
Indexing of sequential patterns for efficient

analysis of data mining results

Witold Andrzejewski, Tadeusz Morzy, and Miko laj Morzy

Institute of Computing Science
Poznań University of Technology

Berdychowo, 60-965 Poznań, Poland
{wandrzejewski,tmorzy,mmorzy}@cs.put.poznan.pl

Abstract. Mining sequential patterns allows the analysis of large data-
bases of sales data that are not susceptible for investigation “by hand”.
Unfortunately, data mining algorithms produce a large number of re-
sults, that often exceed the size of the original database. Analysis of data
mining results is usually performed by the end user of the data mining
application manually. During this process a large number of subsequence
queries are executed. Such queries are not well supported by traditional
database management systems. In this paper we present a novel inde-
xing technique for sequences of sets such as sequential patterns or sales
history. Experimental evaluation of the index proves the feasibility and
benefit of the index in exact and similar matching of subsequences.

1 Introduction

Popularity of database systems, data warehouses, and other data repositories
has become the cause of amassing large volumes of data. It is estimated that,
since the year 2000, the size of the stored data has increased two times. Each
year, 5 million terabytes of new data are stored. Analysis and effective access to
such massive volumes of data have become a crucial problem today.

Large volumes of data cannot be effectively analysed “by hand”. Instead,
numerous techniques for knowledge discovery in databases (also known as data

mining) have been developed. Data mining is a process of discovering new, useful,
correct and understandable patterns in very large volumes of data. Discovered
patterns facilitate developing better plans and business strategies that incre-
ase company revenues, help in analysis of observed phenomena, and allow to
formulate new theories.

Data mining technology allows to analyse many different types of data, such
as: cash register data, stock prices or web server logs. Particularly interesting is
the analysis of sales data, also known as market basket analysis. Through market
basket analysis one may obtain association rules or sequential patterns. Associa-
tion rules show which products are often purchased together and are represented
as implications (X → Y). Discovery of such a rule indicates, that if the custo-
mer buys products from the set X , then there is a high probability that she will
also buy products from the set Y . Sequential patterns show which products are

purchased by a single customer over a period of time and are represented as a
sequence of sets (〈X1, X2, X3, . . . , Xn〉). Discovery of such a pattern indicates
that if the customer buys products from the set X1, then, after some time, she
might buy products from the set X2, then from X3 and so on. Unfortunately,
very often the number of discovered association rules, or sequential patterns, is
larger than the size of the analysed database. Results of data mining may be
therefore stored in a separate database for further analysis off-line [9]. Such an
analysis is performed through retrieval and investigation of interesting rules in
detail, as well as examination of customer transactions that either support, or
violate discovered association rules or sequential patterns. During this process,
a large number of subsequence or subset queries are executed. Such queries are
not well supported by traditional database management systems.

Retrieval of sets has been widely investigated in the literature and many
indexing schemes have been developed, such as: signature files [10], inverted files
[4], RD-Trees [8], S-Trees [6] or hierarchical bitmap index [3]. On the other hand,
several indexing schemes for sequences of atomic values have been proposed so
far, such as: ISO-Depth index [24], SEQ-Join index [15] or SEQ family of indexes
[18]. Alas, no proposals were given for indexing of sequences of sets.

In this paper we propose a new indexing scheme capable of efficient retrieval
of sequences of sets based on non-contiguous subsequence containment and simi-
larity. We present the physical structure of the index and we develop algorithms
for query processing based on subsequence matching and subsequence similarity.

The rest of the paper is organized as follows. In Section 2 we introduce basic
definitions used throughout the paper. Section 3 contains an overview of the
related work. We present our index in Section 4. Experimental evaluation of the
index is presented in Section 5. Finally, the paper concludes in Section 6 with a
summary and a future work agenda.

2 Basic Definitions

An element of a sequence is a pair Si = (v(Si), ts(Si)), where v(Si) denotes
the value of the element, and ts(Si) denotes the timestamp of occurrence of the
element Si. A sequence S is an ordered set of elements Si arranged according to
their timestamps ts(Si). We define the duration of a sequence S as ts(Sn)−ts(S1)
where Sn is the last element of the sequence S. A subsequence S′ of the sequence
S is a sequence created from the sequence S by removing arbitrary elements. A
sequence S′ = 〈(v(S′

1), ts(S′
1)), . . . , (v(S′

k), ts(S′
k))〉 is called a continuous subse-

quence of a sequence S = 〈(v(S1), ts(S1)), . . . , (v(Sn), ts(Sn))〉 (denoted S′ ⊂ S)
if

∃w : ∀i = 1, . . . , k v(Si+w) = v(S′
i) ∧ ts(Si+w) = ts(S′

i)

A sequence Q such that the first element of Q has the timestamp ts(Q1) = 0
is called a query sequence. Each query sequence Q has a tolerance sequence T

associated with it. The tolerance sequence T has the same cardinality as the
query sequence Q. The elements of the tolerance sequence T are numbers, and
their timestamps are consecutive integers. The elements of the tolerance sequence

T form tolerance ranges for corresponding elements of the query sequence Q of
the form (ts(Qi)− v(Ti), ts(Qi) + v(Ti)). In addition, tolerance ranges must not
disturb the order of elements, i.e., ts(Qi) + v(Ti) < ts(Qi+1) − v(Ti+1).

An allocation A(Q, S′) is a mapping of every query sequence element to an
element of S′ such that ∀i = 1, . . . , |Q| ts(S′

i)−ts(S′
1)−ts(Qi) ∈ 〈−v(Ti), +v(Ti)〉.

Given a query sequence Q, the subsequence query retrieves all sequences S

having a subsequence S′, such that the following condition is fulfilled

l = n∧∀i = 1, . . . , n v(Qi) ⊂ v(S′
i)∧ ts(S′

i)− ts(S′
1)− ts(Qi) ∈ 〈−v(Ti), +v(Ti)〉

Let ε denote the threshold value of minimum similarity between two sequen-
ces. Given an allocation A(Q, S′) of the query sequence Q to the sequence S′. The
similarity query retrieves all sequences S such that ∃S′ ⊂ S : sim(Q, S′) > ε,
where sim(x, y) is any measure of similarity between two sequences.

Given a sequence of sets S, let sig(Si) denote a binary signature of the set
v(Si) and let sig(S) = {sig(Si) : i = 1, . . . , n} denote the set of signatures of all
sets in the sequence S.

3 Related Work

3.1 Indexing sequences

Most research on indexing of sequence data focused on three distinct areas:
indexing of time series, indexing of strings of symbols, and indexing of text.
Most indexes proposed for time series support searching for similar or exact
subsequences by exploiting the fact, that the elements of the indexed sequ-
ences are numbers. This is reflected both in index structure and in similarity
metrics. Most popular similarity metrics include Minkowski distance [11, 26],
compression-based metrics [12], and dynamic time warping metrics [23]. Often,
a technique for reduction of the dimensionality of the problem is employed, such
as discrete Fourier transform [1, 7]. String indexes usually support searching for
subsequences based on identity or similarity to a given query sequence. Most
common distance measure for similarity queries is the Levenshtein distance [13],
and index structures are built on suffix tree [17, 21, 22, 25] or suffix array [16].

Indexing of sequences of symbols differs significantly from indexing of strings.
The main difference is the fact, that symbols in a sequence of symbols are as-
signed a timestamp that must be taken into consideration when processing a
query. Most proposals for indexing of sequences of symbols transform the ori-
ginal problem into the well-researched problem of indexing of sets [18]. The
transformation of a sequence into a set first maps all sequence elements into set
elements, and then adds additional elements representing the precedence rela-
tion between the elements of the original sequence. The main drawback of this
technique is the fact, that it ignores the timestamps associated with sequence ele-
ments. This leads to an additional verification phase, where sequences returned
from the index are verified against the query sequence to prune false hits.

ISO-Depth index [24] is an indexing structure that efficiently supports sear-
ching of sequences based on subsequence containment and similarity. ISO-Depth
index stores all continuous subsequences of given length in a trie structure. Ad-
ditionally, trie nodes are numbered in a way permitting to quickly determine
the nature of the relationship between the nodes. The order of the nodes in the
trie corresponds to the order of symbols represented by those nodes in sequences
pointed at in the trie leaves. Diversification of symbols in the trie (symbols differ
depending on the distance from preceding symbols in a sequence) allows to an-
swer queries containing timestamp constraints. After creating the trie structure,
ISO-Depth lists and position lists are read off the trie to form the ISO-Depth
index.

An interesting proposal of SEQ-join index was presented in [15]. This index
uses a set of relational tables and a set of B+-tree indexes. Each table cor-
responds to a single symbol appearing in the indexed sequences and contains
ordered timestamps of the symbol together with a pointer to an appropriate
sequence. Preparing a subsequence query consists in creating a directed graph
with nodes representing query sequence elements and edges representing order
constraints between sequence elements. Answering a subsequence query consists
in performing a join between symbol tables using B+-tree index joins. Detailed
description of subsequence query algorithms using SEQ-join is presented in [15].

3.2 Sequential patterns

Problem of mining sequential patterns was formulated by Agrawal and Srikant in
[2]. Many algorithms for sequential pattern mining have been developed, such as:
GSP [20], SPADE [27], SPAM [5], PrefixSpan [19] or MEMISP [14]. Sequential
patterns are sequences that are frequently contained in sequences stored in the
database. More formally, we say that a sequence S is contained in a sequence
P if there exist integers i1 < i2 < . . . < in such that v(S1) ⊆ v(Pi1), v(S2) ⊆
v(Pi2), . . . , v(Sn) ⊆ v(Pin

) where Sn is the last element of the sequence S. Note
that even if the sequence S is contained in the sequence P , it does not mean that
it is the subsequence of P , because the timestamps may not match. The support

of the sequence S is the fraction of all the sequences in a database that contain
the sequence S. We say that the sequence is frequent if it has support greater
or equal to a user-specified threshold value minsup. The sequence is maximal, in
a set of sequences, if it is not contained in other sequences in the set. Frequent
sequences are called sequential patterns. Sequential patterns may be generalized
to incorporate hierarchies of items and time constraints [20].

4 Generalized ISO-Depth Index

In this paper we extend the basic ISO-Depth index to support efficient indexing
of sequences of sets. The new structure allows to search for similar subsequences
and uses a similarity measure that is based on user-defined similarity measure
for sets. We make no further assumptions on the similarity measure used to

compare sets that are elements of sequences, but we require the measure to (i)
increase with the increase of the size of intersection of sets, and (ii) decrease
with the increase of the Hamming distance between the sets.

To the best of authors’ knowledge, there are no similarity measures for sequ-
ences of sets. Therefore we introduce two new measures that can be used when
formulating similarity queries on sequences of sets. Given a query sequence Q

and a subsequence S′ of a sequence S, such that a valid allocation A(Q, S′) of
Q to S′ exists. Liminal similarity is defined as the minimum similarity between
any pair of sets in the allocation. Formally,

simL(Q, S′) = min
i=1,...,|Q|

{setsim(Qi, S
′
i) : (Qi, S

′
i) ∈ A(Q, S′)}

where setsim(Qi, S
′
i) is the value of user-defined similarity measure for sets that

fulfills the above mentioned requirements. Average similarity is the average si-
milarity between all pairs of sets in the allocation A(Q, S′). This similarity is
given by the formula below.

simA(Q, S′) =
1

|Q|

∑

(Qi,S
′

i
)∈A(Q,S′)

setsim(Qi, S
′
i)

It is easy to notice that for any pair of sequences (Q, S′) the value of the average
similarity is always greater or equal to the value of the liminal similarity between
the sequences.

Below we present the algorithm for constructing the Generalized ISO-Depth
index. Given a database D consisting of n sequences Sk and the width of a
moving window ξ.

1. For every sequence of sets Sk ∈ D perform the following actions

(a) Sequence Sk is transformed into a sequence of binary signatures Bk, such
that |Sk| = |Bk| ∧ ∀Sk

i : Bk
i = (sig(Sk

i), ts(Sk
i)). Timestamp values sho-

uld be discretized prior to building binary signatures. Query sequences
should be transformed analogously. If the elements of indexed sequence
do not have an explicit timestamp, numbers of elements may be used
instead.

(b) A moving window is used to read all continuous subsequences of Bk of
the duration lesser or equal to ξ. For each such subsequence B′k, the
sequence identifier k is stored along with the position, where B′k starts
within Bk.

(c) Subsequences B′k are transformed into symbol sequences of the form xi,
where x ∈ sig(Sk) ∧ i ∈ N ∪ {0} using the function

f(B′k) = 〈x1, . . . , xn〉 where: xi =

{

v(B
′k
i)0 if i = 1,

v(B
′k
i)ts(B

′k

i
)−ts(B

′k

i−1
) if i > 1.

(d) Symbol sequences created in the previous step are then inserted into
a modified trie structure. We modify the original trie structure in the

following way: instead of defining an additional terminator symbol we
add subsequence identifier to a trie node in which a given subsequence
terminates. In general, there can be several subsequences terminating in a
given node. Therefore, each node of the trie contains a list of subsequence
identifiers.

2. The trie is traversed and all nodes are numbered using the depth-first search
order. Additionally, each node is marked with the highest number of the
node contained in a sub-trie starting at a given node. Those two numbers
determine the range of node numbers contained in a given sub-trie. The
distance of a given node from the beginning of the subsequence is simply the
sum of indexes of symbols on the path to a given node.

3. The trie is used to extract ISO-Depth lists of elements of the form (s, (a, b)),
where s is a signature of a set and the range (a, b) is the range of node
numbers stored in the node pointed at by the edge representing the signature
s. Each ISO-Depth list orders elements according to the value of a, and for
all nodes stored in the list the distance of the node from the beginning of
the subsequence is the same.

4. After creating ISO-Depth lists the trie is used to generate position lists. Each
position list stores information corresponding to sequences that terminate in
a given node. A position list is generated for each node where a sequence
terminates.

5. ISO-Depth lists and position lists together form the Generalized ISO-Depth
index. The trie structure is not used anymore and can be safely discarded.

Algorithms for processing of sequence-oriented queries using the Generalized
ISO-Depth index use the following lemma.

Lemma 1. Ranges of node numbers stored on a ISO-Depth list for a given di-

stance from the beginning of the sequence are disjoint. Given ISO-Depth lists for

distances dk < dl from the beginning of the sequence. Let the entries on the lists

be of the form (sk, (ak, bk)) and (sl, (al, bl)), respectively. If ak < al ≤ bl ≤ bk,

then the database contains a sequence, such that a subsequence exists that con-

tains sets with signatures sk, sl, respectively. Moreover, if the timestamp of the

first element of this subsequence is subtracted from other timestamps of the sub-

sequence elements, then the timestamps of those sets are dk, dl.

The algorithm for processing of subsequence queries is given below. Let us as-
sume that the query sequence is given as Q = 〈(v(Q1), 0), . . . , (v(Qn), ts(Qn))〉.

1. For each timestamp ts(Qi) retrieve the ISO-Depth list for the distance equal
to the timestamp.

2. Search the lists recursively. For each ISO-Depth list entry (s1, (a1, b1)) ,check
if the signature sig(Q1) is contained in s1. If true, search the ISO-Depth list
corresponding to the next element of the search sequence looking for an
entry (s2, (a2, b2)), such that a1 < a2 ≤ b1 and find signatures s2 containing
sig(Q2). For each such s2 search the list corresponding to the next element
of the query sequence retrieving only the entries contained in (a2, b2).

3. Continue this procedure until the last element of the query sequence is re-
ached. Signatures retrieved during each recursive call, along with the time-
stamps corresponding to the subsequent ISO-Depth lists, form the searched
subsequence.

4. If a signature sn is found such that sn contains sig(Qn), use position lists
to find all pointers to subsequences stored in the nodes with numbers in the
range (an, bn). Store those pointers for the sake of future verification. Return
to the recursive traversal of ISO-Depth lists.

5. Read the subsequences accessed via stored pointers to verify the actual subse-
quence containment (this is required due to ambiguity introduced by binary
signature generation procedure).

Algorithms for subsequence similarity matching are similar to the algorithm pre-
sented above. We design two algorithms, one capable of using tolerance sequences
when searching for a similar subsequence, and one used for strict similarity sub-
sequence searches. Both algorithms use the upper bound of approximation of si-
milarity between compared sequences. This approximation is based on the upper
bound of the intersection and the lower bound of Hamming distance between sets
that are elements of the compared sequences. Using this approximation allows
significant pruning of sequences. The upper bound approximation is used during
step (2) of the algorithm, instead of checking for the containment of sig(Qi) in si.
For queries allowing tolerance sequences, the algorithm needs to retrieve in step
(1) not only ISO-Depth lists for the distance equal to the timestamp ts(Qi), but
all ISO-Depth lists for distances from the range (ts(Qi) − v(Ti), ts(Qi) + v(Ti))
and merge these lists into a single list.

5 Experimental Results

The efficiency of the index is experimentally evaluated and the results of the
conducted experiments are presented below. For each experiment 40 different
sequence databases were generated. Elements of sets contained in sequences were
generated using homogeneous and Zipf distributions. Table 1 summarizes the
parameters used in experiments.

After building indexes the sets of query sequences were generated. For each
database 7 different sets of 10 query sequences were prepared. Each set consisted
of subsequence queries and similarity queries (with and without tolerance) for
similarity thresholds of 70%, 80%, and 90%.

Experiment 1 measures the efficiency of the index with respect to increasing
the size of the database. Figure 1 presents the performance of the Generalized
ISO-Depth index (using 8 bit and 16 bit signatures) for subsequence queries
(Subseq), exact similarity queries (Sim), and similarity queries with tolerance
(Tol). Figure 2 presents the results for the same queries without the index. It
can be easily seen that the index is two to four orders of magnitude faster than
the naive approach. Query processing time grows linearly with the number of
sequences stored in the database. Indexes using 8 bit signatures are faster for all

Table 1. Synthetic data parameters

parameter Exp.1 Exp.2 Exp.3

size of the domain 150 000 150 000 150 000
minimal distance between sets 1 1 1
maximal distance between sets 100 100 100
minimal set size 1 1 5–100
maximal set size 30 30 15–110
minimal number of sets in sequence 2 5–100 2
maximal number of sets in sequence 20 15–110 2
number of sequences 10 000–100 000 10 000 10 000
signature length 8b,16b 8b,16b 8b,16b
page/node size 4096B 4096B 4096B
window width (ξ) 250 250 250

classes of queries. We attribute this to the fact that shorter signatures induce
smaller trie structure, less nodes in the trie, and shorter ISO-Depth lists. Of
course, shorter signatures produce more ambiguity and more false hits have to
be verified. Nevertheless, our experiments show that the benefit of using shorter
signatures surpasses the cost of additional false hit verification.

 0

 0.05

 0.1

 0.15

 0.2

 0.25

 0 10000 20000 30000 40000 50000 60000 70000 80000 90000 100000

tim
e

[s
]

number of sequences

Subseq 8
Subseq 16

Sim 8
Sim 16

Tol 8
Tol 16

 0

 0.05

 0.1

 0.15

 0.2

 0.25

 0 10000 20000 30000 40000 50000 60000 70000 80000 90000 100000

tim
e

[s
]

number of sequences

Subseq 8
Subseq 16

Sim 8
Sim 16

Tol 8
Tol 16

Fig. 1. Number of sequences

 0

 2

 4

 6

 8

 10

 12

 14

 0 10000 20000 30000 40000 50000 60000 70000 80000 90000 100000

tim
e

[s
]

number of sequences

Subseq no index
Sim no index
Tol no index

 0

 2

 4

 6

 8

 10

 12

 14

 0 10000 20000 30000 40000 50000 60000 70000 80000 90000 100000

tim
e

[s
]

number of sequences

Subseq no index
Sim no index
Tol no index

Fig. 2. Number of sequences (no index)

Experiment 2 studies the impact of the average number of sets in indexed
sequences on the performance of the Generalized ISO-Depth index. We vary
the average number of sets from 10 to 105. Figure 3 shows the performance of
our index for three classes of queries. The results for the same queries without
the index are depicted in Figure 4. Both figures exhibit the results similar to
the results obtained in Experiment 1. This similarity can be easily explained.
The number of subsequences inserted into the trie depends both on the number
of sequences in the database, and the number of sets in indexed sequences.
Conclusions of the Experiment 1 apply equally to the results of Experiment 2.

 0

 0.05

 0.1

 0.15

 0.2

 0.25

 0.3

 10 20 30 40 50 60 70 80 90 100 110

tim
e

[s
]

average number of sets

Subseq 8
Subseq 16

Sim 8
Sim 16

Tol 8
Tol 16

 0

 0.05

 0.1

 0.15

 0.2

 0.25

 0.3

 10 20 30 40 50 60 70 80 90 100 110

tim
e

[s
]

average number of sets

Subseq 8
Subseq 16

Sim 8
Sim 16

Tol 8
Tol 16

Fig. 3. Average number of sets

 0

 2

 4

 6

 8

 10

 12

 10 20 30 40 50 60 70 80 90 100 110

tim
e

[s
]

average number of sets

Subseq no index
Sim no index
Tol no index

 0

 2

 4

 6

 8

 10

 12

 10 20 30 40 50 60 70 80 90 100 110

tim
e

[s
]

average number of sets

Subseq no index
Sim no index
Tol no index

Fig. 4. Average number of sets (no index)

Experiment 3 measures the impact of the average size of sets being elements of
the indexed sequences on the performance of the Generalized ISO-Depth index.
We vary the average size of sets from 10 to 105. Figure 5 presents the results of
three classes of queries when using the index, while Figure 6 shows the results of
the same queries when not using an index. The shapes of curves presented in both
figures can be easily explained. As the average size of a set grows, the probability
that all positions of the signature corresponding to a given set would be set to
‘1’ also increases. In other words, the increase of the average set size causes
the saturation of signatures. Therefore, the diversity of signatures diminishes,
and the set of all signatures stored in the trie becomes more compact. As the
result, the number of nodes in the trie decreases and ISO-Depth lists become
shorter. This in turn results in shorter processing times, although increases the
number of false hits that need to be pruned. As we have already mentioned, our
experiments suggest that this additional verification phase still pays off because
of the shortened access time. After reaching a certain threshold, the signatures
are fully saturated with bits set to ‘1’ and the processing time stabilizes.

 0

 0.01

 0.02

 0.03

 0.04

 0.05

 0.06

 10 20 30 40 50 60 70 80 90 100 110

tim
e

[s
]

average size of sets

Subseq 8
Subseq 16

Sim 8
Sim 16

Tol 8
Tol 16

 0

 0.01

 0.02

 0.03

 0.04

 0.05

 0.06

 10 20 30 40 50 60 70 80 90 100 110

tim
e

[s
]

average size of sets

Subseq 8
Subseq 16

Sim 8
Sim 16

Tol 8
Tol 16

Fig. 5. Average size of sets

 0

 2

 4

 6

 8

 10

 12

 14

 10 20 30 40 50 60 70 80 90 100 110

tim
e

[s
]

average size of sets

Subseq no index
Sim no index
Tol no index

 0

 2

 4

 6

 8

 10

 12

 14

 10 20 30 40 50 60 70 80 90 100 110

tim
e

[s
]

average size of sets

Subseq no index
Sim no index
Tol no index

Fig. 6. Average size of sets (no index)

6 Conclusions

To the best of authors’ knowledge, Generalized ISO-Depth index presented in
this paper is the only index structure for sequences of sets proposed so far. Our
index supports different classes of sequence-oriented queries, such as subsequence
queries and similarity queries. The experiments show that the ratio of speed-up
for those queries is two to four orders of magnitude when compared to brute-force
approach. Possible applications of Generalized ISO-Depth index include, but are
not limited to, indexing of sequential patterns, indexing of customer purchase
data, indexing of multimedia databases, or analytical processing systems.

Some optimizations are still possible. Notice that ISO-Depth list for the di-
stance 0 is read during every query execution. Therefore, it should be kept in
memory to reduce the number of disk reads.

Our index has one problem when it comes to indexing sequences that do
not have elements with explicitly specified timestamps. As we have suggested in
Section 4, number of elements in a sequence may be used instead of missing
timestamps. The problem is that the index supports only finding sequences that
have a given subsequence, but not finding sequences that contain the given non-
timestamped sequence. For example, let the database contain a sequence Sk =
〈({1, 2} , 1) , ({3, 4} , 2) , ({5, 6} , 3)〉. User wants to find all sequences that contain
the sequence Q = 〈{1} , {5}〉. According to the definition of containment from the
Section 3.2 the sequence Sk contains the sequence Q. However, when, instead of
timestamps, numbers of elements are used, the sequence Q = 〈({1} , 0) , ({5} , 1)〉
(query sequence needs to have the first timestamp equal to 0). When a query
is executed, the sequence from the database will not be found, because the
sequence Q is not a subsequence of Sk. In order to find such a sequence, the
query sequence Q should be Q = 〈({1} , 0) , ({5} , 2)〉 – the user must explicitly
specify the number of sets after the first set in the query sequence.

Still, further research is required. Our future work agenda includes optimi-
zation of the physical structure of the index and designing efficient algorithms
for index maintenance. Inserting and deleting of sequences from the index is not
supported yet. Creating of new algorithms for insertion and deletion of sequences
is our next goal.We also plan to run excessive experiments on real-world data
sets to prove the practical usability of the proposed index, as well as creating an
index that would be free of the aforementioned problem.

References

1. R. Agrawal, C. Faloutsos, and A. N. Swami. Efficient similarity search in sequence
databases. In Proceedings of the 4th International Conference on Foundations of

Data Organization and Algorithms, pages 69–84. Springer-Verlag, 1993.
2. R. Agrawal and R. Srikant. Mining sequential patterns. In P. S. Yu and A. S. P.

Chen, editors, Eleventh International Conference on Data Engineering, pages 3–14,
Taipei, Taiwan, 1995. IEEE Computer Society Press.

3. W. Andrzejewski, P. Gaertig, M. Radom, and M. aj Antoniewicz. Opracowanie i

analiza wydajnościowa indeksu dla przybliżonego wyszukiwania podzbiorów danych,
pages 44–54. 2003.

4. M. Araujo, G. Navarro, and N. Ziviani. Large text searching allowing errors. In
R. Baeza-Yates, editor, Proceedings of the 4th South American Workshop on String

Processing, pages 2–20, Valparaiso, Chile, 1997. Carleton University Press.

5. J. Ayres, J. Flannick, J. Gehrke, and T. Yiu. Sequential pattern mining using
a bitmap representation. In KDD ’02: Proceedings of the eighth ACM SIGKDD

international conference on Knowledge discovery and data mining, pages 429–435,
New York, NY, USA, 2002. ACM Press.

6. U. Deppisch. S-tree: a dynamic balanced signature index for office retrieval. In
SIGIR ’86: Proceedings of the 9th annual international ACM SIGIR conference on

Research and development in information retrieval, pages 77–87, New York, NY,
USA, 1986. ACM Press.

7. C. Faloutsos, M. Ranganathan, and Y. Manolopoulos. Fast subsequence matching
in time-series databases. In Proceedings of the 1994 ACM SIGMOD international

conference on Management of data, pages 419–429. ACM Press, 1994.

8. J. M. Hellerstein and A. Pfeffer. The rd-tree: an index structure for sets. Technical
Report 1252, University of Wisconsin at Madison, 1994.

9. T. Imielinski and H. Mannila. A database perspective on knowledge discovery.
Communications of the ACM, 39(11):58–64, 1996.

10. Y. Ishikawa, H. Kitagawa, and N. Ohbo. Evaluation of signature files as set ac-
cess facilities in oodbs. In SIGMOD ’93: Proceedings of the 1993 ACM SIGMOD

international conference on Management of data, pages 247–256, New York, NY,
USA, 1993. ACM Press.

11. E. Keogh, K. Chakrabarti, M. Pazzani, and S. Mehrotra. Locally adaptive di-
mensionality reduction for indexing large time series databases. In Proceedings of

the 2001 ACM SIGMOD international conference on Management of data, pages
151–162. ACM Press, 2001.

12. E. Keogh, S. Lonardi, and C. A. Ratanamahatana. Towards parameter-free data
mining. In KDD ’04: Proceedings of the 2004 ACM SIGKDD international confe-

rence on Knowledge discovery and data mining, pages 206–215. ACM Press, 2004.

13. V. I. Levenshtein. Binary codes capable of correcting deletions, insertions and
reversals. Doklady Akademia Nauk SSSR, 163(4):845–848, 1965.

14. M.-Y. Lin and S.-Y. Lee. Fast discovery of sequential patterns through memory
indexing and database partitioning. J. Inf. Sci. Eng., 21(1):109–128, 2005.

15. N. Mamoulis and M. L. Yiu. Non-contiguous sequence pattern queries. In Pro-

ceedings of the 9th International Conference on Extending Database Technology,
2004.

16. U. Manber and G. Myers. Suffix arrays: a new method for on-line string searches.
In Proceedings of the first annual ACM-SIAM symposium on Discrete algorithms,
pages 319–327. Society for Industrial and Applied Mathematics, 1990.

17. E. M. McCreight. A space-economical suffix tree construction algorithm. J. ACM,
23(2):262–272, 1976.

18. A. Nanopoulos, Y. Manolopoulos, M. Zakrzewicz, and T. Morzy. Indexing web
access-logs for pattern queries. In WIDM ’02: Proceedings of the 4th international

workshop on Web information and data management, pages 63–68. ACM Press,
2002.

19. J. Pei, J. Han, B. Mortazavi-Asl, H. Pinto, Q. Chen, U. Dayal, and M. Hsu. Prefi-
xspan: Mining sequential patterns by prefix-projected growth. In Proceedings of the

17th International Conference on Data Engineering, pages 215–224, Washington,
DC, USA, 2001. IEEE Computer Society.

20. R. Srikant and R. Agrawal. Mining sequential patterns: Generalizations and per-
formance improvements. In EDBT ’96: Proceedings of the 5th International Confe-

rence on Extending Database Technology, pages 3–17, London, UK, 1996. Springer-
Verlag.

21. E. Ukkonen. Constructing suffix trees on-line in linear time. In J.v.Leeuwen, editor,
Information Processing 92, Proc. IFIP 12th World Computer Congress, volume 1,
pages 484–492. Elsevier Sci. Publ., 1992.

22. E. Ukkonen. On-line construction of suffix trees. Algorithmica, 14(3):249–260,
1995.

23. M. Vlachos, M. Hadjieleftheriou, D. Gunopulos, and E. Keogh. Indexing multi-
dimensional time-series with support for multiple distance measures. In ACM

KDD, 2003.
24. H. Wang, C.-S. Perng, W. Fan, S. Park, and P. S. Yu. Indexing weighted-sequences

in large databases. In Proceedings of International Conference on Data Engine-

ering, 2003.
25. P. Weiner. Linear pattern matching algorithms. In Proceedings 14th IEEE Annual

Symposium on Switching and Automata Theory, pages 1–11, 1973.
26. B.-K. Yi and C. Faloutsos. Fast time sequence indexing for arbitrary lp norms. In

Proceedings of the 26th International Conference on Very Large Data Bases, pages
385–394. Morgan Kaufmann Publishers Inc., 2000.

27. M. J. Zaki. SPADE: An efficient algorithm for mining frequent sequences. Machine

Learning, 42(1/2):31–60, 2001.

