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Abstract. Discovery of frequent patterns is a very important data mining 
problem with numerous applications. Frequent pattern mining is often regarded 
as advanced querying where a user specifies the source dataset and pattern 
constraints using a given constraint model. A significant amount of research on 
efficient processing of frequent pattern queries has been done in recent years, 
focusing mainly on constraint handling and reusing results of previous queries. 
In this paper we tackle the problem of optimizing a sequence of frequent pattern 
queries, submitted to the system as a batch. Our solutions are based on 
previously proposed techniques of reusing results of previous queries, and 
exploit the fact that knowing a sequence of queries a priori gives the system a 
chance to schedule and/or adjust the queries so that they can use results of 
queries executed earlier. We begin with simple query scheduling and then 
consider other transformations of the original batch of queries. 

1   Introduction 

Discovery of frequent patterns is a very important data mining problem with 
numerous practical applications. The two most prominent classes of patterns are 
frequent itemsets [1] and sequential patterns [3]. Informally, frequent itemsets are 
subsets frequently occurring in a collection of sets of items, and sequential patterns 
are the most frequently occurring subsequences in sequences of sets of items.   

Frequent pattern mining is often regarded as advanced querying where a user 
specifies the source dataset, the minimum frequency threshold (called support), and 
optionally pattern constraints within a given constraint model [7]. A significant 
amount of research on efficient processing of frequent pattern queries has been done 
in recent years, focusing mainly on constraint handling and reusing results of previous 
queries in the context of frequent itemsets and sequential patterns.  

In this paper we tackle the problem of optimizing a sequence of frequent pattern 
queries, submitted to the system at the same time or within a short time window. Our 
approach is motivated by data mining environments working in batch mode, where 
users submit batches of queries to be scheduled for execution. However, the 
techniques discussed in the paper can also be applied to systems following the on-line 
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interactive mining paradigm if we allow the system to group the queries received 
within a given time window and process them as batches. Our solutions are based on 
previously proposed techniques of reusing results of previous frequent pattern queries, 
and exploit the fact that knowing a sequence of queries a priori gives the system a 
chance to schedule and/or adjust the queries so that they can use results of queries 
executed earlier. We begin with simple query scheduling and then discuss other 
possibilities of transforming the original batch of queries. 

The paper is organized as follows. In Section 2 we review related work. Section 3 
contains basic definitions regarding frequent pattern queries and relationships 
between them. In Section 4 we present our new technique of optimizing batches of 
frequent pattern queries. Section 5 contains conclusions and directions for future 
work.  

2   Related Work 

Multiple-query optimization has been extensively studied in the context of database 
systems (e.g., [13]). The idea was to identify common subexpressions and construct a 
global execution plan minimizing the overall processing time by executing the 
common subexpressions only once for the set of queries. Data mining queries could 
also benefit from this general strategy, however due to their different nature they 
require novel multiple-query processing methods. 

Within the data mining context, multiple-query optimization has not drawn much 
attention so far. As an introduction to multiple data mining query optimization, we 
can regard techniques of reusing intermediate or final results of previous queries to 
answer a new query. Methods falling into that category are: incremental mining, 
caching intermediate query results, and reusing materialized results of previous 
queries provided that syntactic differences between the queries satisfy certain condi-
tions.  

Incremental mining was first studied in the context of frequent itemsets in [5], 
where the FUP algorithm was proposed. Incremental mining consist in efficiently 
discovering frequent patterns in an incremented dataset, exploiting previously 
discovered frequent patterns. After the pioneer FUP algorithm, several other 
incremental mining algorithms were proposed for itemsets and sequential patterns. 

An interesting solution based upon the idea of reusing intermediate results of 
previous queries was proposed in [10] by introducing the concept of a knowledge 
cache that would keep recently discovered frequent itemsets along with their support 
value, in order to facilitate interactive and iterative mining. In [8], the authors 
postulated to cache only non-redundant itemsets like closed itemsets [11].  

Syntactic differences between data mining queries, representing situations when 
one query can be efficiently answered using the results of another query, have been 
first analyzed in [4] for association rule queries. The authors identified three 
relationships between the queries: equivalence, inclusion, and dominance, and 
provided appropriate query processing algorithms exploiting the relationships.  

In [9], we proposed to materialize results of frequent pattern queries rather than 
rule queries, motivated by the fact that generation of rules from patterns is a 



straightforward and relatively inexpensive task. The results of previous queries were 
stored in the form of materialized data mining views. Syntactic differences between 
frequent pattern queries considered in the paper included one leading to the possibility 
of incremental mining, and one analogous to the inclusion relationship from [4]. 
Those syntactic differences and the corresponding relationships between pattern 
queries were later more thoroughly analyzed by us in [16] within an example 
constraint model for frequent itemset discovery. 

To the best of our knowledge, the only two real multiple-query processing methods 
for frequent patterns are Apriori Common Counting (ACC) and MineMerge, proposed 
by us in [14] and [15] respectively. Unfortunately, both methods have significant 
drawbacks that limit their practical applications. ACC is bound to the Apriori 
algorithm [2], which is a serious limitation since Apriori has been outperformed by 
newer, pattern-growth algorithms (see [6] for an overview). Moreover, ACC requires 
more memory than its base algorithm – Apriori. On the other hand, MineMerge is not 
bound to a particular mining algorithm but has been proven non-deterministic, 
sometimes resulting in longer processing time than in case of sequential query 
processing. Therefore, our goal in this paper is introduction of a new method, not 
bound to any mining methodology, having memory requirements not greater that 
applied base mining algorithm, and guaranteeing performance gains, at least under 
certain assumptions.  

3   Frequent Pattern Queries 

In this section, we provide a universal definition of a frequent pattern query, and 
review the possibilities of reusing frequent pattern queries’ results. We generalize the 
definitions and methods introduced by us for frequent itemset mining [16], and 
reformulate them so that they can serve as a basis for modeling batches of frequent 
pattern queries and development of batch optimization (scheduling) techniques. 

3.1   Basic Definitions 

Definition 1 (Frequent pattern query and its predicates). A frequent pattern query 
is a tuple fpq = (R, a, Σ, Φ, β), where R is a relation, a is an attribute of R, Σ is a 
condition involving the attributes of R (called database predicate), Φ is a condition 
involving discovered patterns (called pattern predicate), β is the minimum support 
threshold. The result of the fpq is a set of patterns discovered in πaσΣR, satisfying Φ, 
and having support ≥ β. 

 
Example 1. Given the database relation R1(a1, a2), where a2 is a set-valued attribute 
and a1 is of integer type. The frequent pattern query fpq1 = (R1, "a2", "a1>5", 
"|itemset|<4", 3%) describes the problem of discovering frequent itemsets in the set-
valued attribute a2 of the relation R1. The frequent itemsets with support of at least 3% 
and length less than 4 are discovered in the collection of records having a1>5. 



3.2   Relationships Between Frequent Pattern Queries 

Definition 2 (Identical queries). Two frequent pattern queries fpq1 and fpq2 are 
identical if they both operate on the same attribute a of the same relation R and Σ1 = 
Σ2 and Φ1 = Φ2 and β1 = β2. 

We assume the existence of some canonical form for database predicates and 
pattern predicates, to which all query predicates will be transformed before any 
optimization takes place. Thus, we can assume that two queries will guarantee to 
return the same results for any database instance only if the queries are identical. 
 
Definition 3 (Data set inclusion). Given two frequent pattern queries fpq1=(R, a, Σ1, 
Φ1, β1) and fpq2=(R, a, Σ2, Φ2, β2). We say that fpq1 includes data set of fpq2 (denoted 
as fpq2 ⊆d fpq1) if for each possible instance of the relation R, σΣ2R ⊆ σΣ1R. 
 
Definition 4 (Pattern set inclusion). Given two frequent pattern queries fpq1=(R, a, 
Σ1, Φ1, β1) and fpq2=(R, a, Σ2, Φ2, β2). We say that fpq1 includes pattern set of fpq2 
(denoted as fpq2 ⊆p fpq1) if for each possible instance of the relation R, all the patterns 
returned by fpq2 will also be returned by fpq1, and for each pattern returned by both 
queries, its counted support value will be the same for both queries.  

In terms of query predicates, fpq1 includes pattern set of fpq2 if β1 ≤ β2 and Φ1 is a 
relaxation of Φ2 (denoted as Φ2 ⊆ Φ1). (Formal definition of such relaxation will 
depend on a particular pattern constraint model. The only requirement is that the 
relaxation relationship should be a partial order on pattern sets. See [16] for an 
example constraint model.) 

 
It should be noted that the above relationships between frequent pattern queries are 
defined in terms of query predicates, independently of the contents of the mined 
database. Therefore, we can assume that for a given particular constraint model and a 
given frequent pattern query language, the system will be able to discover the 
relationships between the queries within a batch, just by analyzing the syntactic 
differences between the queries. Although, for a flexible constraint model and/or 
query language, the task might not be trivial, it is considered an implementation issue 
and as such is beyond the scope of this paper. 

 
Example 2. Given the database relation R1(a1, a2) from Example 1 and two frequent 
pattern queries: fpq1 = (R1, "a2", "a1>5", "|itemset|<4", 4%) and fpq2 = (R1, "a2", 
"a1<3", "|itemset|<5", 2%), we have fpq1 ⊆p fpq2, and no data set inclusion 
relationship between the queries.  

3.3   Reusing Results of Previous Frequent Pattern Queries 

According to the analysis from [16] a frequent pattern query fpq2 can be efficiently 
answered using known (materialized) results of another query fpq1 provided that fpq1 
⊆d fpq2 (i.e., fpq2 operates on an incremented data set) and fpq2 ⊆p fpq1 (i.e., the 
pattern selection condition and the minimum support threshold of fpq2 are not more 
restrictive than those of fpq1).  



The general algorithm for answering fpq2 using the results of fpq1, where fpq1 ⊆d 
fpq2 and fpq2 ⊆p fpq1, consists of two steps: 

 
1) Result Filtering (RF) by removing the patterns returned by fpq1 that do not 
satisfy the pattern selection condition and the minimum support threshold of fpq2. 
2) Incremental Mining (IM) using pattern selection condition and the minimum 
support threshold of fpq2, treating the data set of fpq2 as incremented data set of 
fpq1 for which the patterns of fpq2’s interest are known from the previous step. 

 
It should be noted that there are three particular cases, in which one of or even both 
the above steps can be omitted: 

 
• If β1=β2 and Φ1 =Φ2 then the filtering step is not needed; 
• If Σ1=Σ2 then the incremental mining step is not needed; 
• If Σ1=Σ2 and β1=β2 and Φ1 =Φ2 then the results of fpq2 are equal to the results 

of fpq1 and therefore neither filtering nor incremental mining is needed.  
 

Regarding the implementation details and costs of the two steps of the above query 
result reusing algorithm, we observe that the first step (RF) is a simple scan of the 
query results, inexpensive both in terms of computations (simple conditions on 
patterns) and I/O (query results are typically several orders of magnitude smaller than 
the queries’ source dataset). As for the second step (IM), it is obvious that different 
incremental mining techniques can be (or have already been) developed for various 
types of patterns, constraint models, and mining methodologies. However, as a 
reference incremental pattern mining method, we can regard the partition-based 
incremental mining technique described in [16], exploiting the well-known ideas of 
partition-based mining [12]. 

The partition-based incremental frequent pattern mining technique logically 
divides the database into two partitions: (1) the records covered by the query fpq1 
(σΣ1R) – for this partition the locally frequent patterns are known, (2) the records 
covered by the query fpq2, and not covered by fpq1 (σΣ2R - σΣ1R). The method begins 
with discovering patterns locally frequent in the second partition. Next, based on the 
property of partition-based mining, locally frequent patterns from both partitions are 
used as candidate patterns for the whole fpq2’s data set (σΣ2R), and counted in one 
scan of the data set.  

In typical scenarios, incremental mining is more efficient that running a complete 
mining algorithm, and result filtering is significantly more efficient than incremental 
mining. Therefore, if for a given query there are results of a previous query that can 
be reused, the system should reuse them rather than run a complete mining algorithm. 
If more than one query’s results are applicable, the system should first look for the 
possibility of Result Filtering (on the smallest available pattern set), and then, if RF is 
not possible, the system should opt for Incremental Mining or the combination of RF 
and IM involving the smallest increment of the dataset. 



4   Optimizing Batches of Frequent Pattern Queries 

The problem of optimizing batches of frequent pattern queries can be informally 
defined as follows: Given a batch (a sequence) of frequent pattern queries, find the 
execution plan that minimizes the total execution time of the whole batch. In this 
paper, we consider optimization techniques based on the idea of reusing some query’s 
results to answer other queries. Within this framework, we develop a novel multiple-
query optimization method for batches of frequent pattern queries starting with simple 
query scheduling, and then considering other transformations of the original batch. 
We assume that the batches of queries to be optimized contain no duplicates. 
Elimination of duplicates should be one of the pre-processing steps, right after the 
transformation of queries’ predicates to the canonical form used by the system, which 
is required to determine the relationships between the queries. 

4.1   Query Scheduling 

For the purpose of modeling batches of frequent pattern queries, let us start with a 
formal definition of the relationship between queries capturing the possibility of 
reusing other queries’ results: 
 
Definition 5 (Result reusing). Given two frequent pattern queries: fpq1=(R, a, Σ1, Φ1, 
β1) and fpq2=(R, a, Σ2, Φ2, β2). We say that fpq2 can reuse results of fpq1 (denoted as 
fpq1 → fpq2) if σΣ1R ⊆ σΣ2R and Φ2 ⊆ Φ1 and β1 ≤ β2. 

 
Theorem 1. The relationship of result reusing is a partial order on a set (batch) of 
frequent pattern queries. 

Proof. The relationship of result reusing is defined upon three partial order 
relationships on query predicates. To prove that the relationship of result reusing is 
also a partial order, we have to prove that it is reflexive, anti-symmetric, and transitive 
(from the definition of partial order). The three properties of the relationship of result 
reusing can be derived from its definition and inherent properties of the partial orders 
upon which it is built in the following way: 

• σΣ1R ⊆ σΣ1R ∧ Φ1 ⊆ Φ1  ∧ β1 ≤ β1 ⇒ fpq1 → fpq1 (proof of reflexivity); 
• (fpq1 → fpq2 ∧ fpq2 → fpq1) ⇒ (σΣ1R ⊆ σΣ2R ∧ Φ2 ⊆ Φ1 ∧ β1 ≤ β2 ∧ σΣ2R 

⊆ σΣ1R ∧ Φ1 ⊆ Φ2 ∧ β2 ≤ β1) ⇒ (σΣ1R = σΣ2R ∧ Φ2 = Φ1 ∧ β1 = β2) ⇒ (Σ1 = 
Σ2 ∧ Φ2 = Φ1  ∧ β1 = β2) ⇒ (fpq1 = fpq3) (proof of anti-symmetry); 

•  (fpq1 → fpq2 ∧ fpq2 → fpq3) ⇒ (σΣ1R ⊆ σΣ2R ∧ Φ2 ⊆ Φ1 ∧ β1 ≤ β2 ∧ 

σΣ2R ⊆ σΣ3R ∧ Φ3 ⊆ Φ2 ∧ β2 ≤ β3) ⇒ (σΣ1R ⊆ σΣ3R ∧ Φ3 ⊆ Φ1 ∧ β1 ≤ β3) ⇒ 
(fpq1 → fpq3) (proof of transitivity). 

 
Based on the above result reusing relationship, we propose the initial multiple-query 
optimization method for pattern queries, consisting in scheduling the batch of queries 
according to the result reusing relationship. 

 



Algorithm 1 (Multiple-Query Optimization Using Query Scheduling) 
Input: a set of pattern queries FPQ = { fpq1, fpq2 , …, fpqn} searching for frequent 
patterns in the a attribute of the database relation R 
Output: results of queries from FPQ 

1. sort FPQ according to the result reusing relationship to form a schedule  
SFPQ = (sfpq1,sfpq2 , …, sfpqn) where for each fpqi∈ FPQ there exist 
sfpqj∈ SFPQ such that fpqi = sfpqj and for each pair sfpqi, sfpqj of queries in 
SFPQ: sfpqi → sfpqj ⇒ i < j; 

2. for i := 1 to n do 
3.    MPQ = { sfpqk : sfpqk → sfpqi}; 
4.    if MPQ = ∅ then 
5.       execute sfpqi using a complete mining algorithm; 
6.    else 
7.       select mpq ∈ MPQ for which the estimated cost of reusing its results to   

     answer sfpqi is minimal; /* see Section 3.3 */ 
8.       execute sfpqi reusing the results of mpq; /* RF + IM, RF, or IM */ 
9.    end if; 
10. end for; 

 
Rationale: Sorting the queries according to the result reusing relationship 
guarantees that for each query sfpqi all the queries whose results sfpqi can reuse 
will be executed earlier. Thus, the algorithm maximizes the chances of efficiently 
answering the queries using available results of previous queries. (Note that since 
the result reusing relationship is a partial order, a topological sort algorithm has to 
be used, and in general more than one optimal schedule is possible.) 

4.2   Query Scheduling with Addition of Intermediate Queries 

Algorithm 1 can be regarded as an initial solution that optimizes processing of the 
batch of queries by introducing a query scheduling step. To identify further 
optimization possibilities, let us model a batch of pattern queries as a directed graph, 
in which the nodes represent queries and the edges represent the possibility on reusing 
the results of one query by another query. 

 
Definition 6 (Query Reusing Graph). A directed graph QRG = (V,E) is a query 
reusing graph for the set of frequent pattern queries FPQ if and only if V = FPQ, E = 
{(fpqi, fpqj) | fpqi, fpqj ∈ FPQ ∧ fpqi → fpqj ∧ (!∃ fpqk ∈ FPQ such that fpqi → fpqk ∧ 
fpqk → fpqj)}. 

 
Let us consider a database relation R1(a, b) and an example batch of frequent pattern 
queries FPQI = {fpq1, fpq2, fpq3, fpq4, fpq5, fpq6}, where fpq1=(R1, a, “10<b<20”, 
“true”, 1%), fpq2=(R1, a, “10<b<30”, “length(pattern)<3”, 2%), fpq3=(R1, a, 
“10<b<30”, “true”, 5%), fpq4=(R1, a, “10<b<30”, “length(pattern)<4”, 4%), 
fpq5=(R1, a, “10<b<30”, “true”, 3%), fpq6=(R1, a, “0<b<20”, “true”, 1%). Figure 
1 shows the query reusing graph for the batch of frequent pattern queries FPQI. To 



support the analysis of possible optimizations, edges of the graph have been labeled 
with corresponding query reusing methods. 

 

 
Fig. 1. Sample query reusing graph 

Let us look at the queries fpq2 and fpq5 which can be answered using the results of 
fpq1 in two steps: RF (using a different support threshold for each of the two queries) 
and IM (with exactly the same increment of the data set for the two queries). For a 
single query, if both RF and IM are required, it is more beneficial to start with RF and 
then run IM with the more restrictive pattern predicate and support threshold. 
However, if we know that more than one query will require the IM task on the same 
incremented data set as one of its execution steps, then typically it should be better to 
start with the IM step using the pattern predicate and support threshold that will allow 
all the involved queries to reuse the results of that IM step using RF procedures.  

Identified common IM tasks can be represented as appropriate intermediate queries 
added to the original batch. Obviously, in this case the system will have to answer 
more queries than requested by users but as long as the total number of IM steps for 
the batch is reduced, the overall execution time of the batch should be shortened. 
(Recall that RF is typically by several orders of magnitude more efficient than IM.) 

For the example batch FPQI whose query reusing graph is presented in Fig. 1, we 
can provide the opportunity for reducing the number of executed IM tasks by adding 
an extra query fpq7=(R1, a, “10<b<30”, “true”, 2%). Figure 2 presents the query 
reusing graph for the extended batch FPQI ’= FPQI  ∪ {fpq7}. 

 

 
 

Fig. 2. Query reusing graph after the addition of the intermediate query 

In general, such an intermediate query should have the same database constraint as 
the queries whose processing it going to improve, the support threshold equal to the 



minimal support threshold among the queries, and pattern predicate being a logical 
alternative of the queries’ pattern predicates. Based on the above observation, below 
we present an improved batch processing algorithm as an extension of Algorithm 1: 

 
Algorithm 2 (Multiple-Query Optimization Using Query Scheduling with 
Intermediate Queries) 
Input: a set of pattern queries FPQ = { fpq1, fpq2 , …, fpqn} searching for frequent 
patterns in the a attribute of the database relation R 
Output: results of queries from FPQ 

1. for each fpqi ∈ FPQ do 
2.    IMQi = { fpqk : fpqi → fpqk ∧ Σk ≠ Σi ∧ for all fpqx, fpqy ∈ IMQi : Σx = Σy}; 
3.    if |IMQi| > 1 then 
4.       FPQ := FPQ ∪ {(R, a, ΣIMQ, ΦIMQ, βIMQ)}, where ΣIMQ is the database 

    predicate of queries from IMQi, ΦIMQ is the logical alternative of pattern 
    predicates of all queries from IMQi, βIMQ is the minimal support threshold  
    among the queries from IMQi; 

5.    end if; 
6. end for;  
7. execute Algorithm 1 for FPQ 

 
Rationale: An appropriate intermediate query is added for each set of queries that 
can reuse results of the same query using IM, provided that the set contains more 
than one query. As explained earlier, addition of each intermediate query to the 
batch reduces the number of IM tasks in the execution plan generated for the batch, 
which are typically much more costly than RF tasks.  

4.3   Memory Management for Batch Execution 

According to Algorithms 1 and 2, each of the pattern queries from a batch is executed 
using one of the three following methods: RF, IM, or complete mining. Taking into 
account that: (1) the most memory-consuming step of IM is execution of a base 
complete mining algorithm on the increment of the data set, and (2) RF can filter the 
patterns reading them from the disk one by one, we can say that memory requirements 
of our batch processing algorithms are not greater than in case of using a complete 
mining algorithm for all the queries in a batch, which is a desirable property.  

Nevertheless, if possible within the memory limits, it will be beneficial for our 
technique to keep in main memory the results of queries than can be reused by some 
of the next queries (according to the generated schedule). As frequent pattern query 
results are typically much smaller than main memory structures used by pattern 
mining algorithms, such result caching introduces a negligible memory overhead. 
Moreover, once the system determines that the results of any of the previously 
executed queries cannot be reused by any queries to be executed later, the query’s 
results can be removed from main memory, thus reducing the memory consumption. 



5   Conclusions 

In this paper we considered the problem of optimizing batches of frequent pattern 
queries. We presented a novel optimization technique based on techniques of reusing 
results of previous queries, previously proposed in literature. Our method exploits the 
fact that knowing a sequence of queries a priori gives the system a chance to schedule 
and/or adjust the batch of queries maximizing for each query the possibilities of 
reusing results of queries executed earlier.  

The method proposed in this paper was motivated by data mining systems working 
in batch mode. In the future, we plan to focus on multiple-query optimization 
techniques oriented towards interactive systems, allowing dynamic addition of new 
queries to the set of currently optimized pattern queries.  
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