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Abstract. Data mining is an interactive and iterative process. Users
issue series of similar queries until they receive satisfying results, yet
currently available data mining systems do not support iterative pro-
cessing of data mining queries and do not allow to re-use the results
of previous queries. Consequently, mining algorithms suffer from long
processing times, which are unacceptable from the point of view of inter-
active data mining. On the other hand, the results of consecutive data
mining queries are usually very similar. This observation leads to the
idea of reusing materialized results of previous data mining queries. We
present the notion of a materialized data mining view and we propose
two novel algorithms which aim at efficient discovery of association rules
in the presence of materialized results of previous data mining queries.

1 Overview of Data Mining Processing

Data mining, also referred to as knowledge discovery in databases, is a non-
trivial process of identifying valid, novel, potentially useful, and ultimately un-
derstandable patterns in data [4]. Data mining systems are evolving from systems
dedicated to and specialized in particular tasks or domains to general-purpose
systems, which are tightly coupled with the existing relational database tech-
nology. Most data mining queries are expensive in terms of processing cost and
differ significantly from typical database queries. Hence, novel methods of query
processing and optimization need to be developed in order to achieve satisfying
data mining query performance.

From a user’s point of view the execution of a data mining algorithm and
the discovery of a set of patterns is an answer to a sophisticated database query.
A user limits the mined dataset and determines the values of parameters that
control a given algorithm. In return, the system discovers relevant patterns and
presents them to the user. When the process starts, a user does not know the
exact goal of the exploration. Rather, they achieve satisfying results in several
consecutive steps. In each step the user verifies discovered patterns and, suitably
to the needs, expectations, and experience modifies either the mined dataset, or
algorithm parameters, or both. Mining practice shows that the vast majority of
data mining queries are only minor modifications of former queries. Given these
circumstances it is necessary to be able to exploit the results of previous queries



in order to be able to answer a given query efficiently. A data mining system
should be capable of answering a query in an incremental manner where the
results of previous queries are maintained and tested against the current data
set and parameter set and the base algorithm should be run only on the difference
set. This principle applies also to the situation when the mining algorithm is run
after a data warehouse refresh to discover new patterns. Usually, the volume of
new or changed data after the data warehouse refresh is significantly smaller
when compared to the size of the original data warehouse.

The basic problem in data mining is the processing time of data mining
queries. In addition, the size of the result can easily surpass the size of the
queried database. Such properties of mining process make it unsuitable for in-
teractive and iterative pattern discovery. One possible solution is to use mate-
rialized views. Data mining query results can be materialized automatically or
at a user’s request. Materialized views have been thoroughly examined and suc-
cessfully applied in traditional database systems. We propose to follow this path
and introduce materialized views to data mining systems.

In this paper we present the concept of materialized data mining views.
Section 2 contains definitions of basic terms used throughout the paper. The
notion of a data mining query is presented in Sec. 3. Data mining views and
materialized data mining views are presented in Sec. 4. We demonstrate the use
of materialized views in association rule discovery in Sec. 5. Section 6 presents
novel algorithms of complementary association rule mining using materialized
data mining views. The paper concludes with the presentation of experimental
results in Sec. 7.

2 Basic Definitions

Let L = {l1, . . . , ln} be a set of literals called items. Let D be a set of variable
length transactions and ∀T ∈ D : T ⊆ L. A transaction T supports an item x

if x ∈ T . The transaction T supports an itemset X if it supports every element
x ∈ X. The support of an itemset is the number of transactions supporting
the itemset. The problem of discovering frequent itemsets consists in finding all
itemsets with the support higher than user-defined minimum support threshold
denoted as minsup. An itemset with the support higher than minsup is called a
frequent itemset.

An association rule is an implication of the form X → Y where X ⊂ L, Y ⊂ L

and X ∩ Y = ∅. X is called the head of a rule whilst Y is called the body of
a rule. Two measures represent statistical significance and strength of a rule.
The support of a rule is the number of transactions that support X ∪ Y . The
confidence of a rule is the ratio of the number of transactions that support the
rule to the number of transactions that support the head of the rule.

The problem of discovering association rules consists in finding all rules with
support and confidence higher than the user-specified thresholds of minimum
support and confidence, called minsup and minconf respectively. The problem
of association rule mining was first introduced in [1]. The paper identified the



discovery of frequent itemsets as a key step in association rule mining. In [2] the
authors presented basic algorithm called Apriori which quickly became the seed
of several other data mining algorithms.

3 Data Mining Queries

3.1 MineSQL

Several declarative data mining query languages have been proposed so far
[7, 8, 9]. In this paper we use a multi-purpose data mining query language called
MineSQL [11] to formulate example queries. MineSQL employs the concept of a
data mining query to express data mining tasks. MineSQL syntax mimics that
of standard SQL and allows to issue commands that discover frequent itemsets,
association rules and sequential patterns. The following data mining query dis-
covers all association rules with support higher than 10%, condfidence higher
than 30%, and containing the item ‘butter ’ in the consequent of the rule. Mining
takes place in the part of the database that contains transactional data for the
4th quarter of 2003.

MINE RULE r, HEAD(r), BODY(r)

FOR items FROM (

SELECT SET(item) AS items FROM Purchases

WHERE t_date >= ’01.10.2003’ AND t_date <= ’31.12.2003’

GROUP BY t_id )

WHERE SUPPORT(r) > 0.1 AND CONFIDENCE(r) > 0.3

AND HEAD(r) CONTAINS TO_SET(’butter’);

3.2 Relationships Between Data Mining Queries

Three relationships have been identified which occur between data mining queries
Q1 and Q2.

– Two data mining queries are equal if for every database the result sets of
patterns returned by both queries are identical and for every pair of patterns
the values of statistical coefficients (e.g. support and confidence) are equal.

– A data mining query Q2 contains a query Q1 if for every database each
pattern returned by Q1 is also returned by Q2 and the values of statistical
coefficients are equal in both result sets.

– A data mining query Q2 dominates a query Q1 if for every database each
pattern returned by Q1 is also returned by Q2 and the values of statistical
coefficients determined by Q1 are greater or equal to the values of respective
coefficients determined by Q2.

Equality of data mining queries is a special case of containment relation,
and containment is a special case of more general dominance relation. Relations
described above occur between the results of data mining queries and can be



used to identify the situations in which a query Q1 can be efficiently answered
using the materialized results of another query Q2. If for a given query Q1

exist materialized results of another query Q2 equal to Q1 then no processing is
required and Q1 can be answered entirely from the results of Q2. If materialized
results are available from the query Q2 containing the original query Q1 then
a full result set scan is required to filter out those patterns from Q2 that do
not satisfy constraints imposed on Q1. If materialized results are available from
the query Q2 dominating the original query Q1 then a full database scan is
required to determine the values of statistical coefficients of patterns present in
Q2. Additionally, a scan of the result set is required to filter out patterns from
Q2 that do not satisfy the constraints imposed on Q1.

4 Data Mining Views

A view is a derived relation defined in terms of base relations. Formally, a view
defines a function from the set of base relations to the derived relation. This
function is usually computed upon each reference to the view. A view can be
materialized by storing tuples in the database. All data available in a material-
ized view are stored in the database, which shortens the time needed to access
data. In a way, a materialized view resembles cache memory – it is a copy of the
data that can be quickly accessed. The contents of a materialized view becomes
invalid after any modification to base relations. View maintenance techniques
are necessary to reflect changes that occur in base relations of a materialized
view.

The work on materialized views started in the 1980s. The basic concept was
to use materialized views as a tool to speed up queries and serve older copies
of data. Multiple algorithms for view maintenance were developed [12]. Further
research led to the creation of cost models for materialized view maintenance and
determining the impact of materialized views on query processing performance.
A summary of view maintenance techniques can be found in [5, 6].

Materialized data mining views were first proposed in [10]. A materialized
data mining view is a database object storing patterns (frequent sets, associa-
tion rules) discovered during data mining queries. Every pattern in a materialized
view has a timestamp representing its creation time and validity period. With
every materialized view the time period can be associated, after which the con-
tents of the view is automatically refreshed. Below is a MineSQL statement that
creates a materialized data mining view mv_assoc_rules.

CREATE MATERIALIZED VIEW mv_assoc_rules REFRESH 7 AS

MINE RULE r, SUPPORT(r), CONFIDENCE(r)

FOR items FROM (

SELECT SET(item) AS items FROM Purchases

WHERE item_group = ’beverages’

GROUP BY t_id )

WHERE SUPPORT(r) > 0.3 AND CONFIDENCE(r) > 0.5;



Two classes of constraints can be identified in the above example. Database

constraints are placed within the WHERE clause in the SELECT subquery. Database
constraints define the source dataset, i.e. the subset of the original database in
which data mining is performed. Mining constraints are placed within the WHERE
clause in the MINE statement. Mining constraints define the conditions that must
be met by discovered patterns.

5 Data Mining Query Optimization

In many cases contents of the materialized view can be used to answer a query
that is similar to the query defining the view. In order to use the contents of a
materialized view for data mining query optimization it is necessary to define
the conditions that must be met by an answer using materialized patterns in
order to be correct. Those conditions are based on relations occurring between
data mining queries. Given materialized view based on query Qv and a data
mining query Q we say that:

– query Q extends database constraints of Qv if
• Q adds WHERE or HAVING clauses to the database constraints of Qv

• Q adds an ANDed condition to the database constraints of Qv in the
WHERE or HAVING clauses

• Q removes an ORed condition from the database constraints of Qv in the
WHERE or HAVING clauses

– query Q reduces database constraints of Qv if
• Q removes WHERE or HAVING clauses from the database constraints of Qv

• Q removes an ANDed condition from the database constraints of Qv in
the WHERE or HAVING clauses

• Q adds an ORed condition to the database constraints of Qv in the WHERE
or HAVING clauses

– query Q extends mining constraints of Qv if
• Q adds WHERE or HAVING clauses to the mining constraints of Qv

• Q adds an ANDed condition to the mining constraints of Qv in the WHERE

or HAVING clauses
• Q removes an ORed condition from the mining constraints of Qv in the
WHERE or HAVING clauses

• Q replaces mining constraint present in Qv with a more restrictive con-
straint (e.g. higher minsup value)

– query Q reduces mining constraints of Qv if
• Q removes WHERE or HAVING clauses from the mining constraints of Qv

• Q removes an ANDed condition from the mining constraints of Qv in the
WHERE or HAVING clauses

• Q adds an ORed condition to the mining constraints of Qv in the WHERE

or HAVING clauses
• Q replaces mining constraint present in Qv with a less restrictive con-

straint (e.g. lower minsup value)



Depending on circumstances several mining methods are available. Full min-

ing (FM) refers to the situation when the contents of the view cannot be used
to answer the query and the mining algorithm must be run from scratch. This
situation occurs when the query Q extends database constraints of the query Qv

defining the materialized view. Incremental mining (IM) refers to the situation
when one of incremental discovery algorithms is executed on the extended data
view. This method is used when the query Q reduces database constraints of
Qv. Another possibility is complementary mining (CM). Patterns are discovered
based on previously discovered patterns. This method can be utilized when the
query Q reduces mining constraints of Qv (all patterns available in the view will
be present in the answer to the query Q). Finally, verifying mining (VM) con-
sists in reading materialized view and pruning those patterns that do not satisfy
extended mining constraints of Q. Knowing the relationship between the query
Q and the definition of the materialized view Qv the appropriate mining method
can be determined using Table 1 (where DC denotes database constraints and
MC denotes mining constraints).

Table 1. Possible mining methods

reduce DC extend DC keep DC

reduce MC CM, IM CM CM

extend MC VM, IM FM VM

keep MC IM FM —

6 New Algorithms for Complementary Mining

In this section we propose two new algorithms for complementary mining. The
first algorithm deals with the situation in which mining is performed on a
database view that extends database constraints of the view defining the mate-
rialized data mining view. Until now, most methods assumed a simple insertion
or deletion of tuples from the source table [3, 13]. We acknowledge that in many
situations mining is performed on the same (or similar) set of tuples, but the
tuples are different. For example, let us assume that the original mining was
performed on the data from the Purchase table, and grouping of items into
itemsets was done based on the customer identifier, where all purchases made
by a single customer in the year 2003 form a single set. After materializing the
results of this mining in a materialized data mining view defined by query Qv,
the user issues a new query Q′ that discovers all association rules describing
customer purchase patterns, but limiting the analysis to the purchases made
during working days (excluding weekends). This is an example of a query that
extends database constraints of the query Qv underlying the materialized view
because it adds a new condition to the WHERE clause. Let D denote the source
data set from which the patterns have been discovered. Let D′ denote the new



data set against which the query Q′ is executing. Let t denote any transaction
such that t ∈ D and let t′ denote any transaction such that t′ ∈ D′. Let ∆t

denote the set difference between t and t′, ∆t = t − t′. Let Lk denote the set of
frequent k-itemsets discovered by the traditional Apriori algorithm and let L′

k

denote the set of frequent k-itemsets discovered by the modified version of the
Apriori algorithm. The modified algorithm is presented below.

Algorithm 1 Apriori algorithm with extended database constraints

Require: L, the set of all frequent itemsets
1: for all transactions t ∈ D or t′ ∈ D′ do

2: ∆t = t − t′;
3: for all Lk ∈ L do

4: for all l ∈ Lk do

5: if ∃e : e ∈ l ∧ e ∈ ∆t then

6: l.support - -;
7: end if

8: end for

9: end for

10: end for

11: L′

k = {l ∈ Lk | l.support ≥ minsup}
12: Answer =

⋃
n

k=1
L′

k;

Algorithm 1 performs a single scan of the source database. For each frequent
itemset discovered by the traditional Apriori our algorithm checks whether the
elements consisting the frequent itemset are not contained in the difference of the
two source sets. If this is the case, the algorithm decreases the support count for
this itemset. The main advantage of Algorithm 1 is a significant improvement
of the execution time over the traditional approach. Instead of making k full
passes over the source data set, our algorithm determines the support counts of
all frequent k-itemsets in a single pass.

The second algorithm deals with the situation where the user’s query reduces
database constraints of the query defining the materialized data mining view.
The user issues a data mining query Q′ which aims at the discovery of associ-
ation rules within entire customer purchases made in the years 2002 and 2003,
including weekends. This is an example of a query that reduces database con-
straints of the query Qv underlying the materialized view because it broadens
a condition from the WHERE clause of the query Qv. Let NBk denote the set of
k-itemsets belonging to the negative border of the set of frequent itemsets. The
negative border of the set of frequent itemsets consists of the sets that are not
frequent, but whose all proper subsets are frequent. Let NB denote the entire
negative border of the set of frequent itemsets. Let LNBk denote the set of k-
itemsets from NBk which become frequent in the extended database D′. Let
LNB =

⋃
n

k=1
LNBk. Let CLk denote the set of candidate k-itemsets generated

by joining L1 and LNBk−1. Algotithm 2 discovers frequent itemsets based on



the materialized results of previous mining queries in the situation where the
user’s query Q′ reduces database constraints of the query Qv underlying the
materialized view.

Algorithm 2 Apriori algorithm with reduced database constraints

Require: L, the set of all frequent itemsets
1: for all transactions t ∈ D or t′ ∈ D′ do

2: ∆t = t − t′;
3: for all Lk ∈ L do

4: for all l ∈ Lk do

5: if ∃e : e ∈ l ∧ e ∈ ∆t ∧ l ⊆ t′ then

6: l.support + +;
7: end if

8: end for

9: end for

10: for all NBk ∈ NB do

11: for all n ∈ NBk do

12: if ∃e : e /∈ n ∧ e ∈ ∆t then

13: e.support + +;
14: NB1+ = {e};
15: end if

16: if ∃e : e ∈ n ∧ e ∈ ∆t ∧ n ⊆ t′ then

17: n.support + +;
18: end if

19: end for

20: LNBk = {n ∈ NBk | n.support ≥ minsup};
21: end for

22: end for

23: LNB =
⋃

n

k=1
LNBk;

24: CL = generate(LNB , L1);
25: CL+ = generate(L,LNB1);
26: CL = subset new(CL);
27: Answer = L ∪ LNB ∪ CL;

Algorithm 2 uses both itemsets from the negative border NB and itemsets
generated by the traditional Apriori algorithm and stored in L. Because of the
reduction of database constraints, the mined data set is larger than the original
data set. Consequently, the support of some itemsets from the negative border
NB can increase above the minsup threshold, which means that these itemsets
move from NB to LNB (they become frequent itemsets). After moving from
NB to LNB the newly discovered frequent itemsets can produce additional,
previously unknown candidate itemsets. New candidate itemsets are appended
to the set CL. These candidate itemsets are created by joining LNB with L1

(extending every new frequent itemset with a frequent 1-itemset) and by joining
L with LNB1 (extending every frequent itemset with a frequent new 1-itemset).



The support of candidate itemsets contained in CL is computed by the function
subset new(CL) which requires an additional database scan.

The main advantage of Algorithm 2 is a significant improvement in the exe-
cution time as compared to the traditional Apriori algorithm. Algorithm 2 uses
at most two full database scans to determine the support counts for all fre-
quent itemsets in the database. The improvement is especially visible when the
differences ∆t within transactions are not large.

7 Experimental Results
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Fig. 1. 1000 T, minsup=2%
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Fig. 2. 10 000 T, minsup=2%
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Fig. 3. 1000 T, minsup=2%
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All experiments were conducted on Pentium 333 Mhz with 256 MB of RAM
memory running Windows 2000 and Oracle 8i RDBMS. The first experiment
verifies the efficiency of the modified Apriori algorithm in the case of extended
database constraints. Figure 1 presents the results for a small data source (1000
transactions), while Fig. 2 presents the results for a larger data source (10 000
transactions). We performed the experiment subsequently removing random ele-
ments from transactions. This is how the improvement of the traditional Apriori
observed on the plot can be explained. In practical applications the difference
between original transactions and the transactions processed by a data mining



query are not random. Rather, they tend to be skewed by the absence of cer-
tain groups of elements (e.g. perform data mining on the same data set but
exclude elements belonging to the category ‘bakery ’). Nevertheless, our modified
algorithm performs better than the traditional Apriori algorithm by an order of
magnitude.

Fig(s). 3 and 4 present the execution times of our modified Apriori algorithm
in the case of reduced database constraints. Figure 3 presents the results obtained
for a small data source (1000 transactions), while Fig. 4 presents the results
obtained for a larger data source (10 000 transactions). As can be clearly seen, our
algorithm outperforms the original Apriori in most cases. The original Apriori
algorithm becomes better only when the difference between original transactions
and processed transactions becomes too large. Also, it can be noticed that the
algorithm for reduced database constraints performs worse than the algorithm
for extended database constraints. This can be easily explained by the fact,
that the algorithm for reduced database constraints has to process the negative
border of the set of frequent itemsets and requires an additional database scan
to determine the support counts for newly discovered candidate itemsets.

8 Conclusions

In this paper we have introduced the notion of a data mining query. We have
presented the idea of a data mining view and we have illustrated how this idea
can be employed to materialize the results of previous mining queries in a mate-
rialized data mining view. We have investigated the possibilities of data mining
query optimization using materialized data mining views.

When the data set processed by the data mining query is smaller than the
original data set (the query extends database constraints underlying the mate-
rialized data mining view) then the modified Apriori algorithm requires a single
scan of the database and outperforms the original Apriori algorithm by an or-
der of magnitude. When the data set processed by the data mining query is
larger than the original data set (the query reduces database constraints under-
lying the materialized data mining view) then the modified Apriori algorithms
outperforms the original Apriori algorithm in most cases, unless the difference
between the original data set and the processed data set is too large.

Our future work agenda includes cost models for data mining queries, further
extension of usability of the presented methods, and advanced techniques for
materialized data mining view maintenance and refresh.
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