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Abstract 

Access histories of users visiting a web server are automatically recorded in web access logs. 

Conceptually, the web-log data can be regarded as a collection of clients’ access-sequences where each 

sequence is a list of pages accessed by a single user in a single session. This chapter presents novel 

indexing techniques that support efficient processing of so-called pattern queries, which consist in finding 

all access sequences that contain a given subsequence. Pattern queries are a key element of advanced 

analyses of web-log data, especially those concerning typical navigation schemes. In this chapter, we 

discuss the particularities of efficiently processing user access-sequences with pattern queries, compared 

to the case of searching unordered sets. Extensive experimental results are given, which examine a variety 

of factors and illustrate the superiority of the proposed methods over indexing techniques for unordered 

data adapted to access sequences. 

 



Indexing Techniques for Web Access Logs 

Introduction 

       Web servers have recently become the main source of information on the Internet. Web access logs 

record the access history of users that visit a web server. Each web-log entry represents a single user's 

access to a web resource (HTML document, image, CGI program, etc.) and contains the client's IP 

address, the timestamp, the URL address of the requested resource, and some additional information. 

Conceptually, the web-log data can be regarded as a collection of clients’ access-sequences where each 

sequence is a list of pages accessed by a single user in a single session. Extraction of user access-

sequences is a required pre-processing step in advanced analyses of web logs (called web-log mining) and 

involves data cleaning and techniques of forming user sessions (Cooley, Mobasher, & Srivastava, 

1999)(Lou, Liu,  Lu, & Yang, 2002). 

       One of the most popular data mining problems in the context of web-log analysis is discovery of 

access patterns (Chen, Park, & Yu, 1998)(Pei, Han, Mortazavi-Asl, & Zhu, 2000). Each access pattern is 

a sequence of web pages, which occurs frequently in user access-sequences. Sequential access-patterns 

provide information about typical browsing strategies of users visiting a given web site, e.g., “10% of 

users visited the page about a palmtop X, and later a page about a docking cradle for the palmtop X”. 

After some frequently occurring sequences have been discovered, the analyst should be able to search for 

user access-sequences that support (i.e., contain) the patterns. The latter operation finds several 

applications, e.g., searching for typical/atypical user access-sequences.  

       Moreover, web-log mining algorithms like WUM (Spiliopoulou & Faulstich, 1998), use templates to 

constraint the search space and to perform more focused mining, according to the user's requirements. For 

instance, the user may specify the mining of sequences containing the subsequence  <A  * B  * C>. Thus, 

a selection of the user access-sequences can be performed to collect those satisfying the given template. 

In the following, we refer to this type of queries over the database of user access-sequences as pattern 

queries.  

       Since web logs tend to be large, a natural solution to support efficient processing of pattern queries 

would be indexing web access -sequences. Unfortunately, no indexes specific for this purpose have been 

proposed before, and existing indexing techniques for single -valued and set-valued attributes are not 

applicable or inefficient as they do not take ordering into consideration. These techniques can be applied 

merely to locate sequences built from the same set of elements as the query sequence, likely introducing 

many false drops if the actual task is subsequence search.  



       In this chapter, we describe indexing methods for large collections of access sequences extracted 

from web access logs. The target of the chapter is twofold. First, it intends to clarify the particularities of 

efficiently processing user access-sequences with pattern queries, compared to the case of searching 

unordered sets. It will demonstrate how these particularities make the existing (traditional) solutions 

inadequate and will motivate how they call for different index structures and searching algorithms. The 

second objective of this chapter is to organize recent research that has been conducted in the area of 

pattern queries (in a significant extent by authors of this chapter) and to present it in an integrated and 

comparative way. The key concept is the development of a family of methods that are based on signatures 

capturing the presence of certain elements in a sequence as well as the ordering between the sequence 

elements (a factor that has not been examined by existing signature schemes). Emphasis is placed on 

scalability to web-logs' sizes. Extensive experimental results are given, which examine a variety of factors 

and illustrate the superiority of the proposed methods over indexing techniques for unordered data 

adapted to access sequences. 

       The rest of this chapter is organized as follows. We start with the introduction to web-log analysis, 

motivation for indexes for web logs, and the critique of existing indexing techniques. This is followed by 

the description of the family of novel sequence-indexing methods for pattern queries. Next, the 

experimental results on the comparison of the described methods are presented. Finally, the discussion of 

possible future trends and some conclusions are given. 

Analysis of Web Access Logs  

       Each access to a web resource made by a browser is recorded in the web server’s log. An example of 

the log’s contents is depicted in Fig.1. Each entry represents a single request for a resource and contains 

the IP address of the requesting client, the timestamp of the request, the name of the method used and the 

URL of the resource, the return code issued by the server and the size of the requested object (for brevity 

we omit additional details recorded in the log, such as the protocol or the detailed identification of the 

browser). 

Figure 1. An example of a web log 

150.254.31.173  -- [21/Jan/2003:15:48:52 +0100] "GET /mmorzy " 301 328 
150.254.31.173  -- [21/Jan/2003:15:48:52 +0100] "GET /mmorzy/index.html " 200 9023 
150.254.31.173  -- [21/Jan/2003:15:48:52 +0100] "GET /mmorzy/acrobat.gif " 304 
144.122.228.120 -- [21/Jan/2003:15:48:56 +0100] "GET /imgs/pp1.gif " 200 2433 
150.254.31.173  -- [21/Jan/2003:15:48:58 +0100] "GET /mmorzy/research.html " 200 8635 
60.54.23.11     -- [21/Jan/2003:15:48:59 +0100] "GET /mmorzy/db/slide0003.htm " 200 24808 
150.254.31.173  -- [21/Jan/2003:15:49:03 +0100] "GET /mmorzy/students.html " 200 7517 
150.254.31.173  -- [21/Jan/2003:15:49:08 +0100] "GET /mmorzy/db_course.html " 200 10849 
144.122.228.120 -- [21/Jan/2003:15:49:16 +0100] "GET /reports/repE.html " 200 76685 
150.254.31.173  -- [21/Jan/2003:15:49:22 +0100] "GET /mmorzy/html.gif " 200 1038 
150.254.31.173  -- [21/Jan/2003:15:49:22 +0100] "GET /mmorzy/zip.gif " 200 1031 
144.122.228.120 -- [21/Jan/2003:15:50:03 +0100] "GET /imgs/polish.gif " 200 109 



 

       Information stored in the web log can be directly used for simple statistical analyses in order to derive 

such measures as frequency of accesses to particular resources, numbers of accesses from individual 

network addresses, number of requests processed in a time unit, etc. However, for advanced and reliable 

analyses of the way how the visiting users navigate through the website, information from the log needs 

processing and cleansing before it can be used. Several requests can have identical timestamps because 

they represent accesses to different elements of a single web page (in our example the second entry 

represents an access to a web page index.html whereas the third entry represents a retrieval of the 

image acrobat.gif which is probably displayed on that page). Secondly, different records in a web log 

can have identical IP address and still refer to different users, for example if those users are accessing the 

web page from behind a proxy server. Some access paths might not be recorded in the log because 

browsers cache recently visited pages locally. In order to use the web log for advanced analysis it must be 

transformed into a set of clients’ access-sequences where each sequence describes a navigation path of a 

single user during a single session. Interesting descriptions of web-log transformation and cleansing 

techniques can be found in (Cooley et al., 1999).  

       Figure 2 presents an example client sequence derived from the web log from Fig.1. This sequence 

represents a session of a student, who started from the teacher’s main page (index.html) and navigated 

to a research page (research.html). Next request was made for the page containing information for 

students (students.html) and from there the  student went to database course page 

(db_course.html). The analysis of the web site’s structure revealed that there was no link between 

research.html and students.html, so probably the student used browser’s back button. 

 

Figure 2. An example of a client’s access sequence 

/mmorzy/index.html → /mmorzy/research.html → /mmorzy/students.html → /mmorzy/db_course.html 
 

       Client’s sequences extracted from the web log can be stored in a database and further analyzed to 

discover common access patterns. Such frequent patterns, which are subsequences occurring in a large 

fraction of client’s sequences, are called sequential patterns (Agrawal & Srikant, 1995). Sequential 

patterns can be used in several ways, e.g., to improve web site navigation, to personalize advertisements, 

to dynamically reorganize link structure and adapt web site contents to individual client requirements or 

to provide clients with automatic recommendations that best suit customer profile. Interpretation of 

discovered access patterns involves extracting access sequences that contain a given pattern 

(subsequence). If no indexes are available for the web log, such an operation requires a costly sequential 

scan of the whole web-log data. Another example of an operation that would benefit from web-log 



indexes is focused pattern mining that is to be confined to access sequences that contain a given 

subsequence (Spiliopoulou & Faulstich, 1998). 

Review of Existing Indexing Techniques 

       Traditional database systems provide several indexing techniques that support single tuple access 

based on single attribute value. Most popular indexes include B-trees (Comer, 1979), bitmap indexes 

(Chan & Ioannidis, 1998) and R-trees (Guttman, 1984). Contemporary database systems allow for storage 

of set-valued attributes, either in the form of abstract data types (ADTs) or nested tables. However, 

traditional indexes do not provide mechanisms to efficiently query such attributes, despite of the fact, that 

the need for subset search operator has been recognized (Graefe & Cole, 1995). Indexing of set-valued 

attributes was seldom researched and resulted in few proposals. 

       First access methods for set-valued attributes were developed in the area of text retrieval systems. 

Signature files (Faloutsos & Christodoulakis, 1984) and signature trees (S-trees) (Deppisch, 1986) utilize 

the idea of superimposed coding of bit vectors. Each element is represented by a fixed-width signature 

with m bits set to ‘1’. Signatures are superimposed by a bitwise OR operation to create a set 

representation. Signatures can be stored in a sequential signature file, a signature tree, or using extendible 

signature hashing. Implementation details and performance evaluation of different signature indexes can 

be found in (Helmer, 1997) (Helmer & Moerkotte, 1999). Improved methods for signature tree 

construction were proposed in (Tousidou, Nanopoulos, & Manolopoulos, 2000).  

       Another set-indexing technique, proposed initially for text collection indexing, is inverted file 

(Araujo, Navarro, & Ziviani, 1997). Inverted file consists of two parts: the vocabulary and the 

occurrences. Vocabulary contains all elements that appear in indexed sets. A list of all sets containing a 

given element is maintained along with each element. All lists combined together form the occurrences. 

Inverted files are very efficient in indexing small and medium-sized collections of elements. An 

exhaustive overview of text indexing methods and pattern matching algorithms can be found in (Baeza-

Yates & Ribeiro-Neto, 1999). 

       Indexing of set-valued attributes attracted attention of researchers from object-oriented database 

systems domain. These studies resulted in evaluation of signature files in object-oriented database 

environment (Ishikawa, Kitagawa, & Ohbo, 1993)(Nørvåg, 1999) and construction of the nested index 

(Bertino & Kim, 1989). An interesting proposal stemmed from a modification of a well-known R-tree 

index, namely a Russian Doll tree (RD-tree) (Hellerstein & Pfeffer, 1994). The structure of the tree 

reflects a transitive containment relation. All indexed sets are stored in tree leafs, whilst inner nodes hold 

descriptions of sets contained in the child nodes. Descriptions can be complete representations of bounded 



sets, signatures or Bloom filter (Bloom, 1970) representations, range set representations or hybrid 

solutions. 

       First proposals of specialized indexes for set-valued attributes in the domain of data mining were 

formulated in (Morzy & Zakrzewicz, 1998). Two indexes were presented, a group bitmap index and a 

hash group bitmap index. First index uses a complete and exact representation of indexed sets, but results 

in very long index keys. Every set is encoded as a bitmap of length n, where n denotes the number of all 

possible items appearing in the indexed sets. For each set the i-th bit is set to ‘1’ if this set contains item i. 

Subset search using group bitmap index consists in bitwise comparison of index bitmaps with the bitmap 

representing the searched subset. Hash group bitmap index uses similar technique to Bloom filter. It 

represents indexed sets approximately, by hashing set elements to a bitmap of fixed length. The length of 

this bitmap is usually much smaller than the number of all possible elements. This technique allows some 

degree of ambiguity, which results in false drops and implies the verification of answers obtained from 

the index. 

       All indexing techniques for set-valued attributes do not consider the ordering of elements within the 

set. Therefore, those indexes are not suitable  for sequence queries. However, set-indexing techniques can 

be applied to locate sequences built from the same elements as a given query sequence. Using those 

indexes for subsequence search requires an additional post-processing step in which all answers returned 

from the index are checked for a real containment of the searched sequence and all sequences containing 

the searched elements in a wrong sequence, so-called false drops, are pruned. The number of false drops 

can be huge when compared to the number of correct answers, so this verification step adds significant 

overhead to query processing and will likely lead to unacceptable response times for sequential queries 

(for sequential patterns many sequences contain searched elements but not necessarily in the correct 

order). Nevertheless, such an adaptation of set-oriented indexes can be considered a natural reference 

point for evaluating performance of novel sequence-indexing techniques. 

Sequential Data Indexing Methods for Pattern Queries 

       In this section we provide a formal definition of a pattern query over a database of web-log sequences 

and describe sequential data indexing methods to optimize pattern queries. The indexing methods are 

built upon the concepts of equivalent sets, their partitioning, and their approximations. 

Basic Definitions  

       Definition 1 (Pattern query). Let I be a set of items. A data sequence X is defined as an ordered list 

of items. Thus, X = <x1 x2 ... xn>, where each xi ∈ I (xi is called an element of X). We say that a data 



sequence X = <x1 x2 ... xn> is contained in another data sequence Y = <y1 y2 ... yn> if there exist integers 

i1 < i2 < ... < in such that x1 = yi1, x2 = y i2, ..., xn = yin. 

       Given a database D of data sequences and a data sequence Q, a pattern query consists in finding in D 

all data sequences that contain Q. In other words, a pattern query formulates a problem of finding all data 

sequences containing a set of user-defined elements in a specified order. 

 

       Definition 2 (Equivalent set). In order to represent data sequences in a compact way, we introduce 

the concept of an equivalent set. 

       An item mapping function  f i(x), where x ∈ I, is a function which transforms a literal into an integer 

value (we assume that I may contain any type of literals). Henceforth we assume that literals are mapped 

to consecutive positive integers starting from 1, although any other mapping can be followed.  

       An order mapping function f o(x,y), where x, y ∈ I and fo(x,y) ≠ fo(y,x), is a function which transforms 

an item sequence <x y> into an integer value. It has to be noticed that the intuition for the use of fo(x, y) is 

that it takes into account the ordering, i.e., fo(x, y) ≠ fo(y, x). Henceforth we assume order mapping 

functions of the form fo(x, y) = a * fi(x) + f i(y), where a is greater than the largest f i(x) value (i.e., this way 

fo(x, y) ≠ fo(y, x) and fo values are always larger than f i values). 

       Given a sequence X = <x1 x2 ... xn>,  the equivalent set E of X is defined as: 
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where: fi is an item mapping function and fo is an order mapping function. 

 

       Example 1. For instance, for I = {A, B, C, D, E} we have fi(A) = 1, fi(B) = 2, f i(C) = 3, fi(D) = 4,  fi(E) 

= 5, and fo(x, y) = 6 * f i(x) + fi(y) (e.g., fo(A,B) = 8). Given a sequence X = <A, C, D>, using the mapping 

functions that were described above, we get: E = ({f i(A)} ∪ {fi(C)} ∪ {f i(D)}) ∪ ({fo(A, C)} ∪ {fo(A, D)} 

∪ {fo(C, D)}) = {1, 3, 4, 9, 10, 22}. 

 

       According to Definition 2, an equivalent set is the unio n of two sets: the one resulting by considering 

each element separately and the one from considering pairs of elements. S(E) denotes the former set, 

consisting of values of fi, and P(E) the latter set, consisting of values of fo. Based on Definition 2, it is 

easy to show the following. 

 

       Corollary 1. Let two sequences Q, P and the corresponding equivalent sets EQ and EP. If Q is 

contained by P , then EQ ⊆ EP. 



       Therefore, equivalent sets allow us to express a pattern query problem as the problem of finding all 

sets of items that contain a given subset (note that Corollary 1 is not reversible in general). Also, it is easy 

to see that if EQ ⊆ EP, then S(EQ) ⊆ EP and P(EQ) ⊆ EP. 

Equivalent Set Signatures 

       Equivalent sets can be efficiently represented with superimposed signatures.  

       A signature is a bitstring of L bits (L is called signature length ) and is used to indicate the presence of 

elements in a set. Each element of a set can be encoded using a hash function, into a signature that ha s 

exactly m out of L bits equal to ‘1’ and all other bits equal to ‘0’. The value of m is called the weight of 

the element. The signature of the whole set is defined as the result of the superimposition of all element 

signatures (i.e., each bit in the signature of the set is the logical OR operation of the corresponding bits of 

all its elements). Given two equivalent sets E1, E2 and their signatures sig(E1), sig(E2), it holds that E1 ⊆ 

E2 ⇒ sig(E1) AND sig(E2) = sig(E1).  

       Signatures provide a quick filter for testing the subset relationship between sets. Therefore, if there 

exist any bits of sig(E1) that are equal to ‘1’ and the corresponding bits of sig(E2) are not also equal to ‘1’, 

then E1 is not a subset of E2. The inverse of the latter statement, however, does not hold in general and, 

evidently, false drops may result from collisions due to the superimposition. To verify a drop (i.e., to 

determine if it is an actual drop or a false drop), we have to examine the corresponding sequences with the 

containment criterion. In order to minimize the number of false drops, it has been proved (Faloutsos & 

Christodoulakis, 1984) that, for sets of size T, the length of the signatures has to be equal to: L = m * T / 

ln 2. 

       Henceforth, we assume that m is equal to one (based on the approach from (Helmer & Moerkotte, 

1997)), and the signature of the element x is the binary representation of the number 2x mod L (with the least 

significant bit on the left). Given a collection of sequences, in the following section we examine effective 

methods for organizing the representations of the patterns, which consist of signatures of equivalent sets.  

Family of Sequence Indexing Methods  

       We describe three methods of sequential data indexing to optimize pattern queries: SEQ(C) - which 

uses complete signatures of equivalent sets, SEQ(P) - which uses signatures of partitioned equivalent sets, 

and SEQ(A) - which uses signatures of approximated equivalent sets. Next, we discuss the possibility of 

extending the methods with advanced tree structures to store the signatures. 



§ A Simple sequential index (SEQ(C) – “complete”) 

       Let D be the database of sequences to be indexed. A simple data structure for indexing elements of D 

is based on the paradigm of signature file (Faloutsos & Christodoulakis, 1984), and is called SEQ(C) 

(“SEQ” denotes that the structure is sequential, and “C” that it uses a complete signature representation 

for the equivalent set). It corresponds to the direct (i.e., naive) use of signatures of equivalent sets. The 

construction algorithm for SEQ(C) is given in Fig. 3a (sig(E) is the signature of equivalent set E). 

 

       Example 2. Let us consider the following example of SEQ(C) index entry construction. Assume the 

data sequence to be indexed is X = <A, C, D, E>. Assume the set I of items and item mapping functions 

and order mapping functions from Example 1, and L=10.  

       The equivalent set for the data sequence X is the following: E = {f i(A), f i(C), fi(D), f i(E), f o(A,C), 

fo(A,D), f o(A,E), fo(C,D), fo(C,E), fo(D,E)} = {1, 3, 4, 5, 9, 10, 11, 22, 23, 29} 

       Therefore, the SEQ(C) index entry will consist of the following signature (starting with the least 

significant bit): sig(E) = 1111110001.  

 

       The algorithm for querying the structure for a given sequence Q, is given in Fig. 3b. Initially (step 1), 

the equivalent set, EQ, of Q is calculated. Then, each signature in the structure is examined against the 

signature sig(EQ) (step 4, where “AND” denotes the bitwise AND of the signatures). The verification of 

each drop is applied at steps 5-7. The result, consisting of the sequences from D that satisfy query Q, is 

returned in set R. 

 

Figure 3. SEQ(C) method: (a) construction algorithm (b) search algorithm 

1. F = Ø 

2. forall  P ∈ D 

3. E = Equivalent_Set(P) 

4.  F = F ∪ {<sig(E), pointer(P)>} 

5. endfor 

 

1. EQ = Equivalent_Set(Q) 

2. R = Ø 

3. forall  <s, pointer(P)> ∈ F 

4. if (s AND sig(EQ)) = sig(EQ) 

5.  Retrieve P from D 

6.   if Q is contained in P 

7.    R = R ∪ {P} 

8.   endif 

9.  endif 

10. endfor 

(a) (b) 

 



       The cost of the searching algorithm can be decomposed as follows: 

(1) Index Scan cost (I/O): to read the signatures from the sequential structure. 

(2) Signature Test cost (CPU): to perform the signature filter test. 

(3) Data Scan cost (I/O): to read patterns in case of drops. 

(4) Verification cost (CPU): to perform the verification of drops. 

 

       The signature test is performed very fast, thus the corresponding cost can be neglected. Since the 

drop verification involves a main memory operation, it is much smaller compared to the Index and Data 

Scan costs that involve I/O. Therefore, the latter two costs determine the cost of the searching algorithm. 

Moreover, it is a common method to evaluate indexing algorithms by comparing the number of disk 

accesses, e.g., (Faloutsos & Christodoulakis, 1984)(Helmer & Moerkotte, 1997)(Tousidou, Nanopoulos, 

& Manolopoulos, 2000). 

       For SEQ(C), the calculation of L (signature length) is done using the expected size of equivalent sets  

| E | (in place of T). Since | E | grows rapidly, L can take large values, which increases the possibility of 

collisions during the generation of signatures (i.e., elements that are hashed into the same position within 

signatures). Collisions result in false drops, due to the ambiguity that is introduced (i.e., we cannot 

determine which of the elements, that may collide in the same positions of the signature, are actually 

present). Thus, a large Data Scan cost for the verification step incurs. Moreover, large sizes of equivalent 

sets increase the Index Scan cost (because they result into larger L values, and consequently in an increase 

in the size of the index). 

       Due to the drawbacks described above, in the following we consider the SEQ(C) method as a base to 

develop more effective methods. Their main characteristic is that they do not handle at the same time the 

complete equivalent set (i.e., all its elements) for the generation of signatures, so as to avoid the described 

deficienc ies of SEQ(C). 

§ Partitioning of equivalent sets (SEQ(P) – “partitioned”) 

       In (Zakrzewicz, 2001) and (Morzy, Wojciechowski, & Zakrzewicz, 2001) a partitioning technique is 

proposed that divides equivalent sets into a collection of smaller subsets. With this method, large 

equivalent sets are partitioned into smaller ones. Thus, in the resulting signatures we have reduced 

collision probability, fewer false drops, and reduced Data Scan cost. 

 

       Definition 3 (Partitioning of equivalent sets). Given a user-defined value β, the equivalent set E of 

a data sequence P is partitioned into a collection of E1, ..., Ep subsets: (1) by dividing P into P1, ..., Pp 



subsequences such that U p

i iP
1=

 = P, Pi ∩ Pj  = ∅ for i≠ j, and (2) by having Ei be the equivalent set of Pi, 

where |Ei| < β, 1≤ i ≤ p. 

 

       According to Definition 3, we start from the first element of P being the first element of P1. Then, we 

include the following elements from P in P1, while the equivalent set of P1 has size smaller than β. When 

this condition does not hold, we start a new subsequence, P2. We continue the same process, until all the 

elements of P have been examined.  

       We denote the above method as SEQ(P) (P stands for partitioning). The construction algorithm for 

SEQ(P) is analogous to the one of SEQ(C), depicted in Fig. 3a. After step 3, we have to insert: 

 

3a. Patrition E into E1, ..., Ep 

 

and step 4 is modified accordingly: 

 

4. F = F ∪ {<sig(E1), ..., sig(Ep), pointer(P)>} 

 

       Example 3. Let us consider the following example of SEQ(P) index entry construction. Assume the 

data sequence to be indexed is X = <A, C, D, E>. Assume the set I of items and item mapping functions 

and order mapping functions from Example 1, β=4 and L=4.  

       The data sequence X will be split into the following two data sequences: X1 = <A, C>, X2 = <D, E>. 

Below we give the equivalent sets for the two data sequences. Notice the sizes of both sequences do not 

exceed β. 

E1 = {fi(A), fi(C), fo(A,C)} = {1, 3, 9} 

E2 = {fi(D), f i(E), fo(D,E)} = {4, 5, 29} 

Therefore, the SEQ(P) index entry will consist of the following signatures:  

sig(E1) = 0101 

 sig(E2) = 1100 

 

       The search algorithm for SEQ(P) is based on the following observation (Morzy et al., 2001). For each 

partition of an equivalent set E, a query pattern Q can be decomposed into a number of subsequences. 

Each subsequence is separately examined against the partitions of E. The algorithm is depicted in Fig. 4. 

 



Figure 4. SEQ(P) method: search algorithm 

1. R = ∅ 

2. forall Equivalent Sets E = E1 … Ep stored  as <sig(E1), …, sig(Ep), pointer(P)> 

3.  startPos = 0 

4.  for (i=1; i ≤ p and startPos  ≤ |Q|; i++) 

5.  endPos = startPos 

6.   contained = true  

7.   while  (contained == true  and endPos ≤ |Q|) 

8.    EQ = Equivalent_Set(Q[startPos, endPos]) 

9.    if sig(EQ) AND sig(Ei) = sig(EQ) 

10.    endPos++ 

11.    else 

12.     contained  = false 

13.    endif 

14.   endwhile  

15.   startPos = endPos 

16.  endfor 

17.  if startPos > |Q| 

18.  Retrieve P from D 

19.   if Q is contained in P 

20.    R = R ∪ {P} 

21.   endif 

22.  endif 

23. endfor 

 

       We assume that an equivalent set is stored as a list that contains the signatures of its partitions, along 

with a pointer to the actual sequence (step 1). At steps 4-16, the query pattern is examined against each 

partition and the maximum query part than can be matched by the current partition is identified. The part 

of query sequence Q from startPos to endPos is denoted as Q[startPos, endPos]. At the end of this loop 

(step 17), if all query parts have been matched against the partitions of the current equivalent set (this is 

examined at step 17, by testing the value of startPos  variable), then the verification step is performed at 

steps 18-20. 

       SEQ(P) partitions large equivalent sets in order to reduce their sizes and, consequently, the Data Scan 

cost (because it reduces the possibility of collisions within the signatures, thus it results in fewer false 



drops). However, since a separate signature is required for each partition of an equivalent set, the total 

size of the stored signatures increases (the length of each signature in this case is determined having in 

mind that the size of each partition of the equivalent set is equal to β (Definition 3)). Thus, the Index Scan 

cost may be increased (Using very small values of β and thus very small signature lengths for each 

partition, so as not to increase Index Scan cost, has the drawback of significantly increasing the false 

drops and the Data Scan cost). 

§ Using approximations of equivalent sets (SEQ(A) – “approximate”) 

       In (Nanopoulos, Zakrzewicz, Morzy, & Manolopoulos, 2003) a different method for organizing 

equivalent sets is proposed. It is based on the observation that the distribution of elements within 

sequential patterns is skewed, since the items that correspond to frequent subsequences (called large 

according to the terminology of (Agrawal & Srikant, 1995)) have larger appearance frequency. Therefore, 

the pairs of elements that are considered during the determination of an equivalent set are not 

equiprobable. 

       Due to the above, some pairs have much higher co-occurrence probability than others. The sizes of 

equivalent sets can be reduced by taking into account only the pairs with high co-occurrence probability. 

This leads to approximations of equ ivalent sets, and the resulting method is denoted as SEQ(A) (“A” 

stands for approximation). The objective of SEQ(A) is the reduction in the sizes of equivalent sets (so as 

to reduce Data Scan costs) with a reduction in the lengths of the corresponding signatures (so as to reduce 

the Index Scan costs). 

       Recall that P(E) denotes the part of the equivalent set E, which consists of the pairwise elements. 

Also, suppD(x, y) denotes the support of an ordered pair (x, y) in D (i.e., the normalized frequency of 

sequence <x y> (Agrawal & Srikant, 1995)), where x, y ∈ I and the pair (x, y) ∈ P(E). The construction 

algorithm for SEQ(A) is depicted in Fig. 5. 

 

Figure 5. SEQ(A) method: construction algorithm 

1. forall i ∈ I 

2.  find NN(i) = {ij  |  ij ∈ I, 1 ≤ j ≤ k , ij ≠ i, ∀ l ∉ NN(i)  suppD(i, ij) ≥  suppD(i, l)} 

3. endfor 

4. F = Ø 

5. forall P ∈ D 

6.  E = Equivalent_Set(P) 

7.  forall (x, y) ∈ P(E) 

8.   if y ∉ NN(x) 



9.    remove pair (x, y) from E 

10.  endif 

11.  endfor 

12.  F = F ∪ {<sig(E), pointer(P)>} 

13. endfor 

 

       SEQ(A) reduces the sizes of equivalent sets by considering for each element i ∈ I, only k  most 

frequent ordered pairs with i as the first element. In step 2 of the algorithm, those frequent pairs are 

discovered and represented in the form of NN sets containing k  most frequent successors for each 

element. In steps 8-10, the NN sets are used to filter out infrequent pairs. 

 

       Example 4. Let us consider the following example of SEQ(A) index entry construction. Assume the 

data sequence to be indexed is X = <A, C, D, E>. Assume the set I of items and item mapping functions 

and order mapping functions from Example 1, k=1 and L=10. Given are the following support values for 

the element pairs: suppD(D,E) = 0.280, suppD(E,B) = 0.220, suppD(A,C) = 0.120, suppD(C,E) = 0.101, 

suppD(A,D) = 0.075, supp D(C,D) = 0.053, supp D(A,E) = 0.040, , suppD(B,A) = 0.037 and for the other 

pairs, i.e, (A,B), (B,C), (B,D), (B,E), (C,A), (C,B), (D,A), (D,B), (D,C), (E,A), (E,C), (E,D) the support 

values less than 0.037. 

       Based on the support values of the element pairs, we construct the NN sets for each item. Each NN set 

contains only 1 item (k=1) which forms the strongest pair: 

NN(A) = {C}, NN(B) = {A}, NN(C) = {E}, NN(D) = {E}, NN(E) = {B} 

       The equivalent set will not represent the pairs which are not represented in the NN sets: 

E = {f i(A), fi(C), f i(D), f i(E), fo(A,C), f o(C,E), fo(D,E)} = {1, 3, 4, 5, 9, 23, 29} 

       Therefore, the SEQ(A) index entry will consist of the following signature: 

sig(E) = 0101110001. 

 

       The search algorithm of SEQ(A) is analogous to that of SEQ(C). However, step 1 of the algorithm 

depicted in Fig. 3b has to be modified accordingly (identical approximation has to be followed for the 

equivalent set of a query pattern): 

 

1. EQ = Equivalent_Set(Q)  

1a. forall (x, y) ∈ P(EQ) 

1b.  if y ∉ NN(x) 

1c.   remove pair (x, y) from EQ 



1d.  endif 

1e. endfor 

 

       During the generation of the approximation of the query’s equivalent set the NN sets are used, which 

implies that they have to be kept in memory. However, this presents a negligible space overhead. 

 

       Lemma 1. The SEQ(A) algorithm correctly finds all sequences that satisfy a given pattern query.  

       Proof. Let Q denote a pattern query and EQ denote its equivalent set. Also let S denote a sequence for 

which Q is contained in S and let ES denote its equivalent set. As described (see Corollary 1), it holds that 

EQ ⊆ ES, S(EQ) ⊆ S(ES) and P(EQ) ⊆ P(ES). 

       In SEQ(A), let us denote E’Q and E’S the equivalent sets of Q and S respectively, under the 

approximation imposed by this algorithm. From the construction method of SEQ(A) we have that S(E’Q) 

= S(EQ) and S(E’S) = S(ES). Therefore, S(E’Q) ⊆ S(E’S).  

       Focusing on the pairwise elements, let an element ξ ∈ P(ES) - P(E’S) (i.e., ξ is excluded from P(E’S) 

due to step 9 of SEQ(A)). We can have two cases:  

(1) If ξ ∈ P(EQ), then ξ ∈ P(EQ) - P(E’Q) (i.e., ξ is also excluded from P(E’Q), due to the construction 

algorithm of SEQ(A) - see Fig. 5). Therefore, SEQ(A) removes the same elements from P(E’Q) and 

P(E’S). Since P(EQ) ⊆ P(ES), by the removal of such ξ elements, we will have P(E’Q) ⊆ P(E’S). 

(2) If ξ ∉ P(EQ), then the condition P(E’Q) ⊆ P(E’S) is not affected, since such elements excluded from 

P(E’S) are not present in P(EQ), and thus in P(E’Q).  

       From both the above cases we have P(E’Q) ⊆ P(E’S). 

       Conclusively, S(E’Q) ∪ P(E’Q) ⊆ S(E’S) ∪ P(E’S), which gives E’Q ⊆ E’S. Hence, we have proved 

that (Q is contained in S) ⇒ (E’Q ⊆ E’S), which guarantees that SEQ(A) will not miss any sequence S that 

satisfies the given pattern query (this can be easily seen in a way analogous to Corollary 1).  

ÿ 

 

       From the above it follows that although the SEQ(A) method is based on the concept of 

approximation, no loss in precision is triggered (evidently there is no reason to measure the 

precision/recall, since the method is always accurate). On the other hand, SEQ(A) and all other SEQ 

algorithms are based on signatures. Therefore, they may incur false drops, i.e., the fetching of sequences 

for which their signatures satisfy the query condition but the actual sequences do not. The number of false 

drops directly affects the Data Scan cost, since the fetching of a large number of sequences requires more 

I/O operations. 



       The Data Scan cost of SEQ(A) is reduced, compared to SEQ(C), due to the fewer false drops 

introduced by the drastic reduction in the sizes of equivalent sets. This is examined experimentally in the 

next section. It should be noted that the selection of the user-defined parameter k , for the calculation of 

the NN set in algorithm of Fig. 5, has to be done carefully. A small k value will remove almost all pairs 

from an equivalent set and in this case the Data Scan cost increases (intuitively, if the equivalent set has 

very few elements, then the corresponding signature will be full of 0’s, thus the filtering test becomes less 

effective). In contrast, a large k  value will present a similar behavior as the SEQ(C) algorithm, since 

almost all pairs are considered. The tuning of the k value is examined in the next section. 

       Moreover, differently from SEQ(P), the Index Scan cost for SEQ(A) is reduced, because smaller 

signatures can be used for the equivalent sets (due to their reduced sizes) and no partitioning is required. 

Thus, SEQ(A) combines the advantages of both SEQ(P) and SEQ(C).  

§ Using tree structures to store signatures  

       SEQ(C), SEQ(P), and SEQ(A) assume that the elements of F (computed signatures together with 

pointers to data sequences) are to be stored in a sequential signature file. Nevertheless, SEQ(A) (and 

SEQ(C)) lead to one signature for each equivalent set. As a consequence, improved signature indexing 

methods are applicable in these cases, for instance the S-tree (Deppisch, 1986). 1 By using a tree structure, 

we can avoid checking each signature during the search of those that satisfy the subset criterion (so as to 

answer the corresponding pattern query). 

The S-tree is a height-balanced tree having all leaves at the same level. Each node contains a number 

of pairs, where each pair consists of a signature and a pointer to the child node. In an S-tree, the root can 

accommodate at least 2 and at most M pairs, whereas all other nodes can accommodate at least m and at 

most M pairs, where 1 ≤ m ≤ M/2. 

 

       Example 5. Let us consider the following example of S-tree construction. Assume that the index type 

is SEQ(C) and the data sequences to be indexed are the following: 

 

X1=<A,B,D> X2=<C,D> X3=<A,E> X4=<A,C,D>  

X5=<A,D> X6=<B,D> X7=<B,C,E> X8=<A,D,E>.  

 

Assume also that the item mapping functions and order mapping functions are the same as in 

Example 1, and that L=10. The equivalent sets for data sequences are the following: 

                                                 
1 This does not apply for SEQ(P), because it represents each equivalent set with several signatures. 



 

E1={1,2,4,8,10,16} E2={3,4,22} E3={1,5,11} E4={1,3,4,9,10,22} 

E5={1,4,10} E6={2,4,16} E7={2,3,5,15,17,23} E8={1,4,5,10,11,29} 

 

The signatures corresponding to the equivalent sets are presented below: 

 

sig(E1)=1110101010 sig(E2)=0011100000 sig(E3)=0100010000 sig(E4)=1111100001  

sig(E5)=1100100000 sig(E6)=0010101000 sig(E7)=0011010100 sig(E8)=1100110001  

 

In Fig. 6, an example of an S-tree with 3 levels is depicted. The nodes at the data level, which are 

depicted with a dashed line, represent the indexed equivalent sets. The leaves contain the signatures of 

equivalent sets. The signatures are assigned to the S-tree leaves in a random order. The signatures in 

internal nodes are formed by superimposing the signatures of their children nodes. For instance, the two 

signatures of node n3 are superimposed to form the signature 0111110000 that is stored in the parent node 

n1. It has to be noticed that due to the hashing technique used to extract the object signatures and due to 

the superimposition of child signatures, the S-tree may contain duplicate signatures corresponding to 

different objects.  

 

Figure 6. Example of a signature tree 
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       Successful searches in an S-tree (for equivalent sets that are supersets of the query equivalent set) 

proceed as follows. First, we compute the signature of the query equivalent set. Next, we start from the 

root of the S-tree, comparing the query signature with the signatures in the root. For all signatures of the 

root that contain 1s at least at the same positions as the query signature, we follow the pointers to the 

corresponding children nodes. Evidently, more than one signature may satisfy this requirement. The 

process is repeated recursively for all these children, down to the leaf level, following multiple paths. 

Thus, at the leaf level, all signatures satisfying the subset query are found, leading to the data nodes 

whose equivalent sets are checked so as to discard the false drops.2 In case of an unsuccessful search, 

searching in the S-tree may stop early at some level above the leaf level (this happens when the query 

signature has 1s at positions, where the stored signatures have 0s). 

       The S-tree is a dynamic structure that allows for insertions/deletions of signatures. In (Nanopoulos, 

Zakrzewicz, Morzy, & Manolopoulos, 2002) the organization of signatures is done with the use of 

enhanced signature-tree indexing methods, based on (Tousidou et al., 2000)(Nanopoulos & 

Manolopoulos, 2002). The advantages of the latter approaches over the original S-tree (Deppisch, 1986) 

are with respect to the split policy that is used. Due to space restrictions, more details can be found in 

(Tousidou et al., 2000)(Nanopoulos & Manolopoulos, 2002). 

       Finally, we have to notice that both the approximation method and the method that uses the complete 

representation of equivalent sets can use an S-tree structure. Nevertheless, in the following we mainly 

focus on the use of S-trees for the approximation method, because the method that uses the complete 

representation tends to produce saturated signatures (full of 1s), which does not yield S-trees with good 

selectivity. 

Performance Results 

       In this section we present the experimental results on the performance of the examined sequence 

indexing methods, namely SEQ(C), SEQ(P), and SEQ(A). As we mentioned earlier, to the best of our 

knowledge, no other sequence-indexing methods applicable to web-log data have been proposed so far. 

Therefore, as a reference point from existing indexing methods we choose one of the set-indexing 

methods - hash group bitmap index (Morzy & Zakrzewicz, 1998). This method can be applied to 

subsequence search in the following manner. The index is built on sets of elements forming web-log 

                                                 
2 Clearly, after checking the equivalent sets, we have to examine the original sequences, so as to discard the false 

drops that are due to the use of equivalent sets. However, this step does not relate to the use of the S-tree, and is 

similar to the corresponding step in the SEQ methods. 



sequences. Then, it can be used to locate sequences built from the same elements as the query sequence. 

The hash group bitmap index, similarly to our sequence indexing methods, can return false drops, so the 

results obtained by using it have to be verified (in the original proposal by using the subset test). Since we 

apply this index for subsequence search, in the verification step the subsequence test with the query 

sequence is performed. We can consider this approach as a sequence indexing method based on 

generating signatures directly from sets of elements forming access sequences, ignoring the ordering of 

elements. In our performance study, the latter method is denoted as SEQ(U) (“U” stands for unordered). It 

should be noted that by comparing with an adaptation of a set-indexing method that is based on the same 

idea as the three proposed sequence-indexing method, we can evaluate advantages of taking element 

ordering into account. Finally, we examine the method that combines the approximation technique and 

the indexing with signature trees (this method is denoted as TREE(A)). 

All methods were implemented in Visual C++ and the experiments were run on a PC with 933 MHz 

Intel Pentium III Processor, 128 MB RAM, under the MS Windows 2000 operating system. For the 

experiments we used both synthetic and real data sets. The former are detailed in the sequel (i.e., we 

describe the synthetic data generator). Regarding the latter, we have tested several real web access logs. 

For brevity, we present results on the ClarkNet web log3, which, after cleansing, contained 7200 distinct 

URL organized into 75,000 sequences. 

The following table summarizes the parameters that are used henceforth. 

Symbol Definition 

I Domain of items (distinct pages). 

M Number of possible frequent sequences. 

N Number of sequences in the data set. 

S Average length of sequences. 

k 
Number of most frequent successors considered for each item 

(for the approximation method). 

 

Synthetic data generation 

       In order to evaluate the performance of the algorithms over a large range of data characteristics, we 

generated synthetic sets of user sequences. Our data generator considers a model analogous to the one 

described in (Agrawal & Srikant, 1995). Following the approach of (Zakrzewicz, 2001) and (Morzy et al., 

2001) (so as to examine the worst case for equivalent sets), we consider sequences with elements being 

                                                 
3 Available at the Internet Traffic Archive: http://ita.ee.lbl.gov/html/contrib/../traces.html.  



single items (singletons). Our implementation is based on a modified version of the generator developed 

in (Nanopoulos, Katsaros, & Manolopoulos, 2003), which was used to produce synthetic web-user 

traversals that consist of single items (see also (Morzy et al., 2001)). 

       The generator builds a pool of sequences, each of them being a sequence of pair -wise distinct items 

from a domain I. The length of each such sequence is a random variable that follows Poisson distribution 

with a given mean value. A new pool sequence keeps a number of items from the previous one, 

determined by the correlation factor. Since we are interested in the effect of item ordering within 

sequences, we modified the generator of (Nanopoulos, et al., 2002) so as to perform a random 

permutation of the common items before inserting them in the new pool sequence. This results into 

sequences that contain items with different ordering, thus examines the impact of this factor. The rest of 

each sequence is formed by selecting items from I with uniform distribution. Each sequence in the pool is 

associated with a weight. This weight corresponds to its selection probability and is a random variable 

that follows exponential distribution with unit mean (weights are normalized in the sequel, so that the sum 

of the weights for all paths equals 1). A user sequence is created by picking a sequence from the pool, 

tossing a M-sided weighted coin (M is the pool size), where the weight for a side is the probability of 

picking the corresponding pool sequence. In each user sequence, a number of random items from I (i.e., 

following uniform distribution) are inserted to simulate the fact that pool sequences are used as seeds and 

should not be identical to the resulting user sequences. The length of the sequence determines this 

number, which is a random variable following Poisson distribution with a given mean value denoted as S. 

The total number of generated sequences is denoted as N. Each result presented in the following is the 

average from 5 generated data sets, and for each data set we used 100 queries for each case (e.g., query 

size, number of sequences, etc.). 

Results with synthetic data 

In this section we are interested in comparing all methods against several data characteristics. For this 

reason, we used synthetic data sets. In order to present the results more clearly, we focus on the SEQ 

algorithms, whereas results on the combination of the approximation technique with tree structures (i.e., 

TREE(A)) are given separately, in the following section. This is because our objective is to examine the 

effectiveness of the approximation technique, and since SEQ(A) and TREE(A) use the same 

approximation technique, they lead to the same gains with respect to the data-scan cost.4 

                                                 
4 We have measured the performance of TREE(A) for these synthetic data and, as expected, we found that it 

outperforms SEQ(A) because of its reduced index-scan cost, which, however, is due to the tree index and 

independent from the approximation technique. 



First we focus on the tuning of k  for SEQ(A). We used data sets with S set to 10, |I| was set to 1,000 

and N was equal to 50,000. We measured the total number of disk accesses (cost to scan both the index 

and the data) with respect to the length of the query sequences. The results for SEQ(A) with respect to k 

are depicted in Fig. 7, where k is given as a percentage of |I|. As shown, for small values of k (less than 

5%), SEQ(A) requires a large number of accesses, because very small equivalent sets are produced that 

give signatures with almost all bits equal to ‘0’. Thus, as has been explained, the filtering of SEQ(A) 

becomes low and the cost to scan the data increases. On the other hand, for large k  values (larger than 

20%) very large equivalent sets are produced and SEQ(A) presents the drawbacks of SEQ(C). The best 

performance results when setting k to 10% of |I|, which is the value used henceforth.  

 

Figure 7. Tuning of k  

 
 

       Our next experiments consider the comparison of SEQ methods. We used data sets that were similar 

to the ones used in the previous experiment. We used the following signature sizes: for SEQ(C) equal to 

96 bits, for SEQ(P) and SEQ(A) equal to 64 and for SEQ(U) equal to 32. For SEQ(A), k  was set to 10% 

of |I| and for SEQ(P), β was set to 44 (among several examined values, the selected one presented the best 

performance). We measured the number of activated user sequences in the database. This number is equal 

to the total number of drops, i.e., the sum of actual and false drops. Evidently, for the same query, the 

number of actual drops (i.e., user sequences that actually satisfy the query) is the same for all methods. 

Therefore, the difference in the number of activated user sequences directly results from the difference in 

the number of false drops. The results are illustrated in Fig. 8a (the vertical axis is in logarithmic scale). In 

all cases, SEQ(A) outperforms all other methods, indicating that its approximation technique is effective 

in reducing the cost to scan the data through the reduction of false drops. 



Figure 8. Comparison of methods: (a) number of activated user sequences in the database w.r.t. query 

size (b) disk accesses w.r.t. query size            

                         

 

 

 

 

 

 

 

 

                                                                                               

Since the query performance depends both on the cost to scan the data and the index contents, for the 

case of the previous experiment we measured the total number of disk accesses. The results are depicted 

in Fig. 8b, with respect to the query size (i.e., the number of elements in the query sequence). 

      Focusing on SEQ(P), we see that for all query sizes it performs better than or almost the same as 

SEQ(C). Especially for medium size queries, the performance difference between the two methods is 

larger. This is due to the reduced, for these cases, cost to scan the data (fewer false drops, as also given in 

Fig. 8a), resulted from the partitioning technique. Moving on to SEQ(U), we observe that for medium 

query sizes it is outperformed by SEQ(P), but for ve ry small and large ones it performs better. These two 

cases present two different situations (see also the following experiment): (1) For very small queries (e.g., 

of size two) many signatures are activated and a large part of the database is scanned during verification. 

Hence a large cost to scan the data is introduced for all methods. This can be called as “pattern explosion” 

problem. (2) For large queries (with size comparable to S) there are not many different user sequences in 

the database with the same items but with different ordering. Therefore, ignoring the ordering does not 

produce many false drops. In this case a small number of signatures is activated and all methods have a 

very small and comparable cost to scan the data. Since at these two extreme cases both SEQ(P) and 

SEQ(U) have comparable Data Scan cost, SEQ(P) loses out due to the increased Index Scan cost, incurred 

from the use of larger signatures (SEQ(U) does not use equivalent sets, thus it uses 32-bit signatures; in 

contrast SEQ(P) uses for a 64-bit signature for each partition, thus the total size is a multiple of 64-bits). 

       Turning our attention to SEQ(A), we observe that it significantly outperforms SEQ(C) and SEQ(P) 

for all query sizes. Regarding the two extreme cases, for the “pattern explosion” problem SEQ(A) does 

not present the drawback of SEQ(C) and SEQ(P). In this case it performs similar to SEQ(U), which uses 

(a) (b) 



much smaller signatures. The same applies for the very large queries. For all the other cases, SEQ(A) 

clearly requires much smaller number of disk accesses than SEQ(U). 

Our next series of experiments examine the sensitivity of the methods. We first focus on the effect of  

S. We generated data sets with the other parameters being the same with the previous experiments, and 

we varied the length S of sequences (the signature lengths were tuned against S). The resulted numbers of 

disk accesses are depicted in Fig. 9a, for query size equal to S/2 in each case. Clearly, the disk accesses 

for all methods increase with increasing S. SEQ(A) performs better than all other methods and is not 

affected by increasing S as much as the other methods. SEQ(P) presents the second best performance. It 

has to be noticed that for large values of S, the performance of SEQ(C) degenerates rapidly. 

       We also examined the effect of the cardinality of I (domain of items). For this experiment S was set 

to 10 and the average query size was equal to 5. The other parameters in the generated data sets were the 

same as those in previous experiments, and we varied I. The results are shown in Fig. 9b. As shown, for 

all methods, very small values of |I| (e.g., 100) require a much larger number of disk accesses. This is due 

to the larger impact of ordering, since more permutations of the same sets of items appear within 

sequences. SEQ(A) presents significantly improved performance, compared to all other methods, whereas 

SEQ(P) comes second best. 

Figure 9. Effect of: (a) S (b) |I| 

 

 

 

 

 

 

 

 

 

(a)                                                                                           (b) 

Finally, we examined the scalability of the algorithms with respect to the number N of sequences. The 

rest parameters for the generated data sets were analogous to the ones in the experiments depicted in Fig. 

8, with varying N. The results depicted in Fig. 10a. As shown, for all methods, the disk accesses increase 

in terms of increasing N. SEQ(A) compares favorably with the remaining algorithms, whereas SEQ(P) 

comes second best. As in all previous results, SEQ(C) presents the worst performance. 



Figure 10. (a) Scalability w.r.t. number of sequences N.  (b) I/O vs. query size for ClarkNet web log.  
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Results with real data 

       We now move on to examine the ClarkNet real web-log. Based on the previous results on synthetic 

data, we focus on the two most promising methods, namely (1) the partitioning and (2) the approximation 

of equivalent sets. Moreover, we also considered the use of tree indexes for the signatures. Nevertheless, 

as described, the partitioning method (1) results to multiple signatures for each equivalent set, which can 

only be stored one after the other in a sequential file (i.e., SEQ(P) algorithm). In contrast, the 

approximation method (2) leads to only one signature for each equivalent set. Therefore, the latter 

signatures can be easily indexed with a tree structure for signatures, e.g., the S-tree (Deppisch, 1986). We 

used the approximation method and the improved S-tree variation proposed in (Tousidou et al., 2000), 

and the resulted method is denoted as TREE(A) (i.e., approximation + a tree structure). 

       The results for the comparison between SEQ(P) and TREE(A), with respect to query size (i.e., 

number of items in the query sequence), are given in Fig. 10b. Evidently, TREE(A) significantly 

outperforms SEQ(P) in all cases. Only for very small queries (i.e., with two elements), the methods 

present comparable performance, since a large number of the stored signatures and sequences is invoked 

by such queries (i.e., they have very low selectivity).  

       In summary, the approximation method has the advantage that it allows for a tree structure to index 

the signatures, which further reduces the cost to read the signatures. In combination with the reduced cost 

of scanning the data sequences due to lower number of false drops, the approximation method offers the 

best performance for large, real web logs. 



Future Trends 

       Analysis of the behavior of clients visiting a particular web site is crucial for any companies or 

organizations providing services over the Internet. Understanding of clients’ behavior is a key step in the 

process of improving the web site. Nowadays, the information on how users navigate through a given web 

service is typically available in the form of web access logs. Knowing the limitations of web server logs, 

in the future we may observe a tendency to log more accurate and complete information at the application 

server level. Nevertheless, after some preprocessing, the data to be analyzed by advanced tools (e.g., data 

mining tools) will have a form of a large collection of sequences stored in a company’s database or data 

warehouse. A typical operation in the context of such data sets is searching for sequences containing a 

given subsequence. We believe that exploiting advanced indexing schemes, like those presented in this 

chapter, will be necessary to guarantee acceptable processing times.  

       Having this in mind, in the future we plan to continue our research on sequence indexing, extending 

the most promising technique proposed so far, i.e., the method based on approximations of equivalent 

sets. We plan to examine alternative approximation schemes like: (1) global frequency threshold for 

ordered pairs of elements within a sequence (using most frequent pairs instead of most frequent 

successors for each item), (2) information-content measures (considering only pairs that carry more 

information than others). 

Conclusion 

       We considered the problem of efficient indexing of large web access logs for pattern queries.  We 

discussed novel signature-encoding schemes, which are based on equivalent sets to consider the ordering 

among the elements of access sequences, that is very important in the case of access logs. We have 

presented a family of indexing methods build upon the concept of equivalent sets. The performance of the 

proposed methods has been examined and compared experimentally with real and synthetic data. We 

tested the impact of query size, the tuning of the encoding schemes, and the scalability. These results 

illustrate the superiority of the proposed methods over existing indexing schemes for unordered data 

adapted to access sequences. 
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