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Abstract. Set-valued attributes are convenient to model complex ob-
jects occurring in the real world. Currently available database systems
support the storage of set-valued attributes in relational tables but con-
tain no primitives to query them efficiently. Queries involving set-valued
attributes either perform full scans of the source data or make multiple
passes over single-value indexes to reduce the number of retrieved tuples.
Existing techniques for indexing set-valued attributes (e.g., inverted files,
signature indexes or RD-trees) are not efficient enough to support fast
access of set-valued data in very large databases.
In this paper we present the hierarchical bitmap index—a novel tech-
nique for indexing set-valued attributes. Our index permits to index sets
of arbitrary length and its performance is not affected by the size of the
indexed domain. The hierarchical bitmap index efficiently supports dif-
ferent classes of queries, including subset, superset and similarity queries.
Our experiments show that the hierarchical bitmap index outperforms
other set indexing techniques significantly.

1 Introduction

Many complex real world objects can be easily modeled using set-valued at-
tributes. Such attributes appear in several application domains, e.g., in retail
databases they can represent the set of products purchased by a customer, in
multimedia databases they can be used to represent the set of objects contained
in an image, in web server logs they correspond to web pages and links visited by
a user. Finally, in data mining applications set-valued attributes are commonly
used to store time-series and market basket data. Contemporary database sys-
tems provide the means to store set-valued attributes in the database (e.g., as
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contents of nested tables or values of user-defined types), but they don’t provide
either language primitives or indexes to process and query such attributes.

The inclusion of set-valued attributes in the SQL3 standard will definitely
result in wide use of such attributes in various applications. Web-based interfaces
to database systems open new possibilities but require prompt advances in query
processing on sets. Examples of advanced applications making heavy use of set-
valued attributes are, among others, automatic recommendations and discount
offers, collaborative filtering, or web site personalization.

Another domain that would greatly profit from the possibility to perform
advanced querying on sets is data mining. Several knowledge discovery tech-
niques rely on excessive set processing. Shifting these computations directly to
the database engine would result in considerable time savings. This can be ob-
served especially in case of the apriori family of algorithms which perform huge
number of subset searches. In the apriori framework the frequency of different
sets of products is determined during repeated scans of the entire database of
customer transactions. In each pass every transaction is tested for the contain-
ment of the so-called candidate sets, the sets of products that the algorithm
suspects to appear frequently enough in the database. These repetitive tests are
in fact subset queries. Presently, due to the lack of support from the commercial
database management systems, these tests are conducted on the application side
and not in the database.

Developing efficient mechanisms for set indexing and searching can serve as
the basis for other improvements. The ability to retrieve sets based on their
subset properties can lead to the improvement of many other algorithms that
depend on database set processing. As an example let us consider a system
for automated web site personalization and recommendation. Such systems are
commonly used in various e-commerce sites and on-line stores. The system keeps
information about all products purchased by the customers. Based on these data
the system discovers patterns of customer behaviour, e.g., in the form of char-
acteristic sets of products that are frequently purchased together. When a new
potential customer browses the on-line catalog of available products, the system
can anticipate which product groups are interesting to a customer by analyzing
search criteria issued by a customer, checking visited pages and inspecting the
history of purchases made by that customer, if the history is available. By issuing
subset queries to find patterns relevant to the given customer the system can
not only dynamically propose interesting products, preferably at a discount, but
it can also tailor the web site navigation structure to satisfy specific customers
requirements.

Let us assume that the customer started from the main page of an on-line
store and issued a search with a key word “palm”. Furthermore, let us assume
that the identification of the customer is possible, e.g., by the means of a cookie
or a registered username. The system retrieves then the history of all purchases
made by that specific customer. In the next step, the system uses a subset query
to find all patterns pertaining to palm devices. Another query is required to
find those patterns that are eligible for the given customer. This is done by



searching for palm related patterns that are subsets of the history of customer
purchases. Those patterns are used to predict future purchases of the customer.
On the other hand, the system could also store web site navigation patterns
discovered from web server logs. Such patterns tend to predict future navigation
paths based on previously visited pages. The system could use a subset query
to find those patterns that are applicable to the customer and determine that
this specific customer is interested mainly in computers. The system could hide
the uninteresting departments of the on-line store by shifting links to those
departments to less accesible parts of the page and moving forward links to palm
related products (software, accessories, etc.) to ease navigation. This scenario,
which could be used in e-commerce sites, assumes that the subset searches are
performed very efficiently and transparently to the customer. This assumption
represents the fact that the entire processing must finish within a very short
time-window in order not to let the customer become annoyed with the web site
response time and not to let him move to another on-line store.

Unfortunately, currently available database systems do not provide mech-
anisms to achieve satisfactory response times for subset queries and database
sizes in question. The ability to efficiently perform set-oriented queries in large
data volumes could greatly enhance web-based applications. This functionality
is impatiently anticipated by many potential users.

The most common class of queries which often appear in terms of set-valued
attributes are subset queries that look for sets that entirely contain a given
subset of elements. Depending on the domain of use subset queries can be used
to find customers who bought specific products, to discover users who visited a
set of related web pages, to identify emails concerning a given matter based on
a set of key words, and so on. In our study and experiments we concentrate on
subset queries as they are by far the most common and useful class of queries
regarding set-valued attributes. We recognize other classes of queries as well and
we describe them later on.

To illustrate the notion of a subset query let us consider a small exam-
ple. Given a sample database of retail related data consisting of a relation
Purchases(trans id,cust id,products). An example of a subset query is:

SELECT COUNT(DISTINCT cust id)

FROM Purchases

WHERE products ⊇ {‘milk’,‘butter’};

This query retrieves the number of customers who purchased products milk
and butter together during a single visit to the supermarket. Such queries re-
quire costly set inclusion tests performed on very large data volumes. There
could be as many as tens of thousands of customers per day, each purchasing
several products. The number of different products in an average supermarket
could easily amount to hundreds of thousands. Standard SQL language doesn’t
contain primitives to formulate such queries. Usually, those queries are written
in an awkward and illegible way. For example, the aforementioned subset search



query can be expressed in standard SQL in one of the following manners.

SELECT COUNT(DISTINCT A.cust id)

FROM Purchases A, Purchases B

WHERE A.trans id = B.trans id

AND A.item = ‘milk’ AND B.item = ‘butter’;

or
SELECT COUNT(*) FROM (

SELECT trans id FROM Purchases

WHERE item IN {‘milk’,‘butter’}
GROUP BY trans id

HAVING COUNT(*) = 2 );

Both queries are very expensive in terms of the CPU and memory utilization
and tend to be time-consuming. It is easy to notice that the number of self joins
in the first query is proportional to the size of the searched set. The second query
requires grouping of very large table, which may be very costly, too. Additionaly,
both queries are cryptic, hard to read, and lack flexibility. Adding another ele-
ment to the searched set requires in the first case modifying the FROM clause and
adding two new predicates; in the second case it requires modifying the WHERE

and HAVING clauses.
Typical solution to speed up queries in database systems is to use indexes.

Unfortunately, despite the fact that the SQL3 supports set-values attributes
and most commercial database management systems offer such attributes, no
commercial DBMS provides to date indexes on set-valued attributes. The de-
velopment of an index for set-valued attributes would be very useful and would
improve significantly the performance of all applications which depend on set
processing in the database.

Until now, several indexing techniques for set-valued attributes have been
proposed. These include, among others, R-trees [10], signature files [4] and S-
trees [6], RD-trees [11], hash group bitmap indexes [14], or inverted files [2].
Unfortunately, all those indexes exibit deficiencies that limit their use in real-
world applications. Their main weaknesses include the non-unique representation
of the indexed sets, the necessity to verify all hits returned from the index in order
to prune false hits, and significant losses in performance when the cardinality
of the indexed sets grows beyond a certain threshold. Another drawback of the
aforementioned methods is the fact that most of them, excluding S-trees, can’t
be used to speed up queries other than subset queries.

In this paper we present the hierarchical bitmap index. It is a novel structure
for indexing sets with arbitrary sized domains. The main advantages of the
hierarchical bitmap index are:

– scalability with regard to the size of the indexed domain and to the average
size of the indexed set,

– efficient support of different classes of queries, including subset, superset and
similarity queries,



– compactness which guarantees that the index consumes the least amount of
memory required,

– unique representation of the indexed sets which attains the lack of any false
hits and avoids the cost of false hit resolution.

We prove experimentally that the hierarchical bitmap index outperforms other
indexes significantly under all circumstances. In the next sections we describe
the structure of the index in detail.

Our paper is organized as follows. We begin in Section 2 with the presenta-
tion of previously proposed solutions. Section 3 contains the description of the
hierarchical bitmap index. Algorithm for performing subset queries using our
index is given in Section 4. We present the results of the conducted experiments
in Section 5. Section 6 contains the description of other classes of set-oriented
queries, namely the superset and similarity queries, that can be efficiently pro-
cessed using the hierarchical bitmap index. We also provide algorithms to process
these classes of queries using the hierarchical bitmap index. Finally, we conclude
in Section 7 with a brief summary and the future work agenda.

2 Related Work

Traditional database systems provide several indexing techniques that support
single tuple access based on atomic attribute value. Most popular indexes include
B+ trees [5], bitmap indexes [3] and R-trees [10]. However, these traditional
indexes do not provide mechanisms to efficiently query attributes containing
sets. Indexing of set-valued attributes was seldom researched and resulted in few
proposals.

First access methods were developed in the area of text retrieval and pro-
cessing. One of the techniques proposed initially for indexing text documents
is inverted file [2]. Inverted file consists of vocabulary and occurrences. Vocab-
ulary is the list of all elements that appear in the indexed sets. Identifiers of
all sets containing given element are put on a list associated with that element.
All lists combined together form the occurrences. When a user searches for sets
containing a given subset, the occurrence lists of all elements belonging to the
searched subset are retrieved and joined together to determine the identifiers of
sets appearing on all occurrence lists. This technique can be successfully used
when indexing words occurring in documents. The number of lists is relatively
low (usually only the key words are indexed) and the occurrence lists are short.
Unfortunately, in retail databases the size of the vocabulary and the number of
occurrence lists are huge. For this reason inverted files are not well suited to
index market basket data. Another disadvantage of the inverted file is the fact
that this kind of index can’t be used to answer superset or similarity queries.

Signature files [4] and signature trees (S-trees) [6] utilize the superimposition
of set elements. Each element occurring in the indexed set is represented by a
bit vector of the length n with k bits set to ‘1’. This bit vector is called the
signature of the element. Signatures are superimposed by a bitwise OR operation
to create a set signature. All set signatures can be stored in a sequential signature



file [7], a signature tree, or using an extendible signature hashing. Interesting
performance evaluation of signature indexes can be found in [12]. Much effort
is put into further improving signature indexes [17]. Signature indexes are well
suited to handle large collections of sets but their performance degrades quickly
with the increase of the domain size of the indexed attribute. Every element
occurring in a set must be represented by a unique signature. Large number
of different elements leads to either very long signatures or to hashing. Long
signatures are awkward to process and consume large amounts of memory. On
the other hand, hashing introduces ambiguity of mapping between elements and
signatures, increasing the number of false hits. In case of very large databases
this could lead to unacceptable performance loss.

Indexing of set-valued attributes was also researched in the domain of object-
oriented and spatial database systems [16]. Evaluation of signature files in object-
oriented database environment can be found in [13]. Processing of spatial data
resulted in the development of numerous index types, among them R-trees [10]
and BANG indexes [8]. These indexes can also be used to index non-spatial
objects, provided there is a way to map an indexed object to a multidimensional
space. In case of market basket data each product appearing in indexed sets must
be represented as a distinct dimension with dimension members 0 (product not
present in a given basket) and 1 (product present in a given basket). However,
the number of possible dimensions involved in indexing set-valued attributes,
which equals tens of thousands of dimensions, makes this approach unfeasible.
A modification of the R-tree index, called the Russian Doll tree (RD-tree), was
presented in [11]. In the RD-tree all indexed sets are stored in tree leaves, while
inner nodes contain descriptions of sets from the lower levels of the tree. Every
inner node fully describes all its child nodes placed on lower levels. RD-trees can
be used only to answer subset queries and their performance drops significantly
with the increase of the database size.

Subset search is crucial in many data mining activities. From the knowledge
discovery domain originates another proposal, namely the hash group bitmap
index [14]. This index is very similar to signature index. Every element appearing
in the indexed set is hashed to a position in the bit vector. For large domains
there can be several elements hashing to the same position. Set representations
are created by the superimposition of bits representing elements contained in the
given set. Subset search is performed in two phases. First, in the filtering step,
the index is scanned to find matching entries (these are all sets that potentially
contain the given subset). Then, in the verification step, all matching entries are
tested for the actual containment of the searched set to eliminate any false hits.
For very large domains the ambiguity introduced by hashing results in rapid
increase of the number of false hits, which directly affects the performance of
the index.



3 Hierarchical Bitmap Index

Hierarchical bitmap index is based on signature index framework. It employs
the idea of exact set element representation and uses hierarchical structure to
compact resulting signature and reduce its sparseness. The index on a given at-
tribute consists of a set of index keys, each representing a single set. Every index
key comprises a very long signature divided into n-bit chunks (called index key
leaves) and a set of inner nodes of the index key organized into a tree struc-
ture. The highest inner node is called the root of the index key. The signature
must be long enough to represent all possible elements appearing in the indexed
set (usually hundreds of thousands of bits). Every element oi of the attribute
domain A, oi ∈ dom(A) is mapped to an integer i.

Given an indexed set S = {o1, o2, . . . , on}. The set is represented in the index
in the following way. Let l denote the length of the index key node. An element
oi ∈ S is represented by a ‘1’ on the j-th position in the k-th index key leaf,
where k = �i/l� and j = i − (�i/l� − 1) ∗ l. Therefore, the set S is represented
by n ‘1’s set at appropriate positions of the index key leaves. An index key node
(either leaf node or inner node) which contains ‘1’ on at least one position is
called the non-empty node, while an index key node which contains ‘0’ on all
positions is called the empty node. The next level of the index key compresses
the signature representing the set S by storing information only about the non-
empty leaf nodes. A single bit in an inner node represents a single index key leaf.
If this bit is set to ‘1’ then the corresponding index key leaf contains at least
one position set to ‘1’. The i-th index key leaf is represented by j-th position in
the k-th inner index key node, where k = �i/l� and j = i− (�i/l�− 1) ∗ l. Every
upper level of the inner nodes represents the lower level in an analogous way.
This procedure repeats recursively to the index key root. The index key stores
only the non-empty nodes. Empty nodes are not stored anywhere in the index
key.

The two parameters which affect the shape and the capacity of the index
are: l — the length of a single index key node and d — the depth of the index
key tree structure. For example, if d = 4 and l = 32 then the root of the index
key contains 32 positions, the second level contains 322 = 1024 positions and
the third level contains 323 = 32768 positions that correspond to 32768 index
key leaves. This allows storage in a single index key with d = 4 and l = 32
information about a set that could contain at most 324 = 1048576 different
elements. Furthermore, in case this size is not sufficient, extending the index key
to five levels would allow indexing sets with the domain of 33554432 different
elements.

The presented index has several advantages over previously presented ap-
proaches. The most important feature of the hierarchical bitmap is the fact that
it supports indexing sets with no loss of accuracy and no ambiguity. Every in-
dexed set is represented in the index uniquely. The index permits representing
sets of arbitrary length drawn from a domain of arbitrary size as long as the size
of the domain doesn’t exceed the maximum cardinality. Note, from the numbers
given above, that the index with only four levels allows indexing sets with the



domain of 1048576 different elements. This size is sufficient for most domains in
practical applications.

Example 1. Assume index key node length l = 4 and index depth d = 3. Assume
also that the elements of the attribute domain have been already mapped to
integer values. Given the set S = {2, 3, 9, 12, 13, 14, 38, 40}. The index key of
the set S is depicted in Fig. 1. At the lowest level (level 3) of the index 8 bits
corresponding to the given elements of the set S are set to ‘1’. As a result, index
key leaf nodes 1,3,4 and 10 become non-empty (they are marked with a solid
line). At the upper level (level 2) 4 bits representing non-empty leaf nodes are
set to ‘1’. In the root of the index key only first and third bits are set to ‘1‘,
which means that only first and third inner nodes at the level 2 are non-empty.
Notice that the index consists of only 4 index key leaf nodes, 2 inner index key
nodes at the level 2 and a single index key root. Empty nodes (marked with a
dotted line) are not stored anywhere in the index and are shown in the figure to
better explain the idea of the hierarchical bitmap index. Note that the index key
node size has been set to 4 bits for demonstration purposes only. In real world
applications it would be most likely set to one machine word, i.e., to 32 bits.
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Fig. 1. A single key of the hierarchical bitmap index

Let us now discuss briefly the physical implementation of the hierarchical
bitmap index. An example of the entire index is depicted in Fig. 2. Every index
key is stored as a linked list of all index key nodes (both internal and leaf nodes)
except the index key root. Those linked lists are stored physically in a set of files,
where each file stores all index keys containing an equal number of nodes (e.g.,
file 1 contains index keys composed of five nodes and file 2 contains index keys
composed of 2 nodes). As the result, every file contains only the records of a fixed
size. This allows efficient maintenance procedures, e.g., inserting a new index key
requires counting the number of nodes in the key and appending a fixed sized
record at the end of the appropriate file. To store the index key roots we propose
a hybrid S-tree in which all tree leaves are connected with pointers to form a list.
In this fashion the index can be efficiently processed by both S-tree traversal in
case of subset queries and full scanned in case of superset and similarity queries.



The leaves of the S-tree contain all index key roots and, for every index key root,
the pointers to the locations where the rest of a given index key is stored. Internal
nodes of the S-tree contain the superimposition of all index key roots contained
in the lower level nodes that they point to. An interesting discussion on signature
trees construction and improvement can be found in [17]. We believe that it is
sufficient to store in the S-tree only the roots of the index keys. This allows
early pruning of sets that don’t contain the searched subset while it keeps the
S-tree compact and easy to manage. This architecture makes update operations
become more costly because updating a given key might require relocating the
key to another file (if the number of nodes changed after the update). On the
other hand, we argue that the update operations are not frequent enough to
result in a noticeable preformance loss.

Fig. 2. S-tree with hierarchical bitmap index key roots

4 Search Algorithm

Hierarchical bitmap index can be used to speed up different classes of queries
involving set-valued attributes. Given a relation R = {t1, t2, . . . , tn} of tuples
containing a set-valued attribute A. Let {A1, A2, . . . , An} denote the values of
the attribute A in subsequent tuples of R, ti.A = Ai. A query predicate is defined
by the set-valued attribute A and a set comparison operator Θ ∈ {⊆,⊇,≈}. Let
q denote a finite set of elements of the attribute A searched by a user. We will
further refer to q as the user’s query.



Assume the hierarchical bitmap index on the attribute A of the relation R is
defined. Let K(Ai) denote the index key of the set Ai. Let Nm

n (Ai) denote the
n-th node (either internal or leaf) at the m-th level of the index key of the set
Ai. Let N1

1 (Ai) denote the root of the index key of Ai. Let d denote the depth
of the index key and & denote the bitwise AND operation.

The goal of the search algorithm is to find all tuples ti ∈ R, such that ti.A ⊇ q,
given the search set q. The search algorithm is presented below.

1: for all Ai ∈ R.A from the S-tree such that N1
1 (Ai)&N1

1 (q) = N1
1 (q) do

2: for all levels l do
3: for all internal nodes i at level l in q do
4: p = skip(Ai, l, i)
5: if N l

p+1(Ai)&N l
i (q) �= N l

i (q) then
6: return(false)
7: end if
8: end for
9: end for

10: return(true)
11: end for

The algorithm starts with defining the index key on the searched set q. Then,
the algorithm traverses the S-tree to find all sets that potentially contain the
searched subset. This is determined by comparing index key roots of each set Ai

with the index key root of the searched set q.
For each set Ai found in the S-tree, the algorithm begins from the root of

the index key of the searched set q and recursively tests all nodes at all levels
of the index key of the searched set q comparing them with the corresponding
nodes in the index key of Ai. Both index keys may contain different number
of nodes because there can exist non-empty nodes in the index key of Ai that
are not relevant to the query. These non-relevant nodes correspond to index
key leaf nodes containing elements that are not present in the query. Thus, the
main difficulty in comparing index keys is to determine pairs of corresponding
nodes in compared index keys. To cope with this problem we introduce the
function skip(Ai, l, i) (line 4). The funcion skip(Ai, l, i) computes at the level
l the number of nodes that have to be skipped in the index key of Ai to reach
the node corresponding to N l

i (q).
The function computes the number of nodes to be skipped on the basis of

the parent node at the higher level. Given internal node i at the level l of the
index key of q. The function retrieves the node N l−1

i%d+1(Ai) (where % denotes
the modulo operator; this is the parent of the i-th node). The number of nodes
that must be skipped in Ai is equal to the number of positions in N l−1

i%d+1(Ai)
set to ‘1’ and preceding the position (i%d) + 1. The test for the containment of
corresponding nodes is performed in the line (5).

As can be easily noticed, the algorithm requires, for index key roots retrieved
from the S-tree, accessing of some part of the linked list of non-empty nodes.



This access introduces some overhead. Nevertheless, this additional cost of the
linked list traversal is negligible when compared to the cost of veryfying every
hit and resolving false hits as required by all other indexing techniques. Besides,
the average cost of the linked list is relatively low because many index keys are
rejected very early. The hierarchical bitmap index performs significant pruning at
the upper level of the index keys. The degree of pruning depends on the mapping
of set elements to positions in the signature at the lowest level of the index. We
intend to investigate this dependency in greater detail in future experiments.
The ability to prune index keys at the upper levels combined with the lack of
necessity to verify false hits provides the biggest pay-off in comparison with other
set-oriented indexes.

Example 2. Consider the index key of the set S from the Example 1. It is stored
in the form of the linked list K(S) = 〈1010, 1011, 0100, 0110, 1001, 1100, 0101〉.
Let user query contain elements q = {9, 13, 40}. The algorithm starts with
defining the index key on the searched set q. The index key for the query q
is K(q) = 〈1010, 0011, 0100, 1000, 1000, 0001〉. Then, the algorithm begins at the
first level and tests whether N1

1 (S)&N1
1 (q) = N1

1 (q). This yelds true because
1010&1010 = 1010. Next, the algorithm moves to the next level and considers
the node N1

2 (q) = 0011. Function skip(S, 2, 1) returns 0 as there are no nodes
to be skipped in K(S). Comparing N1

2 (S) and N1
2 (q) returns 1011&0011 = 0011

which is true. Test on N2
2 (S) and N2

2 (q) also succeeds. Then the algorithm
advances to the third level. Function skip(S, 3, 1) returns 1 because the node
N1

3 (S) = 0110 must be skipped as it represents the items {2, 3} which are not
relevant to the query. Thus the next test compares nodes N2

3 (S) = 1001 and
N1

3 (q) = 1000. This procedure continues until there are no more non-empty
nodes in the index key of q. It is easy to notice that the remaining compar-
isons will succeed — N3

3 (S) = 1100 contains N2
3 (q) = 1000 and N4

3 (S) = 0101
also contains N3

3 (q) = 0001. Therefore, we conclude that the set S contains the
searched set q.

�

The algorithm is very robust. Most operations are bit manipulations (bitwise
AND) that perform very quickly. The most important feature of the algorithm is
the fact that the hierarchical bitmap index always returns an exact answer and
never generates any false hits. Therefore, the search algorithm doesn’t contain
any verification steps which are required when using other set indexing tech-
niques. The elimination of the verification phase and the lack of the false hits
is the main reason for which hierarchical bitmap index is superior to other set
indexes and outperforms them significantly. In the next section we will present
the results of the experimental evaluation of the index.

5 Experimental Results

The experiments were conducted on top of the Oracle 8i database management
system running under Linux with two Pentium II 450 MHz processors and 512



MB memory. Data sets were created using DBGen generator from the Quest
Project [1]. Table 1 summarizes the values of different parameters that affect the
characteristics of the data sets used in our experiments. Data sets tend to mimic
typical customer transactions in a supermarket. Number of distinct elements
varies from relatively small (1000) to rather large (30000) (this is the number
of different products being sold in a typical mid-sized supermarket). The size of
a single set (40 elements) also represents the real size of the average customer
basket in a supermarket. Query sizes vary from general queries (considering one
or two elements) to very specific (considering several elements). The number of
indexed sets varies from 1000 (very small database) to 100000 (relatively big
database). In our experiments we compare the hierarchical bitmap index with
two similar techniques, namely the signature index and the hash index.

Figure 3 presents the average response time for different searched set sizes.
The response time is the average response time computed for the database size
varying from 1000 sets to 250000 sets and the size of the domain of the indexed
attribute varying from 1000 to 30000 elements. All subsequent response times
are also computed as an average over the entire parameter range in Tab 1.
The most interesting about the hierarchical bitmap index is the fact that the
response time remains constant. Very general queries using small searched sets
(1—5 elements) exhibit the same response times as very specific queries using
large searched sets (10—20 elements). For general queries the hierarchical bitmap
index outperforms other indexes significantly, which can be explained by the fact
that the hierarchical bitmap index doesn’t produce any false hits and doesn’t
need any verification. On the other hand, both signature and hash indexes must
verify every set returned from the index. For general queries we expect a lot
of ambiguity in signature and hash indexes. Therefore, the answers are several
times slower. We argue that these general queries are most frequent in real
world applications and that this fact even stronger advocates the use of our
index. Nevertheless, even for very specific queries the hierarchical bitmap index
performs two times better than the other techniques.

The results of the next experiment are depicted in Fig. 4. It presents the
average response time with respect to the varying number of elements in the
domain of the indexed attribute. It can be observed that for all domain sizes
the hierarchical bitmap index performs several times better than signature or
hash indexes. Again, it is worth noticing that the response time remains almost
constant for all domain sizes. For small domains (1000 elements) our index is

Table 1. Synthetic data parameters

parameter value

number of itemsets 1000 to 250000
domain size 1000 to 30000
itemset size 40
query size 1 to 20



0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

4 6 8 10 12 14 16 18 20

tim
e 

[s
]

query size

Execution time vs. query size

Hierarchical
Hash

Signature

Fig. 3. Search time vs. query size

0

0.2

0.4

0.6

0.8

1

1.2

1.4

0 5000 10000 15000 20000 25000 30000

tim
e 

[s
]

number of items

Execution time vs. number of items

Hierarchical
Hash

Signature

Fig. 4. Search time vs. number of items

0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

0 50000 100000 150000 200000 250000

tim
e 

[s
]

number of transactions

Execution time vs number of transactions

Hierarchical
Hash

Signature

Fig. 5. Search time vs. number of item-
sets

4

6

8

10

12

14

16

0 5000 10000 15000 20000 25000 30000

nu
m

be
r 

of
 v

er
ifi

ed
 s

et
s

number of items

Hierarchical
Hash

Signature
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number of items

10—15 times faster than the other techniques. For larger domains the difference
diminishes but remains substantial.

Figure 5 shows the scalability of the hierarchical bitmap index in compari-
son with the remaining two indexes with regard to the database size. The worst
performance can be observed with the hash index, because the increase in the
database size results in more hits that have to be verified. Signature index pro-
duces less false hits but all answers still have to be verified. Again, the biggest
gain of the hierarchical bitmap index lies in the fact that it doesn’t produce any
false hits and doesn’t require any verification step. The response time of the
hierarchical bitmap index scales linearly with the database size.

Finally, Fig. 6 presents the number of verified sets with respect to the domain
size. The hierarchical bitmap index processes only the correct answers to the user
query. The signature index performs worse because it has to process some of the
sets that don’t actually contain the searched set. Hash index reveals the poorest
performance because of the excessive number of false hits (for 30000 different
elements almost 70% of sets returned from the index tend to be false hits).

We measured also the performance of the traditional B+ tree index, but we
omitted the results because B+ tree index was significantly inferior to all types of



set-oriented indexes. For all database sizes and for almost all query sizes queries
using B+ tree index ran ten times slower than the queries using the hash index.

6 Other Applications

As we said before the most commonly used class of set-oriented queries are subset
queries. Beside subset queries there are two more classes of queries that can be
used in terms of set-valued attributes. These are superset and similarity queries.

Superset queries retrieve all sets that are proper subsets of the searched set.
Assume that the given set of products is offered at a reduced price. A superset
query can be used to find the customers whose market basket is entirely included
in the reduced product set, i.e., the customers who visited the shop only to
profit from the discount. Another example of the superset query could be: given
the pattern describing the correlation of sales of the set of products find all
customers who can be characterized using this pattern. Superset queries are also
useful in web-based applications. If the searched set consists of web pages and
links considered the main navigation path through the web site, the superset
query can be used to identify inexperienced users who don’t use any advanced
features of the web site and who always stay within the main navigation route.
Superset search procedure can’t use the S-tree structure and has to test all index
keys stored in the tree. The algorithm to perform a superset search on all sets
contained in the attribute A of the relation R using the searched set q is given
below.

1: for all Ai ∈ R.A do
2: for all levels l do
3: for all index key nodes i at level l in Ai do
4: p = skip(q, l, i)
5: if N l

i (Ai)&N l
p+1(q) �= N l

i (Ai) then
6: return(false)
7: end if
8: end for
9: end for

10: return(true)
11: end for

This algorithm is a slight modification of the subset search algorithm pre-
sented in Sec. 4. This time we are testing all nodes of the index key of S to see if
they are entirely contained in the corresponding nodes of q. Function skip(q, l, i)
computes the number of nodes in q that must be skipped to reach the node
corresponding to N l

i (Ai). It works exactly as in the subset search algorithm.
The third class of set-oriented queries contains the similarity queries. A sim-

ilarity query retrieves all sets that are similar to the searched set with the sim-
ilarity threshold provided by the user. There are many different measures of



similarity between two sets. The most commonly used notion of similarity is the
Jaccard coefficient which defines the similarity between sets A and B as

similarity(A, B) =
|A ∩ B|
|A ∪ B|

Similarity queries have numerous applications [9]. They can be used to clus-
ter customers into distinct segments based on their buying behavior, to tune
direct mail offerings to reach only the desired customers, to make automated
recommendations to customers, to dynamically generate web page contents and
direct customer-oriented advertisement, etc. Similarity analysis can operate on
different levels of similarity. For example, to classify a new customer to one of
the existing profiles we are interested in finding the most similar profile. On the
other hand, when searching for customers who should be targeted with a new
product catalog we are interested in finding those customers, whose purchases
are similar to the set of offered products only to some degree (the most similar
customers already possess the majority of catalog products, hence they are not
the right target for such offer). Finally, in many applications the contrary of the
similarity, namely the dissimilarity, can be interesting to analyze. The analysis
of the dissimilarity can reveal features and patterns responsible for differences
in buying behaviour, web navigation habits, sales anomalies, etc.

For similarity queries no filtering can be applied before visiting all nodes
belonging to a given index key. Some existing approaches [9, 15] propose methods
for efficient S-tree traversal in case of similarity queries. Incorporating those
methods into hierarchical bitmap index is subject to our future work. The main
idea of the algorithm is to compare all pairs of corresponding nodes and count the
number of positions on which both nodes contain ‘1’s. If the percent of common
‘1’s is higher than the user defined threshold then the answer is positive, else
negative. The algorithm to perform a similarity search on all sets contained
in the attribute A of the relation R using the minimum similarity threshold
min similarity is given below.

1: for all Ai ∈ R.A do
2: c = 0
3: for all levels l do
4: for all index key nodes i at level l in q do
5: p = skip(Ai, l, i)
6: x = N l

i (Ai)&N l
p+1(q)

7: c = c + count(x)
8: end for
9: end for

10: if c
numberofkeysinq

≥ min similarity then
11: return(true)
12: else
13: return(false)
14: end if



15: end for

For every set Ai the algorithm iterates over all nodes of q and bitwisely
ANDs those nodes with corresponding nodes in the index key of Ai. The func-
tion count(x) computes the number of bits set to ‘1’ in x. After the compar-
ison of all node pairs is finished the percentage of common positions is calcu-
lated. If this percentage exceeds the user defined threshold of minimum similarity
min similarity the algorithm adds the given set to the result.

7 Conclusions

Our experiments have proven that existing indexing techniques are not suitable
to efficiently index set-valued attributes. Hence, in this paper we have introduced
the hierarchical bitmap index. It is a scalable technique to efficiently index large
collections of sets. Our index is not affected either by the size of the domain
of the indexed attribute or the size of the indexed set. It scales well with the
number of sets in the database and exhibits constant response time regardless
the query size. Its compactness guarantees that the use of the index is memory
efficient. All hierarchical bitmap index features stem from the compact and ex-
act representation of the indexed sets. Because all answers obtained from the
hierarchical bitmap index are exact, the hierarchical bitmap index doesn’t need
any verification steps that are required in case of all other indexing techniques.

This paper presents the results of the initial work on the hierarchical bitmap
index. Further improvements will include:

– more sophisticated methods for mapping elements to signature bit positions.
Storing elements that frequently occur together in the same index key leaves
should lead to the improvement of the index compactness and should increase
index filtering capabilities

– applying advanced methods of the S-tree construction to increase pruning
at the upper levels of the tree and to improve the selectivity of the tree

– using advanced methods of the S-tree traversal to answer superset and sim-
ilarity queries

– analyzing possible applications of the hierarchical bitmap index in advanced
database querying, e.g., in analytical processing or data mining queries

– developing algorithms for index maintenance
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