presents the results for the same queries without the index. It
can be easily seen that the index is 2 to 4 orders of magnitude faster than
the naive approach. Query processing time grows linearly with the number of



Table 1. Synthetic data parameters

parameter Exp.1 Exp.2 | Exp.3
size of the domain 150 000 150000 | 150000
minimal distance between sets 1 1 1
maximal distance between sets 100 100 100
minimal set size 1 1 5-100
maximal set size 30 30 15-110
minimal number of sets in sequence 2 5-100 2
maximal number of sets in sequence 20 15-110 2
number of sequences 10000-100 000| 10000 | 10000
signature length 8b,16b 8b,16b | 8b,16b
page/node size 4096B 4096B | 4096B
window width () 250 250 250

sequences stored in the database. Indexes using 8 bit signatures are faster for all
classes of queries. We attribute this to the fact that shorter signatures induce
smaller trie structure, less nodes in the trie, and shorter ISO-Depth lists. Of
course, shorter signatures produce more ambiguity and more false hits have to
be verified. Nevertheless, our experiments show that the benefit of using shorter
signatures surpasses the cost of additional false hit verification.
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Experiment 2 studies the impact of the average number of sets in indexed
sequences on the performance of the Generalized ISO-Depth index. We vary
the average number of sets from 10 to 105. Figure 3 shows the performance of
our index for three classes of queries. The results for the same queries without
the index are depicted in Figure 4. Both figures exhibit the results similar to
the results obtained in Experiment 1. This similarity can be easily explained.
The number of subsequences inserted into the trie depends both on the number
of sequences in the database, and the number of sets in indexed sequences.
Conclusions of the Experiment 1 apply equally to the results of Experiment 2.
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Experiment 3 measures the impact of the average size of sets being elements of
the indexed sequences on the performance of the Generalized ISO-Depth index.
We vary the average size of sets from 10 to 105. Figure 5 presents the results of
three classes of queries when using the index, while Figure 6 shows the results of
the same queries when not using an index. The shapes of curves presented in both
figures can be easily explained. As the average size of a set grows, the probability
that all positions of the signature corresponding to a given set would be set to
‘1’ also increases. In other words, the increase of the average set size causes
the saturation of signatures. Therefore, the diversity of signatures diminishes,
and the set of all signatures stored in the trie becomes more compact. As the
result, the number of nodes in the trie decreases and ISO-Depth lists become
shorter. This in turn results in shorter processing times, although increases the
number of false hits that need to be pruned. As we have already mentioned, our
experiments suggest that this additional verification phase still pays off because
of the shortened access time. After reaching a certain threshold, the signatures
are fully saturated with bits set to ‘1’ and the processing time stabilizes.
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6 Conclusions

To the best of authors’ knowledge, Generalized ISO-Depth index presented in
this paper is the only index structure for sequences of sets proposed so far. Our
index supports different classes of sequence-oriented queries, such as subsequence
queries and similarity queries. The experiments show that the ratio of speed-up
for those queries is 2 to 4 orders of magnitude when compared to brute-force
approach. Possible applications of Generalized ISO-Depth index include, but
are not limited to, indexing of customer purchase data, indexing of multimedia
databases, or analytical processing systems.

Still, further research is required. Our future work agenda includes optimi-
zation of the physical structure of the index and designing efficient algorithms
for index maintenance. Inserting and deleting of sequences from the index is not
supported yet. Creating of new algorithms for insertion and deletion of sequences
is our next goal. We also plan to run excessive experiments on real-world data
sets to prove the practical usability of the proposed index.
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