
SET-ORIENTED INDEXES FOR DATA MINING QUERIES

Key words: data mining, subset search, bitmap index, hash index

Abstract: One of the most popular data mining methods is frequent itemset and association rule discovery. Mined
patterns are usually stored in a relational database for future use. Analyzing discovered patterns requires
excessive subset search querying in large amount of database tuples. Indexes available in relational database
systems are not well suited for this class of queries. In this paper we study the performance of four different
indexing techniques that aim at speeding up data mining queries, particularly improving set inclusion queries
in relational databases. We investigate the performance of those indexes under varying factors including the
size of the database, the size of the query, the selectivity of the query, etc. Our experiments show significant
improvements over traditional database access methods using standard B+ tree indexes.

1 INTRODUCTION

Data mining, also referred to as knowledge disco-
very in databases, is a process of discovering novel,
useful, valid and understandable patterns from large
volumes of data (Fayyad et al., 1996). One of the
most frequently used data mining techniques is the
discovery of association rules. Informally, an asso-
ciation rule is an implication of the form X�Y where
X and Y are disjoint sets of items. An example of an
association rule might be ’milk’ � ’butter’ � ’cere-
als’ representing the correlation of sales of products
’milk’ , ’butter’ and ’cereals’. In other words, this rule
represents the fact that a customer who buys both milk
and butter is highly likely to buy cereals as well.

First data mining systems were specialized in one
task and dedicated to one domain of interest. In re-
cent years we observe a constant evolution of data
mining systems to general purpose systems that are
tightly coupled with database technology. This inte-
gration happens particularly in data warehouse envi-
ronments which provide the best data source for ana-
lysis and discovery of patterns. Mining association
rules in large data warehouses is a time-consuming
task. Besides, the size of the set of discovered ru-
les can easily exceed the size of the original database.
One possible solution is to store discovered patterns
in the database and query them as needed at some

other point in time. Usually, users of decision sup-
port systems retrieve and penetrate iteratively the set
of discovered patterns, investigating interesting rules
in greater detail, scrutinizing customer transactions
that either support or violate given rules, etc. Such
queries require excessive subset searches and are not
well-supported by traditional database management
systems.

In this paper we present different indexing methods
for supporting subset search in relational databases.
We concentrate on queries that are typical for data mi-
ning and pattern post-processing in decision support
systems. We discuss advantages and disadvantages of
each index type and analyze its usefulness for general
purpose data mining systems. Our discussion is illu-
strated by the results of experiments. We also provide
a comparison of those indexes with traditional data-
base access method, namely, the B+ tree index.

2 RELATED WORK

The problem of association rule mining was first
introduced in (Agrawal et al., 1993). The paper iden-
tified the discovery of frequent itemsets as a key step
in association rule mining. In (Agrawal and Srikant,
1994) the authors presented the basic algorithm, cal-
led Apriori, that quickly became the seed of several

1



ICEIS 2003-

other data mining algorithms. The idea of tight inte-
gration of knowledge discovery systems with the exi-
sting database framework was formulated in (Imielin-
ski and Mannila, 1996).

Traditional databases provide several indexing
techniques, e.g. B+ trees (Comer, 1979), bitmap inde-
xes (Chan and Ioannidis, 1998) or R-trees (Guttman,
1984), but those techniques optimize exact match qu-
erying and single tuple access. Indexing of data items
with set-valued attributes was seldom researched and
resulted in development of signature files (Ishikawa
et al., 1993), Russian Doll Trees (Hellerstein and
Pfeffer, 1994), inverted files (Araujo et al., 1997) and
hash-based indexes (Helmer, 1997). Similar work
was done in the area of text retrieval (Baeza-Yates and
Ribeiro-Neto, 1999). Another study of set-oriented
indexes performance can be found in (Helmer and
Moerkotte, 1999). First proposals for association rule
retrieval from a relational database can be found in
(Morzy and Zakrzewicz, 1998). The authors propo-
sed a special structure, called group bitmap index, and
its variation, called hash group bitmap index, that ad-
dressed the problem of the retrieval of set-valued at-
tributes from a relational database.

This paper is organized as follows. Chapter 3 pro-
vides basic definitions of frequent itemsets, associa-
tion rules and the description of data mining queries.
Set-oriented indexes are described in Chap. 4. Chap-
ter 5 contains the results of conducted experiments.
We conclude with a brief summarization and future
work agenda discussion in Chap. 6.

3 BASIC NOTIONS

3.1 Association Rules

Let � � ���� � � � � ��� be a set of literals called items.
Let � be a set of variable length transactions and
�� � � � � � �. We say that the transaction �
supports an item � if � � � . We say that the trans-
action � supports an itemset � if it supports every
element � � � . The supportof an itemset is the
number of transactions supporting the itemset. The
problem of discovering frequent itemsets consists in
finding all itemsets with the support higher than user-
defined minimum support threshold denoted as min-
sup. An itemset with the support higher than minsup
is called a frequent itemset.

An association rule is an implication of the form
X � Y where X � �, Y � � and X 	 Y = 
. X is
called the headof the rule whilst Y is called the body
of the rule. Two measures represent statistical signi-
ficance and strength of the rule. The supportof the
rule is the number of transactions that support X � Y.
The confidenceof the rule is the ratio of the number

of transactions that support the rule to the number of
transactions that support the head of the rule. We say
that a customer transaction satisfiesthe rule if X � Y
are contained in the transaction. A customer trans-
action violatesthe rule if it contains X but does not
contain Y.

The problem of discovering association rules con-
sists in finding all rules with support and confidence
higher than the user-specified thresholds of minimum
support and confidence, called minsupand minconf
respectively.

3.2 Storage Structures and Queries

Most customer transactions are stored in flat relations
using two attributes: one describing the purchased
item and another organizing items into sets. Additio-
nal attributes might represent the price of an item, the
quantity of items purchased, the discount, etc. Such
structure allows for efficient storage of varying length
transactions. Association rules discovered in custo-
mer transactions can be stored in a relational data-
base using two tables. First table contains rule iden-
tifiers and values of support and confidence for each
rule. Second table contains rule identifiers and items
contained in rule’s head and body along with item
type (head or body respectively). Figure 1 presents
an example of database storage for association rules
using tables rulesand items.

rules items

rule support confidence rule item type
1 0,45 0,87 1 bread head
2 0,72 0,45 1 butter body
3 0,64 0,69 2 butter head

2 cheese body
3 bread head
3 milk head
3 cereals body

Figure 1: Association rules stored in the database.

A query predicate P is defined by a set-valued at-
tribute � , a set of itemsets 	 and a set comparison
operator � � �������. Let 
 denote a finite set of
items. Three classes of queries can be identified with
respect to a set-valued attribute:

 equality query �� � 	 � ��� � 
�

 subset query �� � 	 � ��� � 
�

 superset query �� � 	 � ��� � 
�

In this paper we focus on data mining applications.
In association rules discovery two types of queries are
common:

 select all customer transactions that contain a given
set of items (e.g., to find transactions and customers
who satisfy or violate a given rule)

2



SET-ORIENTED INDEXES FOR DATA MINING QUERIES

 select all rules that contain a given set of items in
their head or body (e.g., to analyze associations be-
tween given items in detail).

Both types of queries contain a subset search.
This problem was studied in (Graefe and Cole, 1995)
where the authors proposed a novel relational division
operator. Currently available database systems do
not implement either the relational division operator
or the subset search operator. Hence, those queries
are difficult to express in standard SQL language. To
illustrate this problem below we present two queries
that retrieve identifiers of itemsets that contain the set
�’milk’ , ’butter’, ’cereals’� from the table Purchases.

Query using several joins

SELECT DISTINCT A.set id
FROM purchases A, purchases B,
purchases C
WHERE A.set id = B.set id
AND B.set id = C.set id
AND A.item = ’milk’
AND B.item = ’butter’
AND C.item = ’cereals’;

Query using GROUP BY clause

SELECT set id FROM purchases
WHERE item IN
(’milk’,’butter’,’cereals’)

GROUP BY set id
HAVING count(*) = 3;

Both queries are time-consuming and costly in
terms of query optimization. First query requires a
join of three very large tables whilst second query re-
quires sorting the relation and executing an aggregate
function on all groups. Besides, the above queries
are hard to read and they lack flexibility. Although
traditional B+ trees indexes can be used to speed-up
those queries, those indexes are row-oriented and in
case of set containment queries they require multiple
index scans. This example proves that traditional ac-
cess methods are insufficient for excessive subset se-
arch queries in large databases and data warehouses.
Therefore, several novel set indexing techniques were
proposed. In the next chapter we present the descrip-
tion of several different indexes.

4 SET-ORIENTED INDEXING
TECHNIQUES

4.1 Group Bitmap Index

Group bitmap index is used to speed up subset se-
arch and content-based retrieval of various sets. The
main idea consists in creating a binary representation
of each set and using resulting bitmaps to find rele-
vant sets. A bitmap key is a binary number of length
N, where N is the total number of distinct items in
a database. For a given set the bitmap key has kth
position bit set to ’1’ if the set contains item k. All
bitmap keys are stored in an index table together with
set identifiers they refer to. When a user issues a sub-
set search query, a searched bitmap key is created for
the searched set of items. Searched bitmap key is
constructed in the same way as an indexed set bit-
map key. Next, the searched bitmap key is compa-
red to every entry in the index table by means of the
bitwise AND operation. All index keys that contain
’1’s on the same positions as in the searched bitmap
key are returned as the answer to the query. Figure 2
presents a sample customer transaction database and
corresponding group bitmap index. When a user se-
arches for customer transactions containing products
’milk’ and ’bread’ the searched set bitmap key is com-
puted. This key has bits set to ’1’ on positions 1 and
12. This key is compared to all index table entries
to find index keys that contain ’1’s on the same po-
sitions. As the result, the customer transaction 3 is
returned.

customer transactions bitmap keys group bitmap key

set item id bitmap key set
1 bread 1 00000000000011 1
1 butter 2 000000010000010 2

000100000010001 3
000000000000011

2 butter 2
2 cheese 8

000000010000010

3 bread 1
3 cereals 5
3 milk 12

000100000010001

Figure 2: Group bitmap index.

The main drawback of the group bitmap index is its
size and the fact, that the size of the bitmap key varies
with the maximal number of distinct items in the da-
tabase. In practice, the number of distinct items can
be of order of tens or hundreds of thousands which
makes group bitmap index long, sparse (99,99% of
positions would be set to ’0’) and difficult to process.
The number of distinct items is not constant either,
so adding new items to the database could result in
costly index reconstruction. On the other hand, for
many databases, in particular when the number of di-
stinct items is relatively small (say up to 1000 diffe-

3



ICEIS 2003-

rent items) and remains constant, the group bitmap
index is the best indexing method available.

4.2 Restricted Group Bitmap Index

Since there are no data types that have the size of
1000 bits, the group bitmap index is usually imple-
mented as an array of binary numbers of available
type, e.g. 32 bit long (notice that the size of the
type long may vary from one computer architecture
to another). Indexed sets usually contain no more than
10–40 items (this is the average number of items pur-
chased by customers). Hence, most entries in the ar-
ray of bitmap keys for a given itemset are empty. Be-
sides, most queries contain a small number of items,
usually 2–5, which makes the bigger part of an in-
dex bitmap key unnecessary in the search. To avoid
reading into memory and processing of unnecessary
key parts we restricted a group bitmap index to only
those parts of the bitmap key that are present in the
searched bitmap key.

The advantage is the significant reduction of the in-
dex size. Unfortunately, this approach has a rather
theoretical character because such index has to be re-
read into main memory for every query as queries dif-
fer in parts of the index key.

4.3 Hash Group Bitmap Index

Hash group bitmap index (Morzy and Zakrzewicz,
1998) tries to eliminate the shortcomings of the group
bitmap index. Each hash bitmap key representing a
customer transaction has a constant size of n that is
much smaller than the number N of distinct items in
the database. Hash bitmap key of a customer transac-
tion is a bitwise sum of hash keys representing items
contained in the transaction. Hash key of an item � is
an n-bit binary number defined as

��� ������ � ��� ��� ��

When a user issues a subset search query, the pro-
cess is performed in two steps. First, in the filtering
step, a searched hash bitmap key is computed. This
hash bitmap key is then compared to all hash keys
stored in the hash index table. This comparison is per-
formed by the means of the bitwise AND operation.
All sets that have ’1’ on the same positions as the se-
arched hash bitmap key are returned as a result of the
first step. These are candidate sets because due to the
ambiguity of hashing some of those sets do not con-
tain the searched subset. This happens because hash
bitmap keys do not represent indexed sets uniquely.
On the other hand, all itemsets that potentially con-
tain the searched subset are present in the result after
filtering. In the second step, called the verification

step, itemsets returned by the filtering step are actu-
ally checked for the containment of the searched sub-
set. This is usually done using traditional techniques
because the number of itemsets to be verified remains
relatively small.

customer transactions hash keys hash group keys hash group bitm

set item id bitmap key
1 bread 1 00001 00011
1 butter 2 00010 00110

00011
00011

2 butter 2 00010
2 cheese 8 00100

00110

3 bread 1 00001
3 cereals 5 00000
3 milk 12 00010

00011

Figure 3: Hash group bitmap index.

Figure 3 presents a sample database of customer
transactions and the creation of the hash group bit-
map key of size � � �. Figure 4 presents a subset
search query evaluation using the hash group bitmap
index. A user issues a query for all sets containing
the set �’bread’, ’butter’�. A searched hash bitmap
key is created for this set. Next, all entries in the hash
bitmap index are scanned. Bitwise AND operation is
performed between the searched hash bitmap key and
index entries. Entries representing sets 1 and 3 con-
tain ’1’s on the same positions as in the searched hash
bitmap key and therefore these entries are included in
the set of candidate results. In the last step both sets
are checked and the set 1 remains as the answer to the
query.

searched subset of items

bread 1 00001 bitmap key
butter 2 00010 00011

00110
00011 AND 00011

bitmap key set
00011 1
00011 3

Figure 4: Subset search using hash group bitmap in-
dex.

The main advantage of the hash group bitmap index
is the reduction of the size of a key and independence
of the size of a key from the number of distinct items
in the database. Unfortunately, the ambiguity of ha-
shing is the source of false hits (itemsets considered
to be candidate answers but pruned in the verification
step). The need to check candidates in the database
can seriously harm the performance of the index, par-
ticularly for the queries with low selectivity.

4.4 Signature Index

Signature index (Helmer, 1997; Nørvåg, 1999) is very
similar to hash group bitmap index and uses the tech-
nique of superimposed bit vector coding. Each ele-

4



SET-ORIENTED INDEXES FOR DATA MINING QUERIES

Table 1: Synthetic data parameters

parameter symbol value

number of itemsets �����	 10000 to 100000
number of different items �
���	 50 to 100
average number of items per set ���� 5 to 10
size of the query 		 1 to 8

ment in the indexed set receives an n-bit vector with
k bits set to ’1’. Next, all vectors representing items
in the indexed set are superimposed using the bitwise
OR operator to form set signatures. The number k
of bits used to represent a single item strongly affects
the performance of the index. Bigger values of k al-
low to represent more items (without the need to use
hashing), but result in signatures which tend to be po-
pulated with many ’1’s, thus requiring the verification
of many signatures in the database. Searching the si-
gnature index is similar to searching the hash group
bitmap index. First, a search signature for the user’s
query is created by bitwise ORing vector representa-
tions of the items in the query. Next, the searched si-
gnature is compared to all signatures stored in the in-
dex. Signatures containing ’1’s on the same positions
as in the searched signature are returned as candida-
tes. In the verification step candidate sets are checked
in the database for the containment of the searched
items.

The main advantage of the signature index is the
constant size of the signatures. This allows for easy
maintenance and processing of index entries. Most
characteristics of the signature index are similar to the
characteristics exhibited by the hash group bitmap in-
dex. In our implementation we decided to make the
signature much longer than the size of the hash key to
see if this factor affects the overall performance of the
index.

4.5 Russian-Doll Trees

The Russian-Doll Trees (RD-Trees) were first presen-
ted in (Hellerstein and Pfeffer, 1994). An RD-Tree
is a modification of the well-known R-Tree (Gutt-
man, 1984), an efficient index for spatial data. The
structure of an RD-Tree is the following: the leaf no-
des of the tree contain indexed sets (called base sets)
and their descriptions (called bounding sets). A bo-
unding set is the smallest set containing the base set
and fulfilling certain conditions. Internal nodes of the
RD-Tree contain pointers to the child nodes and their
bounding sets. A bounding set in an internal node
must contain all bounding sets of the child nodes. Se-
arching the RD-Tree uses an inclusion property which
states that if the searched set is not contained in the
bounding set of a node, it cannot be contained in any

child node of a node. Searching starts at the root of
the RD-Tree and proceeds in a recursive manner to all
nodes that bound the searched set. The bounding sets
depend on the representation of keys in the leaf nodes.
Several different techniques were proposed, among
them complete representations, signatures, rangesets
and combined representations. Compared to previous
methods, RD-Tree are not dependent of the number
of distinct items in a database. On the other hand,
RD-Trees are much more expensive in terms of ma-
intenance. Inserting a new set into the index requires
finding nodes that need least enlargement to include a
new set. Similarly, when a node overflows it must be
split to make two new nodes such that two nodes are
maximally disjoint.

4.6 Inverted Files

Inverted file, introduced in (Araujo et al., 1997), is an
index structure consisting of two elements: the voca-
bulary and the occurrences. The vocabulary contains
all items that appear in the indexed sets. For each item
a list of sets in which this item appears is maintained.
The set of all those lists is called the occurrences. Se-
arching an inverted file consists in finding all searched
items in the vocabulary, retrieving occurrence lists re-
lated to searched items and determining the intersec-
tion of all lists. Inverted files can also be used to
solve context queries and approximate queries. Ori-
ginally inverted files were used in text processing to
index text collections. Inverted files exhibit similar
characteristics to bitmap indexes which are available
in many commercial database management systems.

5 Experimental Results

In our experiments we constrained ourselves to
four types of set-oriented indexes, namely, to group
bitmap indexes (both simple and restricted), hash
group bitmap index and signature index. All experi-
ments were conducted on Oracle 8.1.7 running under
Linux (kernel 2.2.19) with two Pentium II 450 MHz
processors and 512 MB memory. Data sets were cre-
ated using DBGen generator from the Quest Project
(Agrawal et al., 1994). Table 1 summarizes the va-
lues of different parameters that affect the characteri-

5



ICEIS 2003-

stics of the data sets used in our experiments. These
data sets tend to mimic typical customer transactions
in a supermarket. Number of distinct items is relati-
vely small and represents the analysis at a higher level
where associations between groups of products are di-
scovered rather than associations between individual
products. Here each item represents a product group
such as beverages, bakery products, fruits, etc. The
size of a single customer basket is also small because
individual items were previously merged into product
groups. Query sizes vary from general queries (con-
sidering one or two items) to very specific (conside-
ring several items). The number of customer transac-
tions varied from 10000 (relatively small database) to
100000 (relatively big database).

Figure 5 presents the performance of the group bit-
map index. This index scales almost linearly with the
database size. It is slightly better suited to answer
complex queries than simple queries. The execution
times of queries using reduced group bitmap index are
presented on Fig. 6. This index shares all characteri-
stics of the group bitmap index but it is not affected
by the length of the query. Query execution is faster
because no empty index keys are processed. On the
other hand, this index requires recreation for each qu-
ery because for each query different parts of the index
key table may become empty, so the overall perfor-
mance of the reduced group bitmap index is affected
by the time needed to recreate the index. Signature in-
dex characteristics are depicted on Fig. 7. This index
exposes the best characteristics regarding both diffe-
rent database sizes and different query sizes. In our
implementation we used long signatures and we did
not introduce hashing. If the number of items exceeds
the length of a signature, hashing becomes unavoida-
ble. This hashing introduces ambiguity of hits and
additional verifying phase is required to prune false
hits. In that case a serious degradation of performance
can be observed. Hash group bitmap index characte-
ristics are presented on Fig. 8. In this implementation
we used an opposite approach compared to signature
index. We used very short hash keys consisting of
one machine word (32 bits) imposing strong hashing.
As it can be observed, under these circumstances the
performance of the index is very bad in case of short
queries. This is due to strong ambiguity of hashing,
as a matter of fact more than 90% of hits were false
hits and the majority of time was spent on filtering the
result set and verifying hits. As the size of the query
increases hash index performance rapidly grows and
the number of false hits that need to be verified drops
significantly.

Figures 9 and 10 present the comparison of query
execution times for different indexes and different da-
tabase sizes for queries of lengths 1 and 4 respecti-
vely. We measured also the performance of the tra-
ditional B+ tree index but we omitted it in the final

results because for all database sizes and for all query
lengths traditional indexing technique was significan-
tly inferior to bitmap and signature indexes (on ave-
rage all queries were 10 times slower using B+ tree
indexes). For query lengths 1 and 4 we also omitted
hash group bitmap index because of the unacceptable
response times (but please be aware of the fact that
in our experiment we used only the shortest possible
hash key). It can be observed that the best results can
be achieved using signature and reduced bitmap inde-
xes. Figure 11 shows the comparison of execution ti-
mes for queries of length 8. Hash group bitmap index
is still the slowest one, but the difference is not that
big. Besides, in many real world applications indexes
with hard-coded maximal number of items (such as
bitmap and reduced bitmap indexes) are unsuitable. It
is worth noticing that the performance of flexible hash
group bitmap index is not significantly worse from the
previous indexes. The sizes of different types of inde-
xes are presented on the Fig. 12. All indexes grow li-
nearly with the database size with hash group bitmap
index being the smallest. This feature also proves the
practical usability of hash-based index because due to
its small size it can easily fit into the available main
memory, making index search and processing much
faster.

6 CONCLUSION

In this paper we investigated the performance
of four different indexing techniques that facilitate
content-based retrieval and subset search in relational
databases. Our experiments focused on data sets and
queries that are characteristic for data mining appli-
cations. We showed that traditional access methods,
i.e. B+ trees, are unsuitable for this class of queries
and that additional indexing techniques must be deve-
loped. Conducted experiments proved that for many
real world problems bitmap group indexes and signa-
ture indexes provide efficient solution to the subset
search problem. We also noticed that for applications
that require flexible indexing techniques hash group
bitmap indexes may be successfully used.

Still, many questions remain unanswered. First of
all, our experiments were conducted on top of the da-
tabase management system and not within it. Incor-
porating novel index types into the core of the data-
base system could result in larger performance gain
for all types of indexes. We concentrated on subset
queries, but other types of queries should be also ef-
ficiently supported, e.g. superset queries or overlap
queries. Another question is what type of statistics
and histograms are required for cost-based optimizer
module to make efficient use of new set-oriented in-
dexes. New database systems allow the users to define

6



SET-ORIENTED INDEXES FOR DATA MINING QUERIES

0

20

40

60

80

100

120

10 20 30 40 50 60 70 80 90

database size [K]

ex
ec

u
ti

o
n

 t
im

e 
[m

s]

1

3

8

Figure 5: Group Bitmap Index

0

10

20

30

40

50

60

70

80

90

100

10 20 30 40 50 60 70 80 90

database size [K]

ex
ec

u
ti

o
n

 t
im

e 
[m

s]

1

4

7

Figure 6: Reduced Group Bitmap Index

0

10

20

30

40

50

60

70

80

90

10 20 30 40 50 60 70 80 90

database size [K]

ex
ec

u
ti

o
n

 t
im

e 
[m

s]

1

4

8

Figure 7: Signature Index

0

10000

20000

30000

40000

50000

60000

70000

80000

10 20 30 40 50 60 70 80 90

database size [K]

ex
ec

u
ti

o
n

 t
im

e 
[m

s]

1

2

4

8

Figure 8: Hash Group Bitmap Index

their own abstract data types, among them set and col-
lection types (in the form of nested tables or varrays).
The issue of indexing of ADTs remains a challenging
research area.

REFERENCES

Agrawal, R., Carey, M. J., Faloutsos, C., Ghosh, S. P., Ho-
utsma, M. A. W., Imielinski, T., Iyer, B. R., Mah-
boob, A., Miranda, H., Srikant, R., and Swami, A. N.
(1994). Quest: A project on database mining. In Snod-
grass, R. T. and Winslett, M., editors, Proceedings of
the 1994 ACM SIGMOD International Conference on
Management of Data, page 514, Minneapolis, Minne-
sota. ACM Press.

Agrawal, R., Imielinski, T., and Swami, A. N. (1993). Mi-
ning association rules between sets of items in large
databases. In Buneman, P. and Jajodia, S., editors,
Proceedings of the 1993 ACM SIGMOD International
Conference on Management of Data, pages 207–216,
Washington, D.C.

Agrawal, R. and Srikant, R. (1994). Fast algorithms for mi-
ning association rules. In Bocca, J. B., Jarke, M., and
Zaniolo, C., editors, Proceedings of the 20th Interna-
tional Conference on Very Large Data Bases, (VLDB),
pages 487–499. Morgan Kaufmann.

Araujo, M. D., Navarro, G., and Ziviani, N. (1997). Large
text searching allowing errors. In Baeza-Yates, R.,
editor, Proceedings of the 4th South American Work-
shop on String Processing, pages 2–20, Valparaiso,
Chile. Carleton University Press.

Baeza-Yates, R. and Ribeiro-Neto, B. (1999). Modern in-
formation retrieval. Addison-Wesley.

Chan, C. Y. and Ioannidis, Y. E. (1998). Bitmap index de-
sign and evaluation. In Haas, L. M. and Tiwary, A.,
editors, Proceedings of the 1998 ACM SIGMOD Inter-
national Conference on Management of Data, pages
355–366, Seattle, Washington. ACM Press.

Comer, D. (1979). The ubiquitous b-tree. ACM Computing
Surveys, 11(2):121–137.

Fayyad, U. M., Piatetsky-Shapiro, G., Smyth, P., and Uthu-
rusamy, R. (1996). Advances in Knowledge Discovery
and Data Mining. AAAI/MIT Press.

Graefe, G. and Cole, R. L. (1995). Fast algorithms for
universal quantification in large databases. TODS,
20(2):187–236.

Guttman, A. (1984). R-trees: A dynamic index structure
for spatial searching. In Yormark, B., editor, SIG-
MOD’84, Proceedings of Annual Meeting, pages 47–
57, Boston, Massachusetts. ACM Press.

Hellerstein, J. M. and Pfeffer, A. (1994). The rd-tree: An
index structure for sets. Technical Report 1252, Uni-
versity of Wisconsin at Madison.

Helmer, S. (1997). Index structures for databases containing
data items with setvalued attributes. Technical Report
2/97, Universität Mannheim.

Helmer, S. and Moerkotte, G. (1999). A study of four index
structures for set-valued attributes of low cardinality.
Technical Report 2/99, Universität Mannheim.

Imielinski, T. and Mannila, H. (1996). A database perspec-
tive on knowledge discovery. CACM, 39(11):58–64.

Ishikawa, Y., Kitagawa, H., and Ohbo, N. (1993). Evalu-
ation of signature files as set access facilities in oodbs.

7



ICEIS 2003-

0

20

40

60

80

100

120

10 20 30 40 50 60 70 80 90

database size [K]

ex
ec

u
ti

o
n

 t
im

e 
[m

s]

bitmap

reduced bitmap

signature

Figure 9: Short queries

0

10

20

30

40

50

60

70

80

90

10 20 30 40 50 60 70 80 90

database size [K]

ex
ec

u
ti

o
n

 t
im

e 
[m

s]

bitmap

reduced bitmap

signature

Figure 10: Medium queries

0

50

100

150

200

250

10 20 30 40 50 60 70 80 90

database size [K]

ex
ec

u
ti

o
n

 t
im

e 
[m

s]

bitmap

reduced bitmap

signature

hash

Figure 11: Long queries

0

2000000

4000000

6000000

8000000

10000000

12000000

14000000

16000000

10 20 30 40 50 60 70

database size [K]

in
d

ex
 s

iz
e 

[B
]

reduced bitmap

signature

hash

Figure 12: Index size

In Buneman, P. and Jajodia, S., editors, Proceedings
of the 1993 ACM SIGMOD International Conference
on Management of Data, pages 247–256, Washington,
D.C. ACM Press.

Morzy, T. and Zakrzewicz, M. (1998). Group bitmap index:
A structure for association rules retrieval. In Agrawal,
R., Stolorz, P. E., and Piatetsky-Shapiro, G., editors,
Proceedings of the 4th ACM SIGKDD International
Conference on Knowledge Discovery and Data Mi-
ning, pages 284–288, New York, USA. ACM Press.

Nørvåg, K. (1999). Efficient use of signatures in object-
oriented database systems. In Eder, J., Rozman, I.,
and Welzer, T., editors, Proceedings of the 3rd East
European Conference on Advances in Databases and
Information Systems (ADBIS), volume 1691 of Lec-
ture Notes in Computer Science, pages 367–381, Ma-
ribor, Slovenia. Springer.

8


