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Abstract. Association rule mining is one of the most popular data min-
ing techniques. Significant work has been done to extend the basic asso-
ciation rule framework to allow for mining rules with negation. Negative
association rules indicate the presence of negative correlation between
items and can reveal valuable knowledge about examined dataset. Un-
fortunately, the sparsity of the input data significantly reduces practical
usability of negative association rules, even if additional pruning of dis-
covered rules is performed. In this paper we introduce the concept of
dissociation rules. Dissociation rules present a significant simplification
over sophisticated negative association rule framework, while keeping
the set of returned patterns concise and actionable. A new formulation
of the problem allows us to present an efficient algorithm for mining dis-
sociation rules. Experiments conducted on synthetic datasets prove the
effectiveness of the proposed solution.

1 Introduction

Operational databases and enterprise data warehouses contain limitless volumes
of data. Valuable knowledge is hidden in these data under the form of trends,
regularities, correlations, and outliers. Traditional database and data warehouse
querying models are not sufficient to extract this knowledge. The value of the
data, as provided by traditional databases, can be greatly increased by adding
the means to automatically discover useful knowledge from large volumes of
gathered data. Data mining, a novel research discipline, aims at the discovery
and extraction of useful, previously unknown, non-trivial, and ultimately under-
standable patterns from large databases and data warehouses [1]. Data mining
uses methods from statistics, machine learning, artificial intelligence, databases,
and other related disciplines to extract unknown, utilitarian, and interesting
rules and regularities in order to assist users in informed decision making.

One of the most successful and widely used data mining techniques is asso-
ciation rule mining. Association rules [3] represent the patterns of co-occurrence
of items in a large collection of sets. An example of an association rule is an
expression of the form ’wine’ ∧ ’grapes ’ ⇒ ’cheese’ ∧ ’white bread ’, which rep-
resents the fact that purchasing wine and grapes implies purchasing cheese and
white bread in the same transaction. Association rules can be easily applied to



countless application domains. For instance, in market basket analysis the col-
lection of sets corresponds to the database of customer transactions and each set
corresponds to a set of products purchased by a customer during a single visit
to the store. Discovered rules can be used for organizing cross-sales, designing
mail catalogs, or reorganizing shelf layout.

Association rules capture only the ”positive knowledge”, i.e., sets of items
comprising associations are always positively associated. One might be interested
in discovering ”negative knowledge” expressed as negative associations between
items. An example of such pattern is an expression of the form ’FC Barcelona

jersey’ ⇒ ¬ ’Real Madrid cap’ ∧ ¬ ’Real Madrid scarf ’, which represents the
fact, that a customer who purchases an FC Barcelona jersey will almost never
buy either a cap or a scarf with Real Madrid logo. Another type of a pattern
conveying ”negative knowledge” is an expression where only certain elements
in the antecedent or consequent are negated. An example of such an expression
is ’beer ’ ∧ ’sausage’ ⇒ ’mustard ’ ∧ ¬ ’red wine’ , which represents the fact,
that transactions containing beer and sausages usually contain mustard and do
not contain red wine. Negative associations can be successfully used in several
application domains to identify conflicting or complementary sets of products.

Unfortunately, incorporating negation into association rule framework is very
difficult. Due to the sparsity of data measured as the ratio of the average number
of items per transaction to the total number of possible items, the number of
possible association rules with negation is huge. Discovered patterns are valid, if
they are useful and utilitarian. For association rules with negation the number
of rules is unmanageable, thus not feasible in practice. This phenomenon can
be easily explained as follows: in an average transaction, only a small fraction
of items is present. At the same time, almost all possible items are not present
in every transaction. Therefore, each transaction supports a huge number of
patterns containing negation. Post-processing of association rules with negation
and pruning coincidental rules is also a difficult and tedious task.

In our opinion, the main problem of previously proposed solutions is the
complexity and the size of models, which effectively hinder the usefulness and
practical applicability of these sophisticated models. In this paper we introduce
a novel concept of dissociation rules. Our goal is to allow users to find negatively
associated sets of items while keeping the number of discovered patterns low. We
concentrate on such formulation of the problem, which results in a compact and
usable set of patterns. By simplifying the model we sacrifice the abundance of
discovered patterns for the simplicity and intelligibility of the result, making our
model attractive for end users. Our main contribution includes the introduction
of dissociation rules and the development of the DI-Apriori algorithm for mining
dissociation rules. We conduct several experiments on synthetic datasets that
compare our algorithm to a straightforward naive approach. The results of the
experimental evaluation prove the feasibility of the presented proposal.

The paper is organized as follows. In Sect. 2 we review the related work on the
subject. We present basic definitions used throughout the paper in Sect. 3. The
naive approach and the DI-Apriori family of algorithms are presented in Sect. 4.



Section 5 contains the results of the experimental evaluation of the proposed
solution. The paper concludes in Sect. 6 with the future work agenda.

2 Related Work

The first proposal to discover strong, exact, and approximate rules over the
tuples contained in a relational table was formulated in [12]. The notion of as-
sociation rule mining was introduced in [3]. In [4] the authors introduced the
Apriori algorithm that quickly became the seed for many other algorithms for
discovering frequent itemsets. The idea of mining ”negative” information was
first presented in [5] where the authors introduce the concept of excluding as-
sociations. They present a versatile method for finding associations of the form
A∧B∧¬C ⇒ D, where A∧B ⇒ D does not hold due to insufficient confidence.
Such a rule represents the fact that ”A and B imply D when C does not occur”.
Their solution is to transform the database into a trie structure and extract both
positive association rules and excluding association rules directly from the trie.

An algorithm for discovering strong negative association rules using taxon-
omy of domain knowledge was presented in [13]. This fundamental work intro-
duced the concept of the interestingness of a rule measured in terms of the unex-
pectedness of the rule. A rule is unexpected if its support significantly deviates
from the expected support. The authors propose to use the taxonomy of items
along with the uniformity assumption to discover itemsets with support signifi-
cantly lower than the expected support computed from the taxonomy. Another
method for mining both positive and negative association rules is presented in
[14]. The authors define a new measure for rule importance that combines sup-
port, confidence, and interestingness of a rule. Using this measure the authors
introduce novel concepts of frequent and infrequent itemsets of potential interest
that are used for mining positive and negative association rules.

An interesting algorithm for mining both positive and negative association
rules is presented in [6]. The authors constrain themselves to finding confined
negative association rules of the form ¬X ⇒ Y , ¬X ⇒ ¬Y , or X ⇒ ¬Y ,
where the entire antecedent or consequent is a conjunction of only negated or
a conjunction of only non-negated terms. These rules are a subset of the gen-
eralized negative association rules, for which its antecedents or consequents can
be expressed as a conjunction of negated or non-negated terms. The authors
acknowledge that their approach is not general enough to capture all types of
negative rules. However, limiting the algorithm to the discovery of confined neg-
ative association rules only allows the authors to develop an efficient method
based on the correlation coefficient analysis.

The problem of mining generalized negative association rules has been at-
tacked in [9]. Itemsets are divided into derivable and non-derivable based on
the existence of certain rules (functional dependencies) in the dataset. The au-
thors present an efficient method of concise representation of a huge number
of patterns with negation using negative border and rule generators. Further-
more, an efficient algorithm for mining rules with negation is presented that uses



variations of candidate itemsets and error counts of rules. Finally, [8] discusses
inverse Apriori-like method for mining sporadic rules, which are rules with very
low support and high confidence.

Somehow related to the negative association rule mining is the problem of dis-
covering unexpected patterns [11]. The authors propose to use prior background
knowledge acquired from domain experts to serve as a set of expectations and
beliefs about the domain. They combine this prior knowledge with association
rule mining algorithm to discover patterns that contradict expert expectations.
Similar research on exception rules was conducted in [7, 10]. Exception rules,
sometimes also referred to as surprising patterns, represent an unexpected devi-
ation from a well-established fact and allow negated terms to appear in patterns.

3 Basic Definitions

Let L = {l1, l2, . . . , ln} be a set of literals called items. Let D be a database of
variable-length transactions, and ∀ti ∈ D : ti ⊆ L. A transaction ti supports an
item x if x ∈ ti. A transaction ti supports an itemset X if ∀x ∈ X : x ∈ ti. The
support of an itemset X , denoted as supportD(X), is the ratio of the number
of transactions in D that support X to the total number of transactions in
D. Given two itemsets X, Y ⊂ L, the support of the itemset X ∪ Y is called
the join of X and Y . An itemset containing k items is called a k -itemset. An
itemset with the support higher than the user-defined threshold minsup is called
a frequent itemset. Let LD denote the set of all frequent itemsets discovered in the
database D. The negative border of the collection of frequent itemsets, denoted
as Bd− (LD), consists of minimal itemsets not contained in the collection of
frequent itemsets. Formally, Bd− (LD) = {X : X /∈ LD ∧ ∀ Y ⊂ X, Y ∈ LD}.

Given user-defined thresholds of minimum support and maximum join, de-
noted as minsup and maxjoin, respectively, where minsup > maxjoin . An item-
set Z is a dissociation itemset, if support

D
(Z) ≤ maxjoin and Z can be divided

into disjoint itemsets X ,Y , such that X ∪ Y = Z, supportD(X) ≥ minsup,
and supportD(Y ) ≥ minsup. Dissociation itemsets are used to generate disso-
ciation rules. A dissociation rule is an expression of the form X ; Y , where
X ⊂ L, Y ⊂ L, and X ∩ Y = ∅. Furthermore, supportD (X ∪ Y ) ≤ maxjoin ,
support

D
(X) ≥ minsup, and support

D
(Y ) ≥ minsup. X is called the antecedent

of the rule and Y is called the consequent of the rule. A dissociation rule X ; Y
represents the fact that, although items contained in X and items contained in
Y often occur together when X and Y are considered separately, items contained
in X ∪ Y occur together very rarely. A dissociation rule X ; Y is minimal, if
@X ′ ⊆ X, Y ′ ⊆ Y such, that X ′ ; Y ′ is a valid dissociation rule.

Three statistical measures are used to describe the statistical significance and
strength of the rule. The support of the rule X ; Y is the smaller ratio of the
number of transactions that support either the antecedent or the consequent of
the rule to the total number of transactions.

support
D

(X ; Y ) = min{support
D

(X), support
D

(Y )}



We decide to redefine the notion of rule support purposely. The support of
the rule is used mainly for post-processing of discovered rules to select rules
of interest. In this case, users are likely to be interested in selecting rules that
pertain to statistically significant itemsets contained in either the antecedent or
the consequent of the rule. The join of the rule is used to measure the quality
of the rule expressed as the rarity of the rule,

joinD (X ; Y ) = supportD(X ∪ Y )

Again, we choose to use the term join for the measure known as the support
of the rule in traditional association rule mining. We decide to do so in order to
avoid confusion, as the relative importance of a rule increases with the increase
of the traditional support of the rule, whereas in the case of dissociation rules
the most important rules are the ones with very low values of the join measure.

The confidence of the rule X ; Y is the ratio of the number of transactions
that support the antecedent and do not support the consequent of the rule to
the number of transactions that support the antecedent of the rule.

confidence
D

(X ; Y ) =
support

D
(X) − support

D
(X ∪ Y )

support
D

(X)
=

= 1 −
joinD (X ; Y )

supportD (X)

The problem of discovering dissociation rules can be formulated as follows.
Given a database D and thresholds of minimum support, confidence, and max-
imum join, called minsup, minconf, and maxjoin, respectively. Find all dissocia-
tion rules valid in the database D with respect to the above mentioned thresholds.
The thresholds are used in the following way. The minsup is used to select sta-
tistically significant itemsets for antecedents and consequent of generated rules.
The maxjoin threshold provides an upper limit of how often the elements con-
stituting the antecedent and the consequent of the rule are allowed to appear
together in the database D. Finally, the minconf threshold is used only for the
post-processing of rules and selecting the strongest rules. Note that given the
values of minsup and maxjoin, the confidence of each generated dissociation rule
has a lower bound confidenceD = (1 − maxjoin/minsup).

4 Algorithm

The generation of dissociation rules is based on the following lemmas.

Lemma 1. Let LD denote the set of all frequent itemsets discovered in the data-

base D. If X ; Y is a valid dissociation rule, then (X ∪ Y ) /∈ LD.

Lemma 1 is trivial. X ; Y implies that supportD (X ∪ Y ) ≤ maxjoin ≤
minsup, from which follows that (X ∪ Y ) /∈ LD.



Lemma 2. If X ; Y is a valid dissociation rule, then ∀X ′ ⊇ X, Y ′ ⊇ Y such,

that X ′ ∈ LD ∧ Y ′ ∈ LD, X ′ ; Y ′ is a valid dissociation rule.

From the fact that X ′ ⊇ X and Y ′ ⊇ Y follows that supportD (X ′ ∪ Y ′) ≤
support

D
(X ∪ Y ). Because support

D
(X ∪ Y ) ≤ maxjoin and both X ′ and Y ′

are frequent, X ′ ; Y ′ is a dissociation rule.

Lemma 3. ∀X, Y such, that X ; Y is a valid dissociation rule, there exists

Z ∈ Bd− (LD) such, that (X ∪ Y ) ⊇ Z.

From the definition of the negative border follows that, for each set X , ei-
ther X is frequent, or X belongs to the negative border, or one of its proper
subsets belongs to the negative border. Since X ; Y is a valid dissociation
rule, either (X ∪ Y ) ∈ Bd− (LD) (and all its proper subsets are frequent),
or (X ∪ Y ) /∈ Bd− (LD) and it has a proper subset in Bd− (LD). Otherwise,
(X ∪ Y ) would have to be frequent and X ; Y would not be a valid disso-
ciation rule. Lemma 3 is particularly important, because it allows to find all
dissociation rules by exploring and extending the negative border of the collec-
tion of frequent itemsets.

Similarly to traditional association rule mining, the problem of mining dis-
sociation rules can be divided into two subproblems. The first problem consists
in discovering all dissociation itemsets, given thresholds of minsup and maxjoin.
The second problem consists in using discovered dissociation itemsets to gener-
ate dissociation rules. The naive approach to generating dissociation rules is the
following. First, all frequent itemsets are discovered using the Apriori algorithm
[4]. Next, all possible pairs of frequent itemsets are joined to generate candidate
dissociation itemsets. Candidate dissociation itemsets that are contained in LD

are pruned based on Lemma 1. Actual support counts of candidate dissociation
itemsets are found during a full database scan. This approach is highly ineffec-
tive. The number of candidate dissociation itemsets can be large, especially for
low values of minsup threshold. Pruning performed based on Lemma 1 does not
eliminate many candidate dissociation itemsets and many candidates are unnec-
essarily verified. However, the advantage of the naive algorithm is exactly one
database scan to determine all valid dissociation itemsets and dissociation rules.

In order to efficiently discover dissociation rules, we propose the following
procedure. We conclude from Lemma 2 that it is sufficient to discover only min-
imal dissociation rules. All remaining dissociation rules can be generated by
extending antecedents and consequents of minimal dissociation rules with fre-
quent supersets. Therefore, we reduce the problem of mining dissociation rules
to the problem of mining minimal dissociation rules. We use Lemma 3 to limit
the search space of candidate dissociation itemsets to supersets of sets con-
tained in the negative border of the collection of frequent itemsets. Indeed, each
set contained in the negative border Bd− (LD) is either a candidate dissoci-
ation itemset, or is the seed set for a candidate dissociation itemset. Let us
assume that the set {m, n, o} is contained in the negative border Bd− (LD). If
supportD ({m, n, o}) ≥ maxjoin , then {m, n, o} is extended with all frequent 1-
itemsets {pi}, such that {pi}∪{m, n, o} can be divided into two disjoint frequent



itemsets. Let L1

D
denote the set of all frequent 1-itemsets. Let C; denote the set

of pairs of frequent itemsets that are candidates for joining into a dissociation
itemset, and let D; denote the set of pairs of frequent itemsets that form valid
dissociation itemsets. The outline of the DI-Apriori algorithm is presented in
Figure 1.

Require: LD, the collection of all frequent itemsets
Require: L1

D, the collection of all frequent 1-itemsets
1: D; = {(X, Y ) : {X ∪ Y } ∈ Bd− (LD) ∧ (X, Y ) .support ≤ maxjoin

2: C; = {(X, Y ) : {X ∪ Y } ∈ Bd− (LD) ∧ (X, Y ) /∈ D;}
3: while C; grows do

4: for all (X, Y ) ∈ C; do

5: for all l ∈ L1
D do

6: if {X ∪ l} ∈ LD ∧ {Y ∪ l} ∈ LD ∧ {X ∪ Y ∪ l} /∈ LD then

7: C; = C; ∪ {X ∪ Y ∪ l}
8: end if

9: end for

10: end for

11: for all (X, Y ) ∈ C; do

12: compute support
D

(X ∪ Y )
13: end for

14: end while

15: D; = {(X, Y ) ∈ C; : (X, Y ) .support ≤ maxjoin}
16: for all (X, Y ) ∈ D; do

17: for all X ′ ∈ LD : X ′ ⊇ X , Y ′ ∈ LD : Y ′ ⊇ Y do

18: D; = D; ∪ {(X ′, Y ′)}
19: end for

20: end for

21: for all (X ′, Y ′) ∈ D; for which the support is unknown do

22: compute support
D

(X ′ ∪ Y ′)
23: end for

24: for all (X, Y ) ∈ D; do

25: if 1 −
supportD(X∪Y )

supportD(X)
≥ minconf then

26: output X ; Y
27: else if 1 − supportD(X∪Y )

supportD(Y )
≥ minconf then

28: output Y ; X
29: end if

30: end for

Fig. 1. DI-Apriori

The DI-Apriori algorithm proceeds as follows. First, the negative border is
examined and all itemsets with support less than maxjoin are added to the
set of valid dissociation itemsets. The remaining itemsets in the negative bor-
der form the seed set of candidate dissociation itemsets. While the collection
of candidate dissociation itemsets grows, we repeat the following steps. Each
candidate dissociation itemset is extended with frequent 1-itemsets that allow



to split the candidate dissociation itemset into a frequent antecedent and conse-
quent. All candidates are verified during a single database pass and their support
counts are determined. Candidate dissociation itemsets with support lower than
maxjoin are added to the set of valid dissociation itemsets. Discovered minimal
dissociation itemsets are used to generate the remaining dissociation itemsets by
replacing antecedents and consequents by their frequent supersets (lines 16–20).
Also, the join measure for newly created dissociation itemsets is computed (lines
21–23). Finally, all dissociation itemsets are used to produce dissociation rules
with respect to the provided minconf threshold.

Our implementation of the DI-Apriori algorithm uses a specialized physical
data structure, the DI-tree. DI-tree is a lattice of dissociation itemsets, where
each node of the lattice corresponds to a single dissociation itemset (either can-
didate or valid). DI-tree structure is optimized for fast lookup of dissociation
itemsets and their components. On the physical level we have devised two mod-
ifications to the original method of the DI-tree traversal (these modifications
are dubbed DI∗-Apriori and DI−-Apriori, we do not describe them in detail
due to the lack of space). The main advantage of DI-Apriori is the fact that
the number of generated candidate dissociation itemsets is significantly smaller
than when using the naive approach. Table 1 summarizes the number of frequent
and candidate itemsets processed during the invocation of the naive algorithm in
comparison with the number of itemsets tested by the DI-Apriori. The drawback
of DI-Apriori is the fact that several database scans are required to compute the
supports of dissociation itemsets. We present the results of the experimental
evaluation of the proposed algorithm in the next section.

Table 1. Number of itemsets processed by Basic Apriori vs. DI-Apriori

minsup maxjoin
Basic Apriori

DI-Apriori
frequent itemsets candidate itemsets

5% 1% 83 396 264

4% 1% 214 2496 1494

3% 1% 655 16848 4971

5 Experimental Results

All experiments have been conducted on synthetic datasets generated using the
generator from IBM’s Quest Project [2]. Experiments presented in this section
use a dataset consisting of 20 000 transactions with an average size of 10 items,
the minsup threshold is set to 5%, the number of patterns built into the dataset
is 300 with an average size of 4 items. The maxjoin threshold is set to 3% if
not stated otherwise. Figure 2 presents the number of dissociation rules and
the number of frequent itemsets discovered when varying the minsup threshold.



In this experiment the maxjoin threshold is always kept 4% below the minsup

threshold. We can see a strong correspondence between the number of disso-
ciation rules and frequent itemsets (note the logarithmic scale on the y-axis).
The execution time of algorithms when varying the average length of transac-
tions is depicted in Figure 3. We do not observe any significant differences in
the execution times of variations of DI-Apriori. Furthermore, all variations of
DI-Apriori outperform the naive algorithm (again, note the logarithmic scale on
the y-axis). Figure 4 shows the scaling capabilities of DI-Apriori. We are glad
to notice that the algorithm scales almost linearly with the size of the database.
Finally, Figure 5 presents the execution time relative to the difference between
minsup and maxjoin thresholds. Obviously, the execution time of the naive al-
gorithm does not depend on this parameter. The DI-Apriori algorithms perform
slightly better for larger gaps between minsup and maxjoin thresholds, but the
difference in execution times is not significant. We attribute this behavior to
the fact that for larger gaps between minsup and maxjoin thresholds, although
the number of dissociation itemsets drops, the number of intermediate itemsets
(itemsets that are neither frequent nor rare) increases, thus keeping the size of
the DI-tree structure approximately constant.
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Fig. 2. Number of dissociation rules
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6 Conclusions

This paper initiates the research on dissociation rules. It is a simple model that
successfully captures the ”negative knowledge” hidden in the data, while keeping
the number of discovered patterns low. Main advantages of the proposal are
the simplicity, practical feasibility, and usability of the model. Our future work
agenda includes further investigation of the properties of the model. One of the
most urgent research directions is an experimental comparison of dissociation
rules with other types of ”negative” association rule models presented in Sect. 2.
We are also eager to see how dissociation rules behave on real-world market
basket datasets. Finally, we plan to refine the algorithm to scale to very large
databases and we intend to develop concise and compact representations for
collections of discovered dissociation rules.
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