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Abstract. Association rules are among the most popular and widely
used data mining techniques. Often, associations are sought between
items forming a taxonomy. Patterns discovered between items from dif-
ferent levels of a taxonomy provide aggregated view over the data and
allow to discover trends and regularities that are not apparent in the
raw transactional data. Generalized association rule mining, i.e. mining
in presence of a taxonomy of items, is an important augmentation to
the original association rule mining framework. Unfortunately, currently
available algorithms do not allow to efficiently discover generalized asso-
ciation rules.
In this paper we present the state-of-the-art in generalized association
rule mining. We describe the hierarchical bitmap index, an efficient phys-
ical structure optimized for set processing. Next, we modify the Prutax
algorithm by incorporating the hierarchical bitmap index as the crucial
internal structure, resulting in the advent of the PrutaxHBI algorithm.
An experimental evaluation and comparison of the proposed solution
with currently available algorithms clearly shows that the proposed al-
gorithm outperforms current algorithms under all circumstances.

1 Introduction

Mining of association rules is by far the most popular and widely used data
mining technique. An association rule is an expression of the form X ⇒ Y ,
where X and Y are sets of items. An intuitive meaning of an association rule
is that whenever an itemset X appears in a collection of itemsets, with a given
probability, the itemset Y is also present. Application domains of association
rule discovery range from market basket analysis, recommender systems, fraud
detection, to numerous practical systems, e.g., insurance policies, investment
portfolios, medical database analysis, and many more.

There are several efficient algorithms for mining association rules. Unfortu-
nately, many researchers point to the fact, that association rules discovered in



the raw transactional data are useless for analysts and decision makers, because
such rules are too detailed to be actionable or understandable. In several appli-
cations, items constituting mined itemsets are organized into a taxonomy. Such
taxonomy can reflect a discretization of supermarket goods into product cate-
gories, division of books into genres, etc. A challenging, yet indispensable task is
to incorporate item taxonomies into association rule mining process. However,
currently available algorithms for association rule mining are not well-suited for
this task.

In this paper we present an efficient algorithm that aims at generalized as-
sociation rule discovery by incorporating the taxonomy of mined items into the
physical indexing structure used by the algorithm. First, we present the hierar-
chical bitmap index, an indexing structure capable of efficient indexing of large
sets with items drawn from huge domains. Next, we briefly describe Prutax, the
best state-of-the-art algorithm for mining generalized association rules, and we
show how we can significantly enhance Prutax by using the hierarchical bitmap
index as the core physical structure for the algorithm. This leads to the devel-
opment of the PrutaxHBI algorithm. A set of experiments proves the validity
and efficiency of the proposed solution.

This paper is organized as follows. In Section 2 we present the related work.
Basic definitions used throughout the paper are presented in Section 3. In Sec-
tion 4 we describe the hierarchical bitmap index which is the core structure used
in our algorithm. We present the PrutaxHBI algorithm in Section 5, and we
report on the results of the experimental evaluation of our proposal in Section 6.
The paper concludes in Section 7 with a summary and a future work agenda.

2 Related Work

The problem of association rule mining was first introduced in [2]. The paper
identified the discovery of frequent itemsets as a key step in association rule
mining. In [3] the authors introduced the Apriori algorithm, that quickly be-
came the seed for numerous other association rule mining algorithms, e.g. [7]. In
particular, the modification of the Apriori algorithm that allowed to mine gen-
eralized association rules was presented in [8]. The authors presented Apriori

Basic algorithm that simply extended each database transaction with all ances-
tors of all items contained in the transaction. In addition, three optimizations of
the original Apriori were proposed: Cumulate, Stratify, Estimate, and EstMerge.
A similar direction has been followed in [9], where several new pruning strate-
gies exploiting the taxonomy of items have been presented, and a new pruning
strategy called Genex has been introduced. Another attempt to modify exist-
ing Apriori-based algorithms in the direction of efficient generalized association
rule mining was presented in [4]. The authors present the family of ML-T* algo-
rithms that mine associations between items from different levels of taxonomy,
with minimum support thresholds varying between subsequent levels.

An entirely different approach is represented by the Prutax algorithm [5].
Prutax uses a vertical database layout and avoids unnecessary candidate item-



set generation by performing a depth-first traversal of the itemset lattice. Each
candidate is evaluated immediately after generation and pruning is applied to re-
move candidate itemsets that contain both an item and its ancestor. In addition,
Prutax enforces frequency ordering on items, thus directing the search through
the itemset space from the most general itemsets to the most specific itemsets.
However, these optimizations come at the cost of transforming the database to
the vertical layout, which may be prohibitively expensive.

3 Basic Definitions

Let I = {i1, . . . , in} be a set of literals called items. Let τ be a directed acyclic
graph defining a taxonomy over the set I. An item ip is the parent of a child item
ic if there exists an edge between vertices ip and ic in the graph τ . An item ia is
the ancestor of a descendant item id if there exists a path between vertices ia and
ir in the graph τ . An item ib is the base item if it has no descendants in the graph
τ . Let D be a set of variable length transactions and ∀T ∈ D : T ⊆ I∧∀x ∈ T : x
is a base item. We say that the transaction T supports an item x if x ∈ T . We
say that the transaction T supports an itemset X if it supports every element
x ∈ X . The support of an itemset is the number of transactions supporting
the itemset. The problem of discovering frequent itemsets consists in finding all
itemsets with the support higher than user-defined minimum support threshold
denoted as minsup. An itemset with the support higher than minsup is called a
frequent itemset.

An association rule is an expression of the form X → Y where X ⊂ I, Y ⊂ I,
X ∩ Y = ∅, and all items occurring in X and Y are base items. X is called
the body of the rule whilst Y is called the head of the rule. Two measures
represent statistical significance and strength of a rule. The support of a rule
is the number of transactions that support X ∪ Y . The confidence of a rule is
the ratio of the number of transactions that support the rule to the number
of transactions that support the head of the rule. The problem of discovering
association rules consists in finding all rules with support and confidence higher
than the user-specified thresholds of minimum support and confidence, called
minsup and minconf respectively. Generalized association rules extend this base
framework by allowing non-base items to appear as elements of rule body or
head as well.

4 Hierarchical Bitmap Index

The hierarchical bitmap index (HBI) was first introduced in [6]. Hierarchical
bitmap index is based on signature index framework. It employs the idea of exact
set element representation and uses hierarchical structure to compact resulting
signature and reduce its sparseness. The index on a given attribute consists of
a set of index keys, each representing a single set. An example of an index key
is depicted in Figure 1. Every index key comprises a signature divided into n-
bit chunks (called index key leaves) and a set of inner nodes of the index key



organized into a tree structure. The highest inner node is called the root of the
index key. The signature must be long enough to represent all possible elements
appearing in the indexed set (usually hundreds of thousands of bits). Every
element ij of the attribute domain A, ij ∈ dom(A) is mapped to an integer i.
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Fig. 1. Hierarchical bitmap index

Given an indexed set S = {i1, i2, . . . , im}. The set is represented in the index
in the following way. Let l denote the length of the index key node. An item
im ∈ S is represented by a ‘1’ on the j-th position in the k-th index key leaf,
where k = dm/le and j = m− (dm/le−1)∗ l. Therefore, the set S is represented
by n ‘1’s set at appropriate positions of the index key leaves. An index key
node (either leaf node or inner node) which contains ‘1’ on at least one position
is called a non-empty node, while an index key node which contains ‘0’ on all
positions is called an empty node. The next level of the index key compresses
the signature representing the set S by storing information only about the non-
empty leaf nodes. A single bit in an inner node represents a single index key leaf.
If this bit is set to ‘1’ then the corresponding index key leaf contains at least
one position set to ‘1’. The i-th index key leaf is represented by j-th position in
the k-th inner index key node, where k = di/le and j = i− (di/le− 1) ∗ l. Every
upper level of the inner nodes represents the lower level in an analogous way.
This procedure repeats recursively to the index key root. The index key stores
only the non-empty nodes (marked on Figure 1 with solid lines). Empty nodes
(marked on Figure 1 with dashed lines) are not stored anywhere in the index
key. In other words, index key leaves form an exact signature of the indexed set
and subsequent levels represent coarser signatures of the indexed set.

Two parameters which affect shape and capacity of the index are: l — the
length of a single index key node and d — the depth of the index key tree
structure. HBI allows to index attributes with a domain up to ld distinct items.
An important factor that strongly affects the performance of the index is the
mapping function. This function determines the mapping of items of the indexed
domain on positions in the bitmap B of the HBI key. The feature that makes
the hierarchical bitmap index suitable for generalized association rule mining
is the fact that HBI makes no assumptions about mapping function chosen to
map domain items on signature bit positions. One possible mapping function is
hierarchical mapping.



Hierarchical mapping is performed by the function f (ij) = H (ij). This
mapping considers taxonomy τ defined over items. For every item ij the func-
tion H (ij) returns the hierarchy category of the item. Item hierarchies are
application-dependent and must be provided by the domain experts. Using hi-
erarchical mapping the index not only represents the physical data contained in
the indexed sets, but captures the logical properties of the indexed data as well.
Hierarchical mapping allows to efficiently answer queries pertaining to higher
logical level of the data without the need to physically store information about
the taxonomy. To put it in other words, the taxonomy over items is physically
encoded in the structure of the hierarchical bitmap index.

5 PrutaxHBI Algorithm

In this section we present modifications introduced to the original Prutax algo-
rithm. One thing to note is the fact that Prutax operates on the vertical database
layout. A crucial operation during Prutax execution is the join of transaction
identifier (tid) lists pertaining to different items. The resulting list contains tids
of transactions containing both joined items, therefore, the length of the joined
list is simply the support of the itemset consisting of joined items. As Prutax

operates in the depth-first direction, the join of long tid lists is performed many
many times. Potentially, every optimization of this expensive process could re-
sult in huge savings in algorithm’s running time. Hierarchical bitmap index is
very well suited to represent large sets of items. In this case, we’ve decided to
transform tid lists into hierarchical bitmap index keys, one key per item. Then,
instead of joining original tid lists, we significantly speed up this operation by
performing it directly on hierarchical bitmap index keys.

Building of hierarchical bitmap index keys is performed iteratively. The main
parameter governing the building phase is the size of the memory buffer allocated
to the process. Based on the available buffer space a set of items is chosen for
which hierarchical bitmap index keys will be computed during single iteration.
Each iteration performs a single database scan in search of transactions that
support any item being processed in current iteration. After the database scan
is completed, all hierarchical bitmap index keys are created and written to file.
While building hierarchical bitmap index keys for items assigned to the current
iteration, in parallel we create hierarchical bitmap index keys for their ancestors.
This requires on-the-fly extension of each transaction with ancestors of all items
contained in the transaction.

Finally, hierarchical bitmap index keys are computed only for single items.
During the execution of the algorithm, several hierarchical bitmap index keys
are created dynamically to represent sets of items. The number of hierarchical
bitmap index keys created is quite large, and some keys might be re-used for
computing the support of their supersets. Unfortunately, writing these interme-
diate results back to the index file is extremely expensive and significantly slows
down the algorithm. On the other hand, simply discarding these results wastes
computational effort undertaken to create these index keys. In our implementa-



Table 1. Computing the cardinality of intersection of multiple HBIs

int intersect(HBI[] hbis) {
BitSet common = new BitSet();
common.set(0, nodeSize, true) // set ’1’ for all positions
for (h: hbis) {

common.and(h.getLevel(0)); }
if (common.cardinality() == 0) return 0
BitSet[] omit = new BitSet[hbis.size()];
for (int i = 0; i < hbis.length; i++) {

omit[i] = new BitSet();
∀ k: omit[i].set(k, true) if common.get(k) == false; }

int currentLevel = 1;
while (true) {

set all bits in common to ’1’;
for (int i = 0; i < hbis.length; i++) {

BitSet currentCommonLevel = new BitSet();
copy to currentCommonLevel all nodes from hbis[i].getLevel(currentLevel)
if respective bit in omit[i] is set to ’0’;
common.and(currentCommonLevel);

}
if (common.cardinality() == 0) return 0;
for (int i = 0; i < hbis.length; i++) {

BitSet newOmit = new BitSet();
for (int j = 0; j < hbis[i].getLevel(currentLevel).cardinality(); j++) {

set newOmit[i].set(k,true) if k-th bit belongs to a node, whose parent was
set to ’1’ in omit[i] or respective bit in common is set to ’0’;

}
ommit[i] = newOmmit;

}
currentLevel++;
if (currentLevel == depth) return common.cardinality();

}
}

tion we have chosen not to store the intermediate results in the index file, but
we put dynamically created hierarchical bitmap index keys in an LRU-managed
memory buffer. Our experiments clearly indicate, that the utilization of even a
small buffer may have tremendous impact on the performance of the PrutaxHBI

algorithm.
In Table 1 we present the pseudo-code of the core function that computes

the cardinality of the set of transactions supporting a given candidate itemset
based on hierarchical bitmap index keys representing items contained in the can-
didate itemset. It is worth noticing, that the function does not have to actually
determine the set of supporting transactions, it is sufficient to compute its cardi-
nality. For a given candidate (k +1)-itemset C, we assume it has been generated
from two frequent (k)-itemsets Hi and Hj that share a common (k − 1)-prefix.
The intersect(HBI[]) function, which computes the support of the candidate



itemset C, takes as input an array of k + 1 hierarchical bitmap index keys, one
for each item contained in the candidate itemset C. The function iteratively
computes the binary intersection of hierarchical bitmap index keys on each level
of the hierarchical bitmap index. Hierarchical bitmap index keys are bitwise in-
tersected until the leaf level is reached, or the intersection becomes void. The
final result of the function intersect(HBI[]) is the number of bits set to ‘1’ in
the intersection of all compared hierarchical bitmap index keys. During imple-
mentation a library class java.util.BitSet has been used to represent both
leaves and internal nodes of hierarchical bitmap index keys. This base class was
sub-classed to allow quick serialization and writing of bit vectors.

6 Experiments
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Fig. 2. Running times of algorithms when varying the minsup threshold

In this section we report on the results of the experimental evaluation of the
PrutaxHBI algorithm. We compare our algorithm with Apriori Cumulate [8]
and Prutax [5]. All experiments were conducted on a computer with two Dual
Core AMD Opteron 1 Ghz processors and 8 GB RAM running under Linux
2.6.9 operating system. Data sets were created using DBGen generator from the
Quest Project [1]. Input data were stored in flat transactional format using a
simple schema of <transaction id,item id>. For the Prutax algorithm input
data have been transformed into a vertical database layout of <item id,list



of transactions and the transformation time has been added to algorithm’s
running times. Likewise, the time needed to construct a hierarchical bitmap index
for the PrutaxHBI algorithm has been included in the results. The taxonomy
of items has been synthetically generated after base items had been created by
DBGen.

Figure 2 presents running times of the three algorithms when varying the
minsup threshold. In our experiment the minsup threshold changes from 1% to
4%. Presented results are averaged over five different datasets of 10 000 transac-
tions each, with the average transaction length set to 8 and the average frequent
itemset size set to 3. The number of items in the database was set to 100 000.
As can be seen from the figure, the PrutaxHBI algorithm outperforms both
Apriori Cumulate and Prutax, with the gain greater for low minimum support
thresholds. We attribute this behavior to the fact that lower minimum support
thresholds induce more frequent itemsets, which in turn increases the profit of
hierarchical bitmap indexing of base transactions.
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Fig. 3. Running times of algorithms when varying number of transactions

Figure 3 shows the scalability of the proposed algorithm. The results are aver-
aged over five independent datasets. The minsup threshold was constantly set to
1% and the number of different items was set to 100 000. What is apparent from
the figure is the fact, that using the taxonomy to prune candidate itemsets (as
Prutax and PrutaxHBI algorithms do) significantly improves the performance.
Furhtermore, both algorithms scale better than the original Apriori algorithm.



When increasing the size of the database from 9 000 to 11 000, the running time
of Apriori grew by 84% while the running time of Prutax grew only by 46%. We
are glad to note that the PrutaxHBI algorithm outperforms the original Prutax
for all database sizes.
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Fig. 4. Running times of algorithms when varying average transaction size

In the next experiment we have investigated running times of algorithms
under varying average transaction size. The results depicted in Figure 4 are
averaged over six datasets of 1000 transactions each. The number of distinct
items was set to 10 000 and the minsup threshold was set to 2%. The average
transaction size varied from five items to ten items. The results clearly show that
all algorithms decrease performance while increasing the average transaction size.
Again, our PrutaxHBI algorithm outperforms the other two algorithms, with
Apriori Cumulate being the most sensitive to the average number of items in a
transaction. The explanation of the result is straighforward. Larger transactions
imply larger database file to be processed during each iteration of the Apriori

Cumulate algorithm. Both Prutax and PrutaxHBI utilize a compressed vertical
database layout, therefore the increase of the average transaction size has lesser
impact on them. Furthermore, for Apriori Cumulate larger transactions require
extending transactions with more ancestor items, which has a direct influence
on the performance of the algorithm.

The last experiment concerns the number of patterns in the mined database.
The results depicted in Figure 5 are averaged over a set of database files with 1000
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Fig. 5. Running times of algorithms when varying average itemset size

transactions each. The number of distinct items was set to 10 000 and the minsup

threshold was set to 2%. The average frequent itemset size varied from one to
seven. The variance in running times of Apriori Cumulate is probably random,
because it should not affect the algorithm at all (recall that we are changing the
average frequent itemset size, which does not prohibit the existance of shorter or
longer itemsets in the database). Both Prutax and PrutaxHBI slightly worsen
performance for larger frequent itemsets due to the increasing depth at which
the candidate itemset graph must be traversed. Nevertheless, our algorithm still
significantly outperforms competitors.

7 Conclusions

In this paper we have presented a new approach to generalized association rule
mining that uses the Prutax algorithm and the hierarchical bitmap index struc-
ture. Our PrutaxHBI algorithm outperforms state-of-the-art algorithms for min-
ing generalized association rules. Experiments conducted on synthetic datasets
prove the efficiency of the proposed solution.

Certainly, the work presented in this paper may be extended in several direc-
tions. There are numerous tweaks of the Prutax algorithm that might increase
the performance, most notably, caching of intermediate results might prove use-
ful. Our future work agenda includes, among others, improving the integration of
Prutax and the hierarchical bitmap index, verifying the top-down breadth-first



approach of generating candidate itemsets using the hierarchical bitmap index,
and applying hierarchical bitmap indexing technique to other data mining prob-
lems.
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