
Optimizing a Sequence of Frequent Pattern Queries∗

Mikolaj Morzy, Marek Wojciechowski, Maciej Zakrzewicz

Poznan University of Technology
Institute of Computing Science

ul. Piotrowo 3a, 60-965 Poznan, Poland
{mmorzy,marek,mzakrz}@cs.put.poznan.pl

Abstract. Discovery of frequent patterns is a very important data mining
problem with numerous applications. Frequent pattern mining is often regarded
as advanced querying where a user specifies the source dataset and pattern
constraints using a given constraint model. A significant amount of research on
efficient processing of frequent pattern queries has been done in recent years,
focusing mainly on constraint handling and reusing results of previous queries.
In this paper we tackle the problem of optimizing a sequence of frequent pattern
queries, submitted to the system as a batch. Our solutions are based on
previously proposed techniques of reusing results of previous queries, and
exploit the fact that knowing a sequence of queries a priori gives the system a
chance to schedule and/or adjust the queries so that they can use results of
queries executed earlier. We begin with simple query scheduling and then
consider other transformations of the original batch of queries.

1 Introduction

Discovery of frequent patterns is a very important data mining problem with
numerous practical applications. The two most prominent classes of patterns are
frequent itemsets [1] and sequential patterns [3]. Informally, frequent itemsets are
subsets frequently occurring in a collection of sets of items, and sequential patterns
are the most frequently occurring subsequences in sequences of sets of items.

Frequent pattern mining is often regarded as advanced querying where a user
specifies the source dataset, the minimum frequency threshold (called support), and
optionally pattern constraints within a given constraint model [7]. A significant
amount of research on efficient processing of frequent pattern queries has been done
in recent years, focusing mainly on constraint handling and reusing results of previous
queries in the context of frequent itemsets and sequential patterns.

In this paper we tackle the problem of optimizing a sequence of frequent pattern
queries, submitted to the system at the same time or within a short time window. Our
approach is motivated by data mining environments working in batch mode, where
users submit batches of queries to be scheduled for execution. However, the
techniques discussed in the paper can also be applied to systems following the on-line

∗ This work was partially supported by the grant no. 4T11C01923 from the State Committee for

Scientific Research (KBN), Poland.

interactive mining paradigm if we allow the system to group the queries received
within a given time window and process them as batches. Our solutions are based on
previously proposed techniques of reusing results of previous frequent pattern queries,
and exploit the fact that knowing a sequence of queries a priori gives the system a
chance to schedule and/or adjust the queries so that they can use results of queries
executed earlier. We begin with simple query scheduling and then discuss other
possibilities of transforming the original batch of queries.

The paper is organized as follows. In Section 2 we review related work. Section 3
contains basic definitions regarding frequent pattern queries and relationships
between them. In Section 4 we present our new technique of optimizing batches of
frequent pattern queries. Section 5 contains conclusions and directions for future
work.

2 Related Work

Multiple-query optimization has been extensively studied in the context of database
systems (e.g., [13]). The idea was to identify common subexpressions and construct a
global execution plan minimizing the overall processing time by executing the
common subexpressions only once for the set of queries. Data mining queries could
also benefit from this general strategy, however due to their different nature they
require novel multiple-query processing methods.

Within the data mining context, multiple-query optimization has not drawn much
attention so far. As an introduction to multiple data mining query optimization, we
can regard techniques of reusing intermediate or final results of previous queries to
answer a new query. Methods falling into that category are: incremental mining,
caching intermediate query results, and reusing materialized results of previous
queries provided that syntactic differences between the queries satisfy certain condi-
tions.

Incremental mining was first studied in the context of frequent itemsets in [5],
where the FUP algorithm was proposed. Incremental mining consist in efficiently
discovering frequent patterns in an incremented dataset, exploiting previously
discovered frequent patterns. After the pioneer FUP algorithm, several other
incremental mining algorithms were proposed for itemsets and sequential patterns.

An interesting solution based upon the idea of reusing intermediate results of
previous queries was proposed in [10] by introducing the concept of a knowledge
cache that would keep recently discovered frequent itemsets along with their support
value, in order to facilitate interactive and iterative mining. In [8], the authors
postulated to cache only non-redundant itemsets like closed itemsets [11].

Syntactic differences between data mining queries, representing situations when
one query can be efficiently answered using the results of another query, have been
first analyzed in [4] for association rule queries. The authors identified three
relationships between the queries: equivalence, inclusion, and dominance, and
provided appropriate query processing algorithms exploiting the relationships.

In [9], we proposed to materialize results of frequent pattern queries rather than
rule queries, motivated by the fact that generation of rules from patterns is a

straightforward and relatively inexpensive task. The results of previous queries were
stored in the form of materialized data mining views. Syntactic differences between
frequent pattern queries considered in the paper included one leading to the possibility
of incremental mining, and one analogous to the inclusion relationship from [4].
Those syntactic differences and the corresponding relationships between pattern
queries were later more thoroughly analyzed by us in [16] within an example
constraint model for frequent itemset discovery.

To the best of our knowledge, the only two real multiple-query processing methods
for frequent patterns are Apriori Common Counting (ACC) and MineMerge, proposed
by us in [14] and [15] respectively. Unfortunately, both methods have significant
drawbacks that limit their practical applications. ACC is bound to the Apriori
algorithm [2], which is a serious limitation since Apriori has been outperformed by
newer, pattern-growth algorithms (see [6] for an overview). Moreover, ACC requires
more memory than its base algorithm – Apriori. On the other hand, MineMerge is not
bound to a particular mining algorithm but has been proven non-deterministic,
sometimes resulting in longer processing time than in case of sequential query
processing. Therefore, our goal in this paper is introduction of a new method, not
bound to any mining methodology, having memory requirements not greater that
applied base mining algorithm, and guaranteeing performance gains, at least under
certain assumptions.

3 Frequent Pattern Queries

In this section, we provide a universal definition of a frequent pattern query, and
review the possibilities of reusing frequent pattern queries’ results. We generalize the
definitions and methods introduced by us for frequent itemset mining [16], and
reformulate them so that they can serve as a basis for modeling batches of frequent
pattern queries and development of batch optimization (scheduling) techniques.

3.1 Basic Definitions

Definition 1 (Frequent pattern query and its predicates). A frequent pattern query
is a tuple fpq = (R, a, Σ, Φ, β), where R is a relation, a is an attribute of R, Σ is a
condition involving the attributes of R (called database predicate), Φ is a condition
involving discovered patterns (called pattern predicate), β is the minimum support
threshold. The result of the fpq is a set of patterns discovered in πaσΣR, satisfying Φ,
and having support ≥ β.

Example 1. Given the database relation R1(a1, a2), where a2 is a set-valued attribute
and a1 is of integer type. The frequent pattern query fpq1 = (R1, "a2", "a1>5",
"|itemset|<4", 3%) describes the problem of discovering frequent itemsets in the set-
valued attribute a2 of the relation R1. The frequent itemsets with support of at least 3%
and length less than 4 are discovered in the collection of records having a1>5.

3.2 Relationships Between Frequent Pattern Queries

Definition 2 (Identical queries). Two frequent pattern queries fpq1 and fpq2 are
identical if they both operate on the same attribute a of the same relation R and Σ1 =
Σ2 and Φ1 = Φ2 and β1 = β2.

We assume the existence of some canonical form for database predicates and
pattern predicates, to which all query predicates will be transformed before any
optimization takes place. Thus, we can assume that two queries will guarantee to
return the same results for any database instance only if the queries are identical.

Definition 3 (Data set inclusion). Given two frequent pattern queries fpq1=(R, a, Σ1,
Φ1, β1) and fpq2=(R, a, Σ2, Φ2, β2). We say that fpq1 includes data set of fpq2 (denoted
as fpq2 ⊆d fpq1) if for each possible instance of the relation R, σΣ2R ⊆ σΣ1R.

Definition 4 (Pattern set inclusion). Given two frequent pattern queries fpq1=(R, a,
Σ1, Φ1, β1) and fpq2=(R, a, Σ2, Φ2, β2). We say that fpq1 includes pattern set of fpq2
(denoted as fpq2 ⊆p fpq1) if for each possible instance of the relation R, all the patterns
returned by fpq2 will also be returned by fpq1, and for each pattern returned by both
queries, its counted support value will be the same for both queries.

In terms of query predicates, fpq1 includes pattern set of fpq2 if β1 ≤ β2 and Φ1 is a
relaxation of Φ2 (denoted as Φ2 ⊆ Φ1). (Formal definition of such relaxation will
depend on a particular pattern constraint model. The only requirement is that the
relaxation relationship should be a partial order on pattern sets. See [16] for an
example constraint model.)

It should be noted that the above relationships between frequent pattern queries are
defined in terms of query predicates, independently of the contents of the mined
database. Therefore, we can assume that for a given particular constraint model and a
given frequent pattern query language, the system will be able to discover the
relationships between the queries within a batch, just by analyzing the syntactic
differences between the queries. Although, for a flexible constraint model and/or
query language, the task might not be trivial, it is considered an implementation issue
and as such is beyond the scope of this paper.

Example 2. Given the database relation R1(a1, a2) from Example 1 and two frequent
pattern queries: fpq1 = (R1, "a2", "a1>5", "|itemset|<4", 4%) and fpq2 = (R1, "a2",
"a1<3", "|itemset|<5", 2%), we have fpq1 ⊆p fpq2, and no data set inclusion
relationship between the queries.

3.3 Reusing Results of Previous Frequent Pattern Queries

According to the analysis from [16] a frequent pattern query fpq2 can be efficiently
answered using known (materialized) results of another query fpq1 provided that fpq1
⊆d fpq2 (i.e., fpq2 operates on an incremented data set) and fpq2 ⊆p fpq1 (i.e., the
pattern selection condition and the minimum support threshold of fpq2 are not more
restrictive than those of fpq1).

The general algorithm for answering fpq2 using the results of fpq1, where fpq1 ⊆d
fpq2 and fpq2 ⊆p fpq1, consists of two steps:

1) Result Filtering (RF) by removing the patterns returned by fpq1 that do not
satisfy the pattern selection condition and the minimum support threshold of fpq2.
2) Incremental Mining (IM) using pattern selection condition and the minimum
support threshold of fpq2, treating the data set of fpq2 as incremented data set of
fpq1 for which the patterns of fpq2’s interest are known from the previous step.

It should be noted that there are three particular cases, in which one of or even both
the above steps can be omitted:

• If β1=β2 and Φ1 =Φ2 then the filtering step is not needed;
• If Σ1=Σ2 then the incremental mining step is not needed;
• If Σ1=Σ2 and β1=β2 and Φ1 =Φ2 then the results of fpq2 are equal to the results

of fpq1 and therefore neither filtering nor incremental mining is needed.

Regarding the implementation details and costs of the two steps of the above query
result reusing algorithm, we observe that the first step (RF) is a simple scan of the
query results, inexpensive both in terms of computations (simple conditions on
patterns) and I/O (query results are typically several orders of magnitude smaller than
the queries’ source dataset). As for the second step (IM), it is obvious that different
incremental mining techniques can be (or have already been) developed for various
types of patterns, constraint models, and mining methodologies. However, as a
reference incremental pattern mining method, we can regard the partition-based
incremental mining technique described in [16], exploiting the well-known ideas of
partition-based mining [12].

The partition-based incremental frequent pattern mining technique logically
divides the database into two partitions: (1) the records covered by the query fpq1
(σΣ1R) – for this partition the locally frequent patterns are known, (2) the records
covered by the query fpq2, and not covered by fpq1 (σΣ2R - σΣ1R). The method begins
with discovering patterns locally frequent in the second partition. Next, based on the
property of partition-based mining, locally frequent patterns from both partitions are
used as candidate patterns for the whole fpq2’s data set (σΣ2R), and counted in one
scan of the data set.

In typical scenarios, incremental mining is more efficient that running a complete
mining algorithm, and result filtering is significantly more efficient than incremental
mining. Therefore, if for a given query there are results of a previous query that can
be reused, the system should reuse them rather than run a complete mining algorithm.
If more than one query’s results are applicable, the system should first look for the
possibility of Result Filtering (on the smallest available pattern set), and then, if RF is
not possible, the system should opt for Incremental Mining or the combination of RF
and IM involving the smallest increment of the dataset.

4 Optimizing Batches of Frequent Pattern Queries

The problem of optimizing batches of frequent pattern queries can be informally
defined as follows: Given a batch (a sequence) of frequent pattern queries, find the
execution plan that minimizes the total execution time of the whole batch. In this
paper, we consider optimization techniques based on the idea of reusing some query’s
results to answer other queries. Within this framework, we develop a novel multiple-
query optimization method for batches of frequent pattern queries starting with simple
query scheduling, and then considering other transformations of the original batch.
We assume that the batches of queries to be optimized contain no duplicates.
Elimination of duplicates should be one of the pre-processing steps, right after the
transformation of queries’ predicates to the canonical form used by the system, which
is required to determine the relationships between the queries.

4.1 Query Scheduling

For the purpose of modeling batches of frequent pattern queries, let us start with a
formal definition of the relationship between queries capturing the possibility of
reusing other queries’ results:

Definition 5 (Result reusing). Given two frequent pattern queries: fpq1=(R, a, Σ1, Φ1,
β1) and fpq2=(R, a, Σ2, Φ2, β2). We say that fpq2 can reuse results of fpq1 (denoted as
fpq1 → fpq2) if σΣ1R ⊆ σΣ2R and Φ2 ⊆ Φ1 and β1 ≤ β2.

Theorem 1. The relationship of result reusing is a partial order on a set (batch) of
frequent pattern queries.

Proof. The relationship of result reusing is defined upon three partial order
relationships on query predicates. To prove that the relationship of result reusing is
also a partial order, we have to prove that it is reflexive, anti-symmetric, and transitive
(from the definition of partial order). The three properties of the relationship of result
reusing can be derived from its definition and inherent properties of the partial orders
upon which it is built in the following way:

• σΣ1R ⊆ σΣ1R ∧ Φ1 ⊆ Φ1 ∧ β1 ≤ β1 ⇒ fpq1 → fpq1 (proof of reflexivity);
• (fpq1 → fpq2 ∧ fpq2 → fpq1) ⇒ (σΣ1R ⊆ σΣ2R ∧ Φ2 ⊆ Φ1 ∧ β1 ≤ β2 ∧ σΣ2R

⊆ σΣ1R ∧ Φ1 ⊆ Φ2 ∧ β2 ≤ β1) ⇒ (σΣ1R = σΣ2R ∧ Φ2 = Φ1 ∧ β1 = β2) ⇒ (Σ1 =
Σ2 ∧ Φ2 = Φ1 ∧ β1 = β2) ⇒ (fpq1 = fpq3) (proof of anti-symmetry);

• (fpq1 → fpq2 ∧ fpq2 → fpq3) ⇒ (σΣ1R ⊆ σΣ2R ∧ Φ2 ⊆ Φ1 ∧ β1 ≤ β2 ∧

σΣ2R ⊆ σΣ3R ∧ Φ3 ⊆ Φ2 ∧ β2 ≤ β3) ⇒ (σΣ1R ⊆ σΣ3R ∧ Φ3 ⊆ Φ1 ∧ β1 ≤ β3) ⇒
(fpq1 → fpq3) (proof of transitivity).

Based on the above result reusing relationship, we propose the initial multiple-query
optimization method for pattern queries, consisting in scheduling the batch of queries
according to the result reusing relationship.

Algorithm 1 (Multiple-Query Optimization Using Query Scheduling)
Input: a set of pattern queries FPQ = { fpq1, fpq2 , …, fpqn} searching for frequent
patterns in the a attribute of the database relation R
Output: results of queries from FPQ

1. sort FPQ according to the result reusing relationship to form a schedule
SFPQ = (sfpq1,sfpq2 , …, sfpqn) where for each fpqi∈ FPQ there exist
sfpqj∈ SFPQ such that fpqi = sfpqj and for each pair sfpqi, sfpqj of queries in
SFPQ: sfpqi → sfpqj ⇒ i < j;

2. for i := 1 to n do
3. MPQ = { sfpqk : sfpqk → sfpqi};
4. if MPQ = ∅ then
5. execute sfpqi using a complete mining algorithm;
6. else
7. select mpq ∈ MPQ for which the estimated cost of reusing its results to

 answer sfpqi is minimal; /* see Section 3.3 */
8. execute sfpqi reusing the results of mpq; /* RF + IM, RF, or IM */
9. end if;
10. end for;

Rationale: Sorting the queries according to the result reusing relationship
guarantees that for each query sfpqi all the queries whose results sfpqi can reuse
will be executed earlier. Thus, the algorithm maximizes the chances of efficiently
answering the queries using available results of previous queries. (Note that since
the result reusing relationship is a partial order, a topological sort algorithm has to
be used, and in general more than one optimal schedule is possible.)

4.2 Query Scheduling with Addition of Intermediate Queries

Algorithm 1 can be regarded as an initial solution that optimizes processing of the
batch of queries by introducing a query scheduling step. To identify further
optimization possibilities, let us model a batch of pattern queries as a directed graph,
in which the nodes represent queries and the edges represent the possibility on reusing
the results of one query by another query.

Definition 6 (Query Reusing Graph). A directed graph QRG = (V,E) is a query
reusing graph for the set of frequent pattern queries FPQ if and only if V = FPQ, E =
{(fpqi, fpqj) | fpqi, fpqj ∈ FPQ ∧ fpqi → fpqj ∧ (!∃ fpqk ∈ FPQ such that fpqi → fpqk ∧
fpqk → fpqj)}.

Let us consider a database relation R1(a, b) and an example batch of frequent pattern
queries FPQI = {fpq1, fpq2, fpq3, fpq4, fpq5, fpq6}, where fpq1=(R1, a, “10<b<20”,
“true”, 1%), fpq2=(R1, a, “10<b<30”, “length(pattern)<3”, 2%), fpq3=(R1, a,
“10<b<30”, “true”, 5%), fpq4=(R1, a, “10<b<30”, “length(pattern)<4”, 4%),
fpq5=(R1, a, “10<b<30”, “true”, 3%), fpq6=(R1, a, “0<b<20”, “true”, 1%). Figure
1 shows the query reusing graph for the batch of frequent pattern queries FPQI. To

support the analysis of possible optimizations, edges of the graph have been labeled
with corresponding query reusing methods.

Fig. 1. Sample query reusing graph

Let us look at the queries fpq2 and fpq5 which can be answered using the results of
fpq1 in two steps: RF (using a different support threshold for each of the two queries)
and IM (with exactly the same increment of the data set for the two queries). For a
single query, if both RF and IM are required, it is more beneficial to start with RF and
then run IM with the more restrictive pattern predicate and support threshold.
However, if we know that more than one query will require the IM task on the same
incremented data set as one of its execution steps, then typically it should be better to
start with the IM step using the pattern predicate and support threshold that will allow
all the involved queries to reuse the results of that IM step using RF procedures.

Identified common IM tasks can be represented as appropriate intermediate queries
added to the original batch. Obviously, in this case the system will have to answer
more queries than requested by users but as long as the total number of IM steps for
the batch is reduced, the overall execution time of the batch should be shortened.
(Recall that RF is typically by several orders of magnitude more efficient than IM.)

For the example batch FPQI whose query reusing graph is presented in Fig. 1, we
can provide the opportunity for reducing the number of executed IM tasks by adding
an extra query fpq7=(R1, a, “10<b<30”, “true”, 2%). Figure 2 presents the query
reusing graph for the extended batch FPQI ’= FPQI ∪ {fpq7}.

Fig. 2. Query reusing graph after the addition of the intermediate query

In general, such an intermediate query should have the same database constraint as
the queries whose processing it going to improve, the support threshold equal to the

minimal support threshold among the queries, and pattern predicate being a logical
alternative of the queries’ pattern predicates. Based on the above observation, below
we present an improved batch processing algorithm as an extension of Algorithm 1:

Algorithm 2 (Multiple-Query Optimization Using Query Scheduling with
Intermediate Queries)
Input: a set of pattern queries FPQ = { fpq1, fpq2 , …, fpqn} searching for frequent
patterns in the a attribute of the database relation R
Output: results of queries from FPQ

1. for each fpqi ∈ FPQ do
2. IMQi = { fpqk : fpqi → fpqk ∧ Σk ≠ Σi ∧ for all fpqx, fpqy ∈ IMQi : Σx = Σy};
3. if |IMQi| > 1 then
4. FPQ := FPQ ∪ {(R, a, ΣIMQ, ΦIMQ, βIMQ)}, where ΣIMQ is the database

 predicate of queries from IMQi, ΦIMQ is the logical alternative of pattern
 predicates of all queries from IMQi, βIMQ is the minimal support threshold
 among the queries from IMQi;

5. end if;
6. end for;
7. execute Algorithm 1 for FPQ

Rationale: An appropriate intermediate query is added for each set of queries that
can reuse results of the same query using IM, provided that the set contains more
than one query. As explained earlier, addition of each intermediate query to the
batch reduces the number of IM tasks in the execution plan generated for the batch,
which are typically much more costly than RF tasks.

4.3 Memory Management for Batch Execution

According to Algorithms 1 and 2, each of the pattern queries from a batch is executed
using one of the three following methods: RF, IM, or complete mining. Taking into
account that: (1) the most memory-consuming step of IM is execution of a base
complete mining algorithm on the increment of the data set, and (2) RF can filter the
patterns reading them from the disk one by one, we can say that memory requirements
of our batch processing algorithms are not greater than in case of using a complete
mining algorithm for all the queries in a batch, which is a desirable property.

Nevertheless, if possible within the memory limits, it will be beneficial for our
technique to keep in main memory the results of queries than can be reused by some
of the next queries (according to the generated schedule). As frequent pattern query
results are typically much smaller than main memory structures used by pattern
mining algorithms, such result caching introduces a negligible memory overhead.
Moreover, once the system determines that the results of any of the previously
executed queries cannot be reused by any queries to be executed later, the query’s
results can be removed from main memory, thus reducing the memory consumption.

5 Conclusions

In this paper we considered the problem of optimizing batches of frequent pattern
queries. We presented a novel optimization technique based on techniques of reusing
results of previous queries, previously proposed in literature. Our method exploits the
fact that knowing a sequence of queries a priori gives the system a chance to schedule
and/or adjust the batch of queries maximizing for each query the possibilities of
reusing results of queries executed earlier.

The method proposed in this paper was motivated by data mining systems working
in batch mode. In the future, we plan to focus on multiple-query optimization
techniques oriented towards interactive systems, allowing dynamic addition of new
queries to the set of currently optimized pattern queries.

References

1. Agrawal R., Imielinski T., Swami A: Mining Association Rules Between Sets of Items in
Large Databases. Proc. of the 1993 ACM SIGMOD Conf. on Management of Data (1993)

2. Agrawal R., Srikant R.: Fast Algorithms for Mining Association Rules. Proc. of the 20th
Int’l Conf. on Very Large Data Bases (1994)

3. Agrawal R., Srikant R.: Mining Sequential Patterns. Proc. 11th ICDE Conf. (1995)
4. Baralis E., Psaila G.: Incremental Refinement of Mining Queries. Proceedings of the 1st

DaWaK Conference (1999)
5. Cheung D.W., Han J., Ng V., Wong C.Y.: Maintenance of Discovered Association Rules in

Large Databases: An Incremental Updating Technique. Proc. of the 12th ICDE (1996)
6. Han J., Pei J.: Mining Frequent Patterns by Pattern-Growth: Methodology and Implications.

SIGKDD Explorations, December 2000 (2000)
7. Imielinski T., Mannila H.: A Database Perspective on Knowledge Discovery. Communica-

tions of the ACM, Vol. 39, No. 11 (1996)
8. Jeudy B., Boulicaut J-F.: Using condensed representations for interactive association rule

mining. Proceedings of the 6th European Conference on Principles and Practice of
Knowledge Discovery in Databases (2002)

9. Morzy T., Wojciechowski M., Zakrzewicz M.: Materialized Data Mining Views. Proceed-
ings of the 4th PKDD Conference (2000)

10.Nag B., Deshpande P.M., DeWitt D.J.: Using a Knowledge Cache for Interactive Discovery
of Association Rules. Proc. of the 5th KDD Conference (1999)

11.Pasquier N., Bastide Y., Taouil R., Lakhal L.: Discovering frequent closed itemsets for
association rules. Proc. 7th Int’l Conf. On Database Theory (1999)

12.Savasere A., Omiecinski E., Navathe S.: An Efficient Algorithm for Mining Association
Rules in Large Databases, Proc. 21th Int’l Conf. Very Large Data Bases (1995)

13.Sellis T.: Multiple-query optimization. ACM Transactions on Database Systems, Vol. 13,
No. 1 (1988)

14.Wojciechowski M., Zakrzewicz M.: Evaluation of Common Counting Method for Concur-
rent Data Mining Queries. Proc. of the 7th ADBIS Conference (2003)

15.Wojciechowski M., Zakrzewicz M.: Evaluation of the Mine Merge Method for Data Mining
Query Processing. Proc. of the 8th ADBIS Conference (2004)

16.Zakrzewicz M., Morzy M., Wojciechowski M.: A Study on Answering a Data Mining
Query Using a Materialized View. Proceedings of the 19th ISCIS Conference (2004)

