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Abstract. Advances in wireless and mobile technology flood us with amounts
of moving object data that preclude all means of manual data progeSdie
volume of data gathered from position sensors of mobile phones, RiDAshi-
cles, defies human ability to analyze the stream of input data. On the otigr ha
vast amounts of gathered data hide interesting and valuable knowletlgmpa
describing the behavior of moving objects. Thus, new algorithms for mimiov-

ing object data are required to unearth this knowledge. An importantiumaf

the mobile objects management system is the prediction of the unknown focatio
of an object. In this paper we introduce a data mining approach to the proble
of predicting the location of a moving object. We mine the database of moving
object locations to discover frequent trajectories and movement ithes, we
match the trajectory of a moving object with the database of movementtales
build a probabilistic model of object location. Our original contribution inelsid
the elaboration on the location prediction model, the design of an efficient min
ing algorithm, introduction of movement rule matching strategies, and augbr
experimental evaluation of the proposed model.

1 Introduction

Moving objects are ubiquitous. Portable devices, persdigital assistants, mobile
phones, laptop computers are quickly becoming affordadgigressively entering the
market. This trend is parallel to the widespread adoptiowioéless communication
standards, such as GPRS, Bluetooth, or Wi-Fi networks. iRemb/ances in position-
ing technology compel manufacturers to equip their deweitls positioning sensors
that utilize Global Positioning System (GPS) to providelaiate location of a device.
Accurate positioning of mobile devices paves the way fordéployment of location-

based services and applications. Examples of locatioaebservices include location-
aware information retrieval, emergency services, locakiased billing, or tracking of

moving objects. It is important to note that location-basedvices are not limited to
mobile devices, such as mobile phones, PDAs or laptopse thewvices can be suc-
cessfully deployed for other types of moving objects, eghicles or even humans. In



order to fully exploit the possibilities offered by locati@ware services, it is crucial to
determine the current position of a moving object at anymjpeint in time.

Typically, a moving object is equipped with a transmittingyite that periodically
signals its position to the serving wireless carrier. Be&mvposition disclosures the ex-
act location of a moving object remains unknown and can beraeted only approx-
imately. Unfortunately, the periodicity of position ackmedgments can be interrupted
by several factors. For instance, the failure can be caug@d\wer supply shortage of
a moving object. Positioning systems have known limitatitimat can result in com-
munication breakdown. Signal congestions, signal losgeganatural phenomena, or
the existence of urban canyons lead to temporal unavailabfla moving object po-
sitioning information. Whenever the location of a movingaatijis unknown, a robust
method of possible location prediction of a moving objectiguired.

Predicting the location of a moving object can be a difficatk Firstly, the sheer
amount of data to be processed precludes using traditisediglion methods known
from machine learning domain. The stream of data generat@adsitioning sensors of
thousands of moving objects requires new, robust and feliddita mining processing
methods. The location prediction mechanism must allow &st Ecoring of possible
moving object location. The method must work online and &hoot require expen-
sive computations. Furthermore, the performance of thdigiien method should not
degrade significantly with the increase of the number of mg\abjects. We also re-
quire that, given the prediction accuracy is satisfactony @oes not drop below a given
threshold, the prediction method should strongly favodmtgon speed over predic-
tion accuracy. We believe that this feature is crucial fer development of successful
location-based services. For instance, complex modelogément area topology and
movement interactions between objects may produce aectgatilts, but their com-
putational complexity is unfeasible in mobile environmeSimilarly, prediction meth-
ods based on simulation strongly depend on numerous inpateders that affect the
quality of the resulting movement model. The cost of comqutihe model can be
prohibitively high and the model itself may not scale welttwthe number of mov-
ing objects. Another important drawback of currently useedjction methods is the
fact that most of these methods do not utilize historicahd@he raw data collected
from moving objects hide useful knowledge patterns thatules typical behavior of
moving objects. In particular, trajectories frequentlifdaved by moving objects can be
mined to discover movement patterns. Movement patterpsesented in the form of
human-readable movement rules can be used to describe edidtghe movement of
objects.

Data mining techniques have been long considered inappte@mnd unsuitable for
online location prediction due to long processing times emiputational expensive-
ness of these techniques. In this paper we prove that thisngin is entirely incorrect
and that data mining techniques can be successfully usdddation prediction. We
build a probabilistic model of an unknown position of a mayivbject based on histor-
ical data collected from other objects moving on the sama. & mine logs of histor-
ical position acknowledgments to discover frequent trtajées of objects representing
popular movement routes, and then we transform frequejettmaies into movement
rules. In order to predict the location of a moving object, idiich only a part of its



movement history is known, we score the movement historhefdabject against the
database of movement rules to find possible locations of bfjecb For each possible
location we compute the probability of prediction correxsts based on the support and
confidence of discovered movement rules. Our method is fadtreliable. Frequent
trajectories and movement rules are discovered peridgicaln offline manner. The
scoring process is performed online. Our experiments shatitle scoring process can
be performed within milliseconds. The presented methoddspendent of the move-
ment area topology and scales well with the number of movinigats. The idea of
using movement rules for location prediction was first pnése in [15]. The work pre-
sented in this paper continues and extends our previoual ifiitdings in a number of
ways. The original contribution of this paper includes:

— refinement of the frequent trajectory model,

— design of an efficientraj-PrefixSparalgorithm for mining frequent trajectories,
— design of theMFP-Treeindex structure,

— experimental evaluation of the proposal.

The paper is organized as follows. section 2 presents th&etkivork on the sub-
ject. In section 3 we introduce notions and definitions usedughout the paper. The
Traj-PrefixSparalgorithm and frequent trajectory matching methods areeed in
section 4. section 5 contains the results of the experirhemtéuation of our proposal.
The paper concludes in section 6 with a brief summary.

2 Related Work

Both spatial data mining and mobile computing domains ettsggnificant research
efforts. The first proposal for spatial data mining has beemdlated in [11]. Since
then, many algorithms for spatial data mining have beengseg [5]. Authors in [6]
introduce a spatial index for mining spatial trends usirgtiens of topology, distance,
and direction. A comprehensive overview of current issurs@oblems in spatial and
spatio-temporal databases can be found in [7], and receahads in spatio-temporal
indexing are presented in [14]. However, the problem of ngrirajectories of mov-
ing objects in spatial databases remained almost unclyalteuntil recently. Examples
of advances in this field include the idea of similar trajegtdustering [12] and the
proposal to use periodic trajectory patterns for locaticedction [13]. The aforemen-
tioned works extend basic frameworks of periodic sequepéitterns [8] and frequent
sequential patterns [1].

Aninteresting area of research proposed recently focuse®oing object databases
[2]. In [17] authors consider the effect of data indeterrsinand fuzziness on moving
objects analysis. According to the authors, an inherenemainty of moving objects
data influences attribute values, relations, timestampstime intervals. Advances in
mobile object databases can be best illustrated by the @faweint of the Path-Finder
system, a prototype moving object database capable of gymoving object data. The
idea of using floating car data of an individual moving objectlescribe movement
patterns of a set of objects is presented in [3].



Several proposals come from mobile computing domain. Motihiy, tracking of
moving objects resulted in many interesting methods faation prediction. Authors in
[10] present a probabilistic model of possible moving objegjectories based on road
network topology. The solution presented in [21] advocabesse time-series analy-
sis along with simulation of traveling speed of moving olgeto determine possible
trajectory of an object. A modification of this approach dsetisg in using non-linear
functions for movement modeling is presented in [19]. A noeat model that em-
ploys recursive motion functions mimicking the behavioobjects with unknown mo-
tion patterns is introduced in [18]. Another complex modé&hvaccuracy guarantees
is presented in [20]. Recently, [22] consider predictingaliion in presence of uncer-
tain position signals from moving objects. The authors gméamin-maxproperty that
forms the basis for theifrajPatternalgorithm for mining movement sequences of mov-
ing objects.

3 Definitions

Given a database of moving object locations, where the mewméwf objects is con-
strained to a specified areh Let O = {0y, ..., 0;} be the set of moving objects. Let
p denote the position of a moving object w.r.t. a system of dmatesiW, p € W.
ThepathP = (p1,...,pn) is an ordered n-tuple of consecutive positions of a moving
object. Unfortunately, the domain of position coordinatesontinuous and the gran-
ularity level of raw data is very low. Therefore, any patteiscovered from raw data
cannot be generalized. To overcome this problem we chodsasform original paths

of moving objects into trajectories expressed on a coaes@l.| Thenet divides the
two-dimensional movement arefinto a set of rectangular regions of fixed size. We
refer to a single rectangular region asell. Each cell has fouedges Cells form a
two-dimensional matrix covering the entire aréaso each cell is uniquely identified
by discrete coordinat€s, j) describing the position of the cell in the matrix. A moving
object always occupies a single cell at any given point iretilhen moving, an object
crosses edges between neighboring cells. Each edge cavbesed in two directions,
vertical edges can be traversed eastwards and westwareieasghhorizontal edges can
be traversed northwards and southwards. Figure 1 presenétimeration scheme of
edges of the cel{i, j) used by our algorithm. Each edge receives two sets of coordi-
nates relative to its cell coordinates. The two sets of doatds represent two possible
directions of edge traversal. For instance, the upper efitfeeacell (2, 4), when tra-
versed northwards, is identified as the edggs), and when traversed southwards, is
identified as the edg, 6). We have also considered other enumeration schemes, such
as Hilbert curve or z-ordering. The main advantage of thegiad edge enumeration
scheme is the fact that any two neighboring edges differ yaat 2 on a dimension.
In addition, any two edges within a single cell differ by atsh on any dimension.

Each pathP; of a moving objecto; can be unambiguously represented as a se-
quence of traversed edges.trajectory of an objecto; is defined as an ordered tuple
R; = (F1,Es,...,E,) of edges traversed by the paff. The length of a trajec-
tory R;, denotediength(R;), is the number of edges constituting the trajectéy
We refer to a trajectory of the length as n-trajectory. We say that the trajectory
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Fig. 1. Edge enumeration

X = (X1,X,,...,X,,) is contained in the trajectory = (Y7,Y2,...,Y,), denoted
X CY, if there existiy < ia < ... < iy, SUCh thatX; =Y, Xo = Y, ...,
Xm =Y, . Atrajectory X is maximalif it is not contained in any other trajectory. We
say that a trajectory” supportsa trajectoryX if X C Y. Theconcatenatior? of tra-
jectoriesX = (X1, Xs,..., X)) andY = (Y1,Y5,...,Y,,), denotedZ = X @ Y, is
the trajectoryZ = (X1, Xo,..., X, Y1,Ys,...,Y,). Given a database of trajectories
Dr ={Ru,..., Ry} Thesupportof a trajectoryR; is the percentage of trajectories in
Dr that support the trajectori;.

_ |{RJ € Dr:R; C R]H
| Dr|

support(R;)

AtrajectoryR; is frequentif its support exceeds user-defined threshold of minimum
support, denotethinsup Given a trajectonR; = (F1, E», ..., E,). Thetail of the tra-
jectory R;, denotediail(R;, m), is the trajectoryl; = (F4, Eo, ..., E,,). Theheadof
the trajectoryR;, denotechead(R;, m), is the trajectonl; = (Eyt1, Ema2, - - -, Fn)-
Concatenation of the tail and head yields the original ttajy, i.e., tail(R;,m) ®
head(R;,m) = R;.

Frequent trajectories are transformed into movement .rdl@sovement rule is an
expression of the fornl; = H; whereT; and H; are frequent adjacent trajectories
andT; ® H; is a frequent trajectory. The trajectofy is called the tail of the rule, the
trajectory H; is called the head of the rule. Contrary to the popular foatioh from
association rule mining, we do not require the tail and thedhaf a rule to be disjunct.

Thesupportof the movement ruld; = H, is defined as the support @f ® H;,

supPOTt(Tz'éHi):| 10T |lj)_|( ® Aol
T

The confidenceof the movement ruld; = H, is the conditional probability off;
givenT;,
support (T; @ H;)

confidence (T; = H;) = P (H;|T;) = support (T;)

4 Proposed Solution

Formally, the location prediction problem can be decomgase two subproblems:



— discover movement rules with support and confidence grehger user-defined
thresholds ofminsupandminconf respectively,

— match movement rules against the trajectory of a movingoblige which the cur-
rent location is to be determined.

In section 4.1 we present tfeaj-PrefixSparalgorithm that aims at efficient discov-
ery of frequent trajectories and movement rules. sectidm#. describe th&1FP-Tree
index structure. In section 4.3 we introduce three matchsingtegies for movement
rules.

4.1 Traj-PrefixSpan Algorithm

The algorithm presented in this section is a modification wfedl-known PrefixSpan
algorithm [16]. The main difference consists in the factttltantrary to the original
formulation, we do not allow multiple edges as elements efstaquence (each element
of a sequence is always a single edge). In addition, eactesegus grown only using
adjacent edges, and not arbitrary sequence elements.

Given a trajectoryX = (X1, Xs,..., X,), theprefixof the trajectoryX is a tra-
jectoryY = (Y1,Ys,...,Y,,), m <n,suchthal; = X;fori =1,2,...,m — 1. The
projectionof the trajectoryX over prefixY” is a sub-trajectoryX’ of the trajectoryX,
such thafY” is the prefix ofX’ and no trajectonX” exists such that” is the prefix of
X", X" is the sub-trajectory ok, and X" # X’.

LetX’ = (Xy,...,X,) be aprojection oX over the prefid” = (Y1,...,Ym-1, Xm).
The trajectoryZ = (X,u41,...,X,) is a postfix of X over the prefixY’, denoted
Z = X/Y . In other words, for a given prefiX and a given postfiZ, X =Y ® Z.

Let Y be a frequent trajectory in the database of trajectafles An Y'-projected
trajectory databasedenoted byD7, v, is the set of all postfixes of trajectories iny
over the prefixty". Let X be a trajectory with the prefiX. Thesupport counof X in
Y -projected trajectory database, denotedyport D)y (X), is the number of trajec-
toriesZ in Dy, such thatX is a sub-trajectory o @ Z.

Traj-PrefixSparalgorithm consists of three phases. In the first phase theitdm
performs a full scan of the trajectory databaxgeto discover all frequent 1-trajectories.
In the second phase each frequent 1-trajecioig used to create ari-projected tra-
jectory database. Every pattern contained invaprojected trajectory database must
have the prefix”. The third phase of the algorithm consists in recursive gt of
further Y’'-projected trajectory databases from frequent trajeesdri found in pro-
jections. The pseudocode of the algorithm is presentedguari2. The initial call is
TrajPrefizrSpan(<>,0, D).

4.2 MFP-Tree

The physical indexing structure used in our algorithm is aification of the FP-
Tree [9]. The main change consists in storing sequenceseaiezits (as opposed to
sets of elements), and allowing a bi-directional travec§ahe tree. MFP-Treeis an
undirected acyclic graph with a single root node and selabeled internal nodes. The
root of the tree is labeledull, and internal nodes are labeled with edge numbers they



procedure TrajPrefixSpan(Y,l, Dr,y)
1. scanDy,y to find edgeg such, that
if (I > 0) then e is adjacent to the last edge Bf
Y can be extended hyto form a frequent trajectory
2: foreachedgee createY’ =Y ® e
3: foreachY” build Dy
4: run TrajPrefizSpan(Y',l + 1, Dy y)
end procedure

Fig. 2. Traj-PrefixSpan algorithm

represent. Each internal node of the tree has a label, a@o@mpresenting the support
of a sequence from the root to the given node, and a pointéetogxt node with the
same label (or aull pointer if no such node exists). In addition, the index cimsta
header table with edges ordered by their support and pesitdethe first occurrence
of an edge within thévVIFP-Tree The tree is constructed during the execution of the
Traj-PrefixSpanalgorithm by pattern growth. Each frequent trajectory ov&sed by
the Traj-PrefixSpanalgorithm is inserted intdIFP-Treeindex for fast lookup. After
the frequent trajectory discovery process finishes Mi-Treecontains all frequent
trajectories discovered in the database.

4.3 Matching strategies

In the next sections we introduce three matching stratdgiescoring a partial tra-
jectory of a moving object with the database of movementsrule all examples let
X = (X1,Xy,...,X,n) be a partial trajectory of a moving object, for which we are
seeking its most probable location. For a given partiabtiary X the set of all matched
movement rules is denoted My .

Whole Matcher The Whole Matcherstrategy consists in finding all movement rules
T; = H,; such, thatX = T; (i.e., the tail of the rule entirely covers the partial tdgy
X). The headH; can be used as a prediction of a possible location of a mowjerb
The probability that a moving object follow3; is given byconfidence (T; = H;). The
Whole Matcher strategy yields accurate results, but disalemy deviations of matched
rules from the partial trajector¥. Furthermore, in case of long partial trajectories, the
Whole Matcher strategy may fail to find a matching movemerd.rul

Last Matcher Thelast Matcherstrategy discards all information from the partial tra-
jectory X except for the last traversed eddg,. The strategy finds all movement rules
T; = H; such, thatX,, = T;. The result of the strategy is the list of edges (move-
ment rule head#l;) ordered by descending values@ffidence (T; = H;). The Last
Matcher strategy finds matching movement rules even for sieoyt partial trajectories,

but the predictions il x are less reliable, because they ignore the movement history
of a moving object.



Longest Last Matcher The Longest Last Matchestrategy is a compromise between
the two aforementioned strategies. For a given partiadtajy X it finds all movement
rulesT; = H; such, thatl; covers a part of the partial trajectosy, i.e., there exists

Jj» 1 < j < m such, thatl; = head(X,j). The strategy outputs, as the result, the
movement rule head#&,; weighted by the relative coverage of the partial trajectory
X. For a given movement rul&; = H; the strength of the prediction is defined as
confidence (T; = H;) %. Edges contained ih x are ordered according to the
descending value of the prediction strength.

5 Experiments

In this section we report on the results of the experimentaluation of the pro-
posed approach. All experiments were conducted on a PCpeeplipith AMD Athlon
XP 2500+ CPU, 521 MB RAM, and a SATA hard drive running undentldws XP
SP2 Home Edition. Algorithms and the front-end applicati@re implemented in C#
and run within Microsoft .NET 2.0 platform. Synthetic datswere generated using
Network-based Generator of Moving Objects by T.Brinkheff. [Experiments were
conducted using the map of Oldenburg. The number of movirgctdb varied from
1000 to 10000, the number of classes of moving objects wde 46t and the number
of time units in each experiment was 200. We set the maximuocitg of moving
objects to 50, locations of objects were registered uBmgjtionReportemethod. All
results reported in this section are averaged over 30 diffénstances of datasets. The
experiments measure: the time of mining frequent trajeetothe number of discov-
ered frequent trajectories, the time of matching a pantégéctory with the database of
moving rules, and the quality of location prediction.
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Fig. 3. Minimum support

Figure 3 shows the number of frequent trajectories (deghiotethe left-hand side
axis of ordinates) and the time of mining frequent trajéetfdepicted on the right-



hand side axis of ordinates) with respect to the varyingevalitheminsupthreshold.
Both measured values decrease with the increase ahthsupthreshold. As can be
clearly seen, the correlation between the number of freimajectories and the time
it takes to mine them is evident. We are pleased to noticeete for low values of
minsupthreshold the algorithm requires less than 20 seconds tpledecomputations
and the number of discovered frequent trajectories renmarsageable.
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Fig. 4. Number of moving objects

Figure 4 presents the number of frequent trajectories ¢tighion the left-hand side
axis of ordinates) and the time of mining frequent trajeefdepicted on the right-
hand side axis of ordinates) with respect to the varying remobmoving objects for a
set value ofninsup = 0.025. Firstly, we notice that the time of mining frequent trajec-
tories is linear w.r.t. the number of moving objects, whislaidesirable property of our
algorithm. Secondly, we observe a slight decrease in thebruwf discovered move-
ment rules as the number of moving objects grows (a fivefaldeimse in the number
of moving objects results in a 20% decrease of the numbersabdered movement
rules). This phenomenon is caused by the fact that a greatelper of moving objects
is spread more or less uniformly over the movement area,tenahinsupthreshold is
expressed as the percentage of the number of all movingtebjBtus, less edges be-
come frequent. For a smaller number of moving objects edyg#eei center of the city
tend to attract more moving objects, and less restrictiresupthreshold makes more
of these edges frequent, resulting in more movement rules.

Figure 5 depicts the number of frequent trajectories (degion the left-hand side
axis of ordinates) and the time of mining frequent trajeetfdepicted on the right-
hand side axis of ordinates) with respect to the varying sfzzn edge cell. The time
of mining steadily decreases with the growth of the cell .sTes result is obvious, be-
cause larger cells result in less frequent trajectoriesth@rother hand, the decrease is
not linear. For larger cell sizes the number of discoveredudent trajectories is indeed
lower. However, discovered frequent trajectories havddrigsupport and tend to be
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longer, contributing to the overall computation time. Theerpretation of the second
curve, the number of discovered frequent trajectories, dsentricky. One can notice
atypical deviations for cell sizes of 400 and 600 units. Basdom effects are prob-
ably caused by accidental structural influence of largersadller cell sizes on areas
of intensified traffic. The results presented in Figure 5 esspe the importance of
correct setting of the cell size parameter (e.g., the diffee in the number of discov-
ered frequent trajectories is 10 when changing the cellfsiwa 300 to 400 units, and
it grows to 40 when changing the cell size from 400 to 500 dnisfortunately, our
model does not permit to choose the optimal value of the dlgarameter other than
experimentally.

The next two figures present the results of experiments atiatythe accuracy of
prediction of the location using movement rules. These exyats were conducted as
follows. First, a database of moving objects was generaadja set of fixed parame-
ters. Then, 50 trajectories were randomly drawn from eatdibdae. Each test trajectory
was then split into a tail and a head. The tail was used as mlgagajectory, for which
future location of an object was to be predicted. Finallg ginediction returned from
each matching strategy was compared to the known head ofsh&ajectory and the
quality of prediction was computed. L&f = (X, Xo,...,X,,) be a randomly se-
lected trajectory of a moving object, divided inteil (X, k) andhead (X, k). The tall
is used as a partial trajectory for matching. If the nexteraed edge, which &, is
not contained in the set of matching strategy ansvigrsthen the quality of location
predictionQuality(X, Lx) = 0. Otherwise, the quality of matching is computed as the
probability of traversingX,.; diminished by weighted incorrect predictions frdm
that had prediction strength greater thdp,,, i.e.,

Quality(X,Lx) = P(Xp41) * (1 — Z P(Xj)k;_+P1(Xk+1) )
j<k:X;€ELx

In the above formula we assume that is ordered by the decreasing prediction
strength, so stronger predictions have lower indices.
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Figure 6 presents the average time required to match a Ip@aajectory with the
database of movement rules with respect to the vamiirgupthreshold (and, conse-
quently, to the number of discovered movement rules). Wmle Matcherand Last
Matcher strategies perform almost identically, because bothegias can fully uti-
lize theMFP-Treeindex structure. Theongest Last Matchestrategy performs slower,
because it must traverse a larger part of MEP-Tree Nevertheless, in case of all
strategies the matching time is very fast and never excegdms. We are particu-
larly satisfied with this result, because it supports ousiththat data mining methods
can be employed for real-time location prediction. Figurdepicts the average qual-
ity of prediction as computed by Equation 1. The quality aehd by thd_ongest Last
Matcherstrategy varies from 35% to over 60%. Surprisingly, the ifyalf prediction
increases with the decrease of thinsupthreshold. This can be explained by the fact
that low values of theninsupthreshold produce more frequent trajectories and more of-
ten the correct prediction is placed high in the resultirtgise. The prediction quality
of the Whole MatcheandLast Matcherstrategies is much better, reaching even 95%
of accuracy. It is worth mentioning that the results degiétethe figure are computed
according to our formula, which might be too penalizing foe Longest Last Matcher
strategy, so the presented numbers are somehow biaseds$osumple matching strate-
gies.

6 Conclusions

In this paper we have introduced a new data mining model grairthe efficient pre-
diction of unknown location of moving objects based on mogatpatterns discovered
from raw data. The model represents frequent trajectofiesowing objects as move-
ment rules. Movement rules provide a simplification and gafmation of a large set of
moving objects by transforming original continuous don@imoving object positions
into a discretized domain of edges of a superimposed grig if&in thesis of the paper,
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well proven by conducted experiments, is that data minicrigues can be success-
fully employed for real-time location prediction in mob@gavironments. Indeed, while
most expensive and burdensome computations (e.g. thevdiyoof frequent trajecto-
ries) can be performed offline and periodically, the onliregching of partial trajecto-
ries with the database of movement rules is executed veryThs quality of location
prediction is satisfying, but we aim at developing more &ffit matching strategies for
even better accuracy.

Our future work agenda includes:

— developing new matching strategies,

— including temporal aspects in discovered movement rules,

— including spatial information in movement rules,

— providing more informed decisions to location-based s&wbased on discovered
movement rules.
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