
V4.1

cover

���
 Front cover
Korn and Bash
Shell Programming
(Course code AL32)

Student Exercises
ERC 1.0

IBM Certified Course Material

Student Exercises
Trademarks

IBM® is a registered trademark of International Business Machines Corporation.

The following are trademarks of International Business Machines Corporation in the United
States, or other countries, or both:

Java and all Java-based trademarks are trademarks of Sun Microsystems, Inc. in the
United States, other countries, or both.

Windows is a trademark of Microsoft Corporation in the United States, other countries, or
both.

UNIX® is a registered trademark of The Open Group in the United States and other
countries.

Linux® is a registered trademark of Linus Torvalds in the United States, other countries, or
both.

Other company, product, or service names may be trademarks or service marks of others.

AIX® AIX 5L™ Language Environment®
OS/2® POWER™ RISC System/6000®
RS/6000®
October 2007 edition

The information contained in this document has not been submitted to any formal IBM test and is distributed on an “as is” basis without
any warranty either express or implied. The use of this information or the implementation of any of these techniques is a customer
responsibility and depends on the customer’s ability to evaluate and integrate them into the customer’s operational environment. While
each item may have been reviewed by IBM for accuracy in a specific situation, there is no guarantee that the same or similar results will
result elsewhere. Customers attempting to adapt these techniques to their own environments do so at their own risk.

 © Copyright International Business Machines Corporation 2007. All rights reserved.
This document may not be reproduced in whole or in part without the prior written permission of IBM.
Note to U.S. Government Users — Documentation related to restricted rights — Use, duplication or disclosure is subject to restrictions
set forth in GSA ADP Schedule Contract with IBM Corp.

Student Exercises
V4.1

TOC
 Contents

Trademarks . v

Exercises description . vii

Exercise 1. Using Shell Basics . 1-1

Exercise 2. Variables . 2-1

Exercise 3. Testing . 3-1

Exercise 4. Shell Programming Constructs . 4-1

Exercise 5. Shell Commands and Features . 5-1

Exercise 6. Shell Arithmetic . 6-1

Exercise 7. Typeset and Functions . 7-1

Exercise 8. More Shell Variables . 8-1

Exercise 9. Regular Expressions & Data Selection . 9-1

Exercise 10. The sed utility . 10-1

Exercise 11. Using awk . 11-1
Course materials may not be reproduced in whole or in part
without the prior written permission of IBM.

© Copyright IBM Corp. 2007 Contents iii

Student Exercises
Course materials may not be reproduced in whole or in part
without the prior written permission of IBM.

iv Korn and Bash Shell Programming © Copyright IBM Corp. 2007

Student Exercises
V4.1

TMK
 Trademarks

The reader should recognize that the following terms, which appear in the content of this
training document, are official trademarks of IBM or other companies:

IBM® is a registered trademark of International Business Machines Corporation.

The following are trademarks of International Business Machines Corporation in the United
States, or other countries, or both:

Java and all Java-based trademarks are trademarks of Sun Microsystems, Inc. in the
United States, other countries, or both.

Windows is a trademark of Microsoft Corporation in the United States, other countries, or
both.

UNIX® is a registered trademark of The Open Group in the United States and other
countries.

Linux® is a registered trademark of Linus Torvalds in the United States, other countries, or
both.

Other company, product, or service names may be trademarks or service marks of others.

AIX® AIX 5L™ Language Environment®
OS/2® POWER™ RISC System/6000®
RS/6000®
Course materials may not be reproduced in whole or in part
without the prior written permission of IBM.

© Copyright IBM Corp. 2007 Trademarks v

Student Exercises
Course materials may not be reproduced in whole or in part
without the prior written permission of IBM.

vi Korn and Bash Shell Programming © Copyright IBM Corp. 2007

Student Exercises
V4.1

Uempty
 Exercises description

None of the exercises are dependent on the preceding exercise being
successfully completed. However, it is assumed that you understand
the concepts and commands from each topic, as these will often be
used in further exercises.

Exercise Instructions - Each exercise is divided into steps. There are
not detailed instructions on how to complete each step. You are given
the opportunity to work through each step of the exercise, using what
you have learned in the unit presentation. Use your class notes as a
reference manual.

Lab Exercise Hints and Answers — This is a separate section in
your class notes, which contains the original exercises, with hints, and
most, if not all of the answers to each exercise. Several exercises,
particularly the later ones, do not have just one solution. The answer
given in this section would then be only one of several.

All scripts are available in /home/workshop.

Each exercise in this course is divided into sections as described
below. Select the section that best fits your method of performing labs.
You may elect to use a combination of these sections as appropriate.

Exercise Instructions - This section contains what it is you are to
accomplish. There are no definitive details on how to perform the
tasks. You are given the opportunity to work through the exercise
using what you learned in the unit presentation, utilizing the Student
Notebook, your past experience and maybe a little intuition.

Exercise Instructions With Hints - This section is an exact duplicate
of the Exercise Instructions section except that in addition, specific
details and/or hints are provided to help step you through the exercise.
A combination of using the Instructions section along with the
Instructions With Hints section can make for a rewarding combination
providing you with no hints when you don't want them and hints when
you need them.

Optional Exercises - This section gives you additional exercises to
perform relating to the unit of discussion. It is strictly optional and
should be performed when you have completed the required
exercises. The required exercises apply to the most important or
useful information provided in the unit. This section may help round
out the hands-on experience for a related unit.
Course materials may not be reproduced in whole or in part
without the prior written permission of IBM.

© Copyright IBM Corp. 2007 Exercises description -vii

Student Exercises
Course materials may not be reproduced in whole or in part
without the prior written permission of IBM.

-viii Korn and Bash Shell Programming © Copyright IBM Corp. 2007

Student Exercises
V1.2.2

EXempty
 Exercise 1. Using Shell Basics

What This Exercise is About

The purpose of the exercise is to review basic shell concepts and
practice shell scripting.

What You Should Be Able to Do

At the end of the lab, you should be able to:

 • Recall and edit a previous command line
 • Use I/O descriptors and redirection
 • Manipulate files using metacharacters and quoting

Introduction

After successfully logging in to the AIX system, the students will
explore their environment and review their shell basics.
Course materials may not be reproduced in whole or in part
without the prior written permission of IBM.

© Copyright IBM Corp. 1998, 2003 Exercise 1. Using Shell Basics 1-1

Student Exercises
Exercise Instructions

Logging in

__ 1. Log in to the system with a user name and password provided by your instructor. It
should be of the format teamXX where the XX is a number from 01 through 05 for
Korn Shell 88 users. The login for ksh93 is ksh93XX, where XX is a number from
01 through 05. The login for a bash shell user is bashXX, where XX is a number
from 01 to 05. The first time you log in to the system, you will be prompted to change
your password. You may keep the same password or create a new one.

Basic File Manipulation

__ 2. After logging in, create a directory structure that you will use for the rest of the labs.
Create four directories in your $HOME with the names awk, tmp, ksh, and
functions.

__ 3. There are some setup files in /home/workshop for you. They are .profile, .kshrc,
and .exrc. Copy them into your $HOME using one command line taking advantage
of some metacharacters we learned. (If you are using bash, you must copy over
.bash_profile, .bashrc, and .exrc).

__ 4. Examine the three files. You will notice there are a few errors. Make any necessary
corrections and/or additions. Log out/in and check to see if the corrections took
effect. If not, ask the instructor for help.

Basic Shells

__ 5. Show the value of the variable $$. $$ is the variable that represents the PID of your
shell. Run ps -ef and find your PID there, too. Record and remember this value.
(bash users must use echo instead of print)

__ 6. Try the following commands - press an extra <ENTER> after each one completes.
Notice the differences in the values of $$ and quotes and explain the differences of
the PIDs that are returned.

(instead of ksh, use ksh93 -c "print $$" & or bash -c "print $$" & if using these
shells)

$ ksh -c "print $$" &
$ ksh -c 'print $$' &
$ ksh -c 'print $$'
$ _

__ 7. Use vi to create a shell script in your $HOME that will print $$, and then pause for 5
seconds. Run the script four different ways (you will need to change permissions)
and note any differences. Which output matches the PID of your current shell?
Course materials may not be reproduced in whole or in part
without the prior written permission of IBM.

1-2 AIX 5L Korn Shell Programming © Copyright IBM Corp. 1998, 2003

Student Exercises
V1.2.2

EXempty
 Command Line Recall and Editing

__ 8. Use the set command to see if a command line editor is on. If it is not on, turn it on.
(To turn it on automatically every time you log in, edit your ENV file.) Take the next
five to ten minutes or so to play with the command line recall and editing features
of the shell.

Job Control

__ 9. Start a few background processes, such as sleep 999&, and so forth. Bring the
sleep 999& job to the foreground. Suspend the same job, then place it in the
background. Kill all background jobs. Use the jobs command to report the status
between your steps.

Metacharacters and Quoting

__ 10. Use metacharacters to pick out file names in the /home/workshop directory that
start with "b" then file names that end with "h" (Hint: use ls to display).

__ 11. Now show the files called "cars1" and "cars2" but no others. Finally, ls any files that
have only two characters following a "." at the end of their names. Be creative and
use some of the features shown in your student guide.

File Descriptors and Re-direction

__ 12. Copy the /etc/motd to a new file called letter under $HOME using redirection.

__ 13. Send mail to another user on your system using input redirection rather than
command line entry.

__ 14. List a non-existent file called lmnop in your $HOME directory, then do it again and
eliminate any error messages.

__ 15. Create a new document from the command line using HERE document syntax.
Then display the file.

__ 16. Set file descriptor 4 so that the output is redirected to the file /tmp/yy where yy are
your initials. List all files in your directory, using file descriptor 4, so the output goes
indirectly to /tmp/yy. Now associate file descriptor 5 with 4, so that they both output
to the same file. Repeat the listing above or execute the date command two more
times, using file descriptor 4 and then file descriptor 5 and verify the output goes to
where you think.

__ 17. Use sort and more to display /home/workshop in reverse sorted order and
“paged”. Using a similar pipeline, save the listing into a file called ls.sort. Now do
the sorted listing again (but without the reverse) and append to ls.sort.

END OF LAB
Course materials may not be reproduced in whole or in part
without the prior written permission of IBM.

© Copyright IBM Corp. 1998, 2003 Exercise 1. Using Shell Basics 1-3

Student Exercises
Exercise Instructions With Hints

Logging in

__ 1. Log in to the system with a user name and password provided by your instructor. It
should be of the format teamXX where the XX is a number from 01 through 05 for
Korn Shell 88 users. The login for ksh93 is ksh93XX, where XX is a number from 01
through 05. The login for a bash shell user is bashXX, where XX is a number from
01 to 05. The first time you log in to the system, you will be prompted to change your
password. You may keep the same password or create a new one.

$ login: teamXX
password: teamXX
teamXX's new password: teamXX
teamXX's new password again: teamXX
$ exit

Basic File Manipulation

__ 2. After logging in, create a directory structure that you will use for the rest of the labs.
Create four directories in your $HOME with the names awk, tmp, ksh, and
functions.

$ login: teamXX
password: teamXX
$ mkdir tmp ksh functions awk
$ _

__ 3. There are some setup files in /home/workshop for you. They are .profile, .kshrc,
and .exrc. Copy them into your $HOME using one command line taking advantage
of some metacharacters we learned. (If you are using bash, you must copy over
.bash_profile, .bashrc, and .exrc)

$ ls -a
ksh/ksh93 $ cp /home/workshop/.[ekp]* $HOME
bash $ cp /home/workshop/.[eb]* $HOME
$ _

__ 4. Examine the three files. You will notice there are a few errors. Make any necessary
corrections and/or additions. Log out/in and check to see if the corrections took
effect. If not, ask the instructor for help.

HINT: The .exrc file has unnecessary colons at the beginning of each line. Remove
them. The .profile/.bash_profile files need to “export” the ENV variable. The
.kshrc/.basrc files contains a misspelling -- fix it.

ALSO: You may copy all or some of the rest of the files from /home/workshop to
your $HOME directory structure. Notice they are all owned by root, while in
/home/workshop but ownership changes after you make the copy. You may want to
add execute permission to those files now or you’ll need to later.
Course materials may not be reproduced in whole or in part
without the prior written permission of IBM.

1-4 AIX 5L Korn Shell Programming © Copyright IBM Corp. 1998, 2003

Student Exercises
V1.2.2

EXempty
 Basic Shells

__ 5. Show the value of the variable $$. $$ is the variable that represents the PID of your
shell. Run ps -ef and find your PID there also. Record and remember this value.
(bash users must use echo instead of print)

$ print $$ (bash users must use echo instead of print))
$ ps -ef
$ _

__ 6. Try the following commands - press an extra <ENTER> after each one completes.
Notice the differences in the values of $$ and quotes and explain the differences of
the PIDs that are returned. (bash users must use echo instead of print))

$ ksh -c "print $$" &
$ ksh -c 'print $$' &
$ ksh -c 'print $$'
$ _

__ 7. Use vi to create a shell script in your $HOME that will print $$, and then pause for 5
seconds. Run the script four different ways (you will need to change permissions)
and note any differences. Which output matches the PID of your current shell?

$ vi prog.ksh (of course, if it's a bash, you may want to name it prog.bash)
print $$ (bash users must use echo instead of print))
sleep 5
<ESC>:wq

$ chmod 744 prog.ksh
$ prog.ksh
$ ksh prog.ksh (or bash prog.bash)
$. prog.ksh
$ exec prog.ksh
login:

Command Line Recall and Editing

__ 8. Use the set command to see if a command line editor is on. If it is not on, turn it on.
To turn it on automatically every time you log in, edit your ENV file. Take the next
five to ten minutes or so to play with the command line recall and editing features
of the shell.

$ set -o
$ set -o vi (or set -o emacs in bash)
$ cd /home/workshop
$ <ESC> k (j, h, l, +, -, /, \, =, *) (or arrow keys if in bash)
Note: refer to student guide for more information.
$ cd
$ _
Course materials may not be reproduced in whole or in part
without the prior written permission of IBM.

© Copyright IBM Corp. 1998, 2003 Exercise 1. Using Shell Basics 1-5

Student Exercises
Job Control

__ 9. Start a few background processes, such as sleep 999&, etc. Bring the sleep 999&
job to the foreground. Suspend the same job, then place it in the background. Kill all
background jobs. Use the jobs command to report the status between your steps.

$ sleep 9 &
$ sleep 99 &
$ sleep 999 &
$ jobs
$ fg %(Job#)
$ <CTRL>-z
$ jobs
$ kill %(Job#) Note: Do this for each remaining job.
$ jobs
$ _

Metacharacters and Quoting

__ 10. Use metacharacters to pick out file names in the /home/workshop directory that
start with "b", then file names that end with "h" (hint: use ls to display).

$ cd /home/workshop
$ ls b*
$ ls *h
$ _

__ 11. Now show the files called "cars1" and "cars2" but no others. Finally, ls any files that
have only two characters following a "." at the end of their names. Be creative and
use some of the features shown in your student guide.

$ ls cars[12]
$ ls *.??
$ _

File Descriptors and Re-direction

__ 12. Copy the /etc/motd to a new file called letter under $HOME using redirection.

$ cd
$ cat /etc/motd > letter
$ _

__ 13. Send mail to another user on your system using input redirection rather than
command line entry.

$ mail teamYY < letter
$ _
Course materials may not be reproduced in whole or in part
without the prior written permission of IBM.

1-6 AIX 5L Korn Shell Programming © Copyright IBM Corp. 1998, 2003

Student Exercises
V1.2.2

EXempty
 __ 14. List a non-existent file called lmnop in your $HOME directory then do it again and
eliminate any error messages.

$ cd
$ ls lmnop
$ ls lmnop 2> /dev/null
$ _

__ 15. Create a new document from the command line using HERE document syntax.
Then display the file.

$ cat > new.doc << END
> This is the first line.
> This is the second.
> END
$ cat new.doc
$ _

__ 16. Set file descriptor 4 so that the output is redirected to the file /tmp/yy where yy are
your initials. List all files in your directory, using file descriptor 4, so the output goes
indirectly to /tmp/yy. Now associate file descriptor 5 with 4, so that they both output
to the same file. Repeat the listing above or execute the date command two more
times, using file descriptor 4 and then file descriptor 5 and verify the output goes to
where you think.

$ exec 4> /tmp/yy
$ ls * >&4
$ exec 5>&4
$ ls * >&4
$ cat /tmp/yy
$ date >&5
$ cat /tmp/yy
$ _

__ 17. Use sort and more to display /home/workshop in reverse sorted order and
“paged”. Using a similar pipeline, save the listing into a file called ls.sort. Now do
the sorted listing again (but without the reverse) and append to ls.sort.

$ ls /home/workshop ¦ sort -r ¦ more
$ ls /home/workshop ¦ sort -r ¦tee ls.sort ; more ls.sort
$ ls /home/workshop ¦ sort ¦ tee -a ls.sort ; more ls.sort
$ _

END OF LAB
Course materials may not be reproduced in whole or in part
without the prior written permission of IBM.

© Copyright IBM Corp. 1998, 2003 Exercise 1. Using Shell Basics 1-7

Student Exercises
Solutions

Basic File Manipulation

4. The three files have some (hopefully) obvious errors. The .exrc file still has the
colons in the first column, the .kshrc file has “alias” spelled incorrectly, and .profile has
no export command,

Basic Shells

6. The command using the single quote prints the $$ value of the sub-shell. Within
double quotes, $$ prints the value of the current shell.

Command Line Recall and Editing

8. If vi does not appear in the set -o list, check your .profile to see if it matches what is
in /home/workshop/.profile. Recopy it to $HOME if it is different. (for bash, you are
looking for emacs to be on)

If you are using CDE, edit $HOME/.dtprofile and remove the comment mark from the
last line. Then log out and log in again.

If using an X station, you may need to make the xterm(s) behave as login shells. Do this
by running the custom tool and changing the aixterm properties, specifically the login
shell behavior to true.
Course materials may not be reproduced in whole or in part
without the prior written permission of IBM.

1-8 AIX 5L Korn Shell Programming © Copyright IBM Corp. 1998, 2003

Student Exercises
V1.2.2

EXempty
 Exercise 2. Variables

What This Exercise is About

The purpose of this exercise is to practice shell scripting using
variables and parameters.

What You Should Be Able to Do

At the end of the lab, you should be able to:

 • Set and reference variables
 • Export variables
Course materials may not be reproduced in whole or in part
without the prior written permission of IBM.

© Copyright IBM Corp. 1998, 2003 Exercise 2. Variables 2-1

Student Exercises
Exercise Instructions

Variables

__ 1. Set the variables var1 and var2 to the values of “1” and “2” respectively, then
display the values of each. Make var1 read only. Now change the value of var1 to
10. Why did it not work? Using var1 and the zero character, display the whole
number between 9 and 11. (bash users: Remember you must use echo, not print
with bash!)

__ 2. Write a shell script that prints its eleventh positional parameter (PP) without using a
shift. Write another that prints its eleventh PP by using a shift command, then
display the eleventh PP as $1. Finally, create another script by adding the command
to reset the PPs to “A”, “B”, and “C”, then display them using $*. (Remember to use
echo in bash)

__ 3. Create the program param11d.ksh to display the name of the program and the
number of PPs.

__ 4. List all your environment variables. Now list the ones that are exported and available
to a shell script. Set the CDPATH to include / and /home/teamXX. Try to cd to “etc”
(note there is no “/”). Change your primary prompt to display your command number.
Customize your MAILMSG variable. Send new mail to yourself and verify. Display
the values of $SECONDS and $RANDOM. Now do it again and explain why they
are different. Log out.

__ 5. Edit your .profile. Add a line that sets a variable so your primary prompt reflects
your present working directory. (Careful which set of quotes you use!)

__ 6. Test if the export command passes variables down to several levels of subshells.
What if you change the value along the way?

END OF LAB
Course materials may not be reproduced in whole or in part
without the prior written permission of IBM.

2-2 AIX 5L Korn Shell Programming © Copyright IBM Corp. 1998, 2003

Student Exercises
V1.2.2

EXempty
 Exercise Instructions With Hints

Variables

__ 1. Set the variables var1 and var2 to the values of “1” and “2” respectively, then
display the values of each. Make var1 read only. Now change the value of var1 to
10. Why did it not work? Using var1 and the zero character, display the whole
number between 9 and 11. (bash users: Remember you must use echo, not print
with bash!)

$ var1=1 ; var2=2 ; print $var1 $var2
$ readonly var1 (or typeset -r var1)
$ var1=10
$ print ${var1}0
$ _

__ 2. Write a shell script that prints its eleventh positional parameter (PP) without using a
shift. Write another that prints its eleventh PP by using a shift command, then
display the eleventh PP as $1. Finally, create another script by adding the command
to reset the PPs to “A”, “B”, and “C”, then display them using $*. (Remember to use
echo in bash)

$ vi param11a.ksh
print ${11}

$ param11a.ksh 1 2 3 4 5 6 7 8 9 10 11 12
$ vi param11b.ksh

print ${11}
shift 10
print $1

$ param11b.ksh one two three four five six seven eight nine
ten eleven
$ vi param11c.ksh

(Note: add these two lines to param11b.ksh)
set A B C
print $*

$ param11c.ksh a b c d e f g h i j k l m
$ _

__ 3. Create the program param11d.ksh to display the name of the program and the
number of PPs.

$ cp param11c.ksh param11d.ksh

$ vi param11d.ksh (Note: add this line to the end)
print $0 $#

$ param11d.ksh a b c d e f g h I j k l m
$ _
Course materials may not be reproduced in whole or in part
without the prior written permission of IBM.

© Copyright IBM Corp. 1998, 2003 Exercise 2. Variables 2-3

Student Exercises
__ 4. List all your environment variables. Now list the ones that are exported and available
to a shell script. Set the CDPATH to include / and /home/teamXX. Try to cd to “etc”
(note there is no “/”). Change your primary prompt to display your command number.
Customize your MAILMSG variable. Send new mail to yourself and verify. Display
the values of $SECONDS and $RANDOM. Now do it again and explain why they
are different. Log out.

$ set
$ env (or $ typeset -x)
$ CDPATH=$HOME:/
$ cd etc
$ PS1="! "
$ MAILMSG="Y'all got mail!"
$ mail teamXX < letter
$ mail
$ print $SECONDS $RANDOM
$ print $SECONDS $RANDOM
$ exit

__ 5. Edit your .profile. Add a line that sets a variable so your primary prompt reflects your
present working directory. (Careful which set of quotes you use!)

$ vi $HOME/.profile (add the line:)
export PS1='$PWD =>'

__ 6. Test if the export command passes variables down to several levels of subshells.
What if you change the value along the way?

$ x=5
$ print $x; print $$
$ export x
$ ksh (or whatever shell you want to open-i.e. bash)
$ print $x; print $$
$ x=7
$ ksh (or whatever shell you want to open)
$ print $x; print $$
$ exit
$ exit
$ print $x; print $$

END OF LAB
Course materials may not be reproduced in whole or in part
without the prior written permission of IBM.

2-4 AIX 5L Korn Shell Programming © Copyright IBM Corp. 1998, 2003

Student Exercises
V1.2.2

EXempty
 Solutions

Variables

4. Sometimes there is a delay in the mail program. The students may get frustrated.

Bash Hints

Variables

 • In the bash shell, you must use echo, not print.

 • You may want to name your bash scripts .bash instead of .ksh (this is convention only).

 • The bash shell uses .bash_profile instead of .profile and .bashrc instead of .kshrc.

 • The PS1="!" is not supported in the bash shell.
Course materials may not be reproduced in whole or in part
without the prior written permission of IBM.

© Copyright IBM Corp. 1998, 2003 Exercise 2. Variables 2-5

Student Exercises
Course materials may not be reproduced in whole or in part
without the prior written permission of IBM.

2-6 AIX 5L Korn Shell Programming © Copyright IBM Corp. 1998, 2003

Student Exercises
V1.2.2

EXempty
 Exercise 3. Testing

What This Exercise is About

The purpose of the exercise is to gain familiarity with shell testing,
signals and traps.

What You Should Be Able to Do

At the end of the lab, you should be able to:

 • Understand return codes and exit statuses
 • Conditionally execute a command, based on the success or failure

of a previous command
 • Perform file status tests
 • Perform string and numeric tests on variables
 • Send signals to processes
 • Trap a signal sent to a process and perform alternative processing

Introduction

This exercise is designed to enable you to become familiar with
various tests, both on files and variables, and for you to understand
the results of the tests. It should also enable you to perform some
basic conditional processing.

The final part of the exercise should enable you to become familiar
with the means of sending various signals to processes and how to
trap a signal sent to a shell script, and then execute further processing.
Course materials may not be reproduced in whole or in part
without the prior written permission of IBM.

© Copyright IBM Corp. 1998, 2003 Exercise 3. Testing 3-1

Student Exercises
Exercise Instructions

Remember, the bash shell does not support the print command, you must use echo.

Exit Status

__ 1. Start a new shell, exit and check the value of $?. What do you think it should be?
Use the grep utility to see if the words “IBM” or “Welcome” are within the file
/etc/motd. (Discussion item: If they are, should they be?)

__ 2. Try a pipeline starting with cat /etc/motd and use grep, wc, tee, and any other
utilities you wish to use. Then check to see what the return code (or exit status) was.
Which command does this exit code refer to?

Conditional Execution

__ 3. Type in a command line that would give a long list all files in the directory
/tmp/workshop if it exists. Now try it on /home/workshop.

__ 4. Use grep with " ¦¦ " to print the message 'This is not OS/2!' if /etc/motd does not
contain the string “IBM”.

Test with [] and [[]]

__ 5. Test for these conditions:

operator used result
/etc/hosts.equiv exists __________ _________
/bin/passwd has SUID set __________ _________
/etc/hosts is empty __________ _________
/usr/sbin/getty is a symbolic link __________ _________
/dev/rfd0 is a block special file __________ _________

__ 6. Run a series of tests to determine the file type of /unix, and what permissions it has.

__ 7. Set the variable value to a random number but don't display it. Then run some tests
to determine the value of $value. (Hint: it is somewhere in the range of 0 - 32767.)
Try using the “half again” method of dividing the range in half and search either the
lower or higher half. Then divide the range into half again,... (Hint #2: Don't forget to
check the value of $?.)
Course materials may not be reproduced in whole or in part
without the prior written permission of IBM.

3-2 AIX 5L Korn Shell Programming © Copyright IBM Corp. 1998, 2003

Student Exercises
V1.2.2

EXempty
 String Expressions

__ 8. Is the file /etc/motd more recent than /unix? Use a test to see if the “vi” option is on
or not. Check the file descriptors 2 and 3 to see if any are associated with a terminal
device. Finally, compare the value of $OLDPWD with ".." - are they effectively the
same?

Signals

__ 9. Use the kill command to get a list of defined signals for your system. Now set a
background sleep command and try sending it various signals. Write down the
effect, if any, and restart the process if it dies.

Traps

__ 10. Set a trap to ignore the "INT" signal in your current shell. Run a foreground sleep
and try to interrupt it by pressing <CTRL>-c. Try some other methods to stop the
sleep command.

__ 11. Start a subshell. Set another trap for "INT" that prints a message. Run a foreground
sleep and try to interrupt it by pressing <CTRL>-c and explain what happens.

__ 12. Exit back to your main login shell and list all of the traps that are set. Reset the "INT"
trap. Verify that <CTRL>-c works again. Now write a program that contains an "INT"
trap, prints a message, then exits. (Hint: use a sleep 9999.)

__ 13. Create a script called trap2.ksh that does the following: find / -name 'm*'; ls -R /;
date; sleep 5 AND prints out a message and sleeps for 3 seconds whenever
someone does a <CTRL>-c. Execute the script and try doing a <CTRL>-c when it
is displaying the recursive listing. Did the script exit after printing the message?
Why or why not? Try to do the <CTRL>-c during the find, date, sleep, and so forth.

__ 14. Change the trap in trap2.ksh by adding the exit command to the trap and call this
script trap3.ksh. Run the script again and do a <CTRL>-c. Do you get different
results?

END OF LAB
Course materials may not be reproduced in whole or in part
without the prior written permission of IBM.

© Copyright IBM Corp. 1998, 2003 Exercise 3. Testing 3-3

Student Exercises
Exercise Instructions With Hints

Remember, the bash shell does not support the print command, you must use echo.

Exit Status

__ 1. Start a new shell, exit and check the value of $?. What do you think it should be?
Use the grep utility to see if the words “IBM” or “Welcome” are within the file
/etc/motd. (Discussion item: If they are, should they be?)

$ ksh (or bash)
$ <CTRL>-d
$ print $?
$ grep IBM /etc/motd
$ grep Welcome /etc/motd
$ _

__ 2. Try a pipeline starting with cat /etc/motd and use grep, wc, tee, and any other
utilities you wish to use. Then check to see what the return code (or exit status) was.
Which command does this exit code refer to? Also, take a look at the new file,
pipe.line.

$ cat /etc/motd ¦ grep AIX ¦ tee pipe.line ¦ wc; print $?
$ cat pipe.line
$ _

Conditional Execution

__ 3. Type in a command line that would give a long list all files in the directory
/tmp/workshop if it exists. Now try it on /home/workshop.

$ cd /tmp/workshop && ls -al
$ cd /home/workshop && ls -al
$ _

__ 4. Use grep with " ¦¦ " to print the message 'This is not OS/2!' if /etc/motd does not
contain the string “IBM”.

$ grep IBM /etc/motd ¦¦ print This is not OS/2!
$ _
Course materials may not be reproduced in whole or in part
without the prior written permission of IBM.

3-4 AIX 5L Korn Shell Programming © Copyright IBM Corp. 1998, 2003

Student Exercises
V1.2.2

EXempty
 Test with [] and [[]]

__ 5. Test for these conditions:

operator used result
/etc/hosts.equiv exists __________ _________
/bin/passwd has SUID set __________ _________
/etc/hosts is empty __________ _________
/usr/sbin/getty is a symbolic link __________ _________
/dev/rfd0 is a block special file __________ _________

$ test -e /etc/hosts.equiv ; print $? ________
or $ test -f ________

$ test -u /bin/passwd ; print $? ________
$ test -s /etc/hosts ; print $? ________
$ test -L /usr/sbin/getty ; print $? ________
$ test -b /dev/rfd0 ; print $? ________
$ _

__ 6. Run a series of tests to determine the file type of /unix, and what permissions it has.

$ [[-e /unix]] ; print $? _____________
$ [[-f /unix]] ; print $? _____________
$ [[-s /unix]] ; print $? _____________
$ [[-w /unix]] ; print $? _____________
$ [[-r /unix]] ; print $? _____________
$ [[-x /unix]] ; print $? _____________
$ [[-u /unix]] ; print $? _____________
$ [[-g /unix]] ; print $? _____________
$ [[-k /unix]] ; print $? _____________
$ [[-L /unix]] ; print $? _____________
$ _

__ 7. Set the variable value to a random number but don't display it. Then run some tests
to determine the value of $value. (Hint: it is somewhere in the range of 0 - 32767.)
Try using the “half again” method of dividing the range in half and search either the
lower or higher half. Then divide the range into half again,... (Hint #2: Don't forget to
check the value of $?.)

$ value=$RANDOM
$ [$value -lt 16383] ; print $? _______

(repeat 2nd step as necessary) _______

Course materials may not be reproduced in whole or in part
without the prior written permission of IBM.

© Copyright IBM Corp. 1998, 2003 Exercise 3. Testing 3-5

Student Exercises
String Expressions

__ 8. Is the file /etc/motd more recent than /unix? Use a test to see if the “vi” option is on
or not. Check the file descriptors 2 and 3 to see if any are associated with a terminal
device. Finally, compare the value of $OLDPWD with ".." - are they effectively the
same?

$ [[/etc/motd -nt /unix]] ; print $? _______
$ [[-o vi]] ; print $? _______
$ [[-t 2]] ; print $? _______
$ [[-t 3]] ; print $? _______
$ [[$OLDPWD = ".."]] ; print $? _______

Signals

__ 9. Use the kill command to get a list of defined signals for your system. Now set a
background sleep command and try sending it various signals. Write down the
effect, if any, and restart the process if it dies.

$ kill -l (lowercase L)
$ sleep 99999 &
$ kill -# PID ____________
$ kill -# PID ____________
$ kill -# PID ____________
$ kill -# PID ____________
$ kill -# PID ____________
$ kill -# PID ____________
$ kill -# PID ____________

Traps

__ 10. Set a trap to ignore the "INT" signal in your current shell. Run a foreground sleep
and try to interrupt it by pressing <CTRL>-c. Try some other methods to stop the
sleep command.

$ trap '' INT
$ sleep 99
$ <CTRL>-c
$ _

__ 11. Start a subshell. Set another trap for "INT" that prints a message. Run a foreground
sleep and try to interrupt it by pressing <CTRL>-c and explain what happens.

$ ksh (or bash or ksh93)
$ trap "echo Hello world" 2
$ sleep 60
$ <CTRL>-c
$ _
Course materials may not be reproduced in whole or in part
without the prior written permission of IBM.

3-6 AIX 5L Korn Shell Programming © Copyright IBM Corp. 1998, 2003

Student Exercises
V1.2.2

EXempty
 __ 12. Exit back to your main login shell and list all of the traps that are set. Reset the "INT"
trap. Verify that <CTRL>-c works again. Now write a program that contains an "INT"
trap, prints a message, then exits. (Hint: use a sleep 9999.)

$ exit
$ trap
$ trap - INT
$ vi trap.ksh

trap "print insert message here; exit" INT
sleep 9999

$ chmod u+x trap.ksh
$ trap.ksh
<CTRL>-c
$ _

__ 13. Create a script called trap2.ksh that does the following: find / -name 'm*'; ls -R /;
date; sleep 5 AND prints out a message and sleeps for 3 seconds whenever
someone does a <CTRL>-c. Execute the script and try doing a <CTRL>-c when it
is displaying the recursive listing. Did the script exit after printing the message?
Why or why not? Try to do the <CTRL>-c during the find, date, sleep, and so forth.

$ vi trap2.ksh
trap 'echo "nice try"; sleep 3' 2
find / -name "m*"
ls -R /
date
sleep 5

$ chmod u+x trap2.ksh
$ trap2.ksh

<CTRL>-c

__ 14. Change the trap in trap2.ksh by adding the exit command to the trap and call this
script trap3.ksh. Run the script again and do a <CTRL>-c. Do you get different
results?

$ cp trap2.ksh trap3.ksh
$ vi trap3.ksh

Change the trap line to read:
trap 'echo "nice try"; sleep 3; exit' 2

$ trap3.ksh
<CTRL>-c

END OF LAB
Course materials may not be reproduced in whole or in part
without the prior written permission of IBM.

© Copyright IBM Corp. 1998, 2003 Exercise 3. Testing 3-7

Student Exercises
Solutions

Exit Status

1."IBM” should not be in the /etc/motd - if it is, oh well. The word 'Welcome' was the
basis of a court case in California whereby a hacker got off because the systems
“welcomed” him in but the administrator “failed to provide an id and password” so he
broke in. It makes you want to remove your welcome mat from your front door! Also,
note that if the hacker sees the word welcome in the motd file, it's too late - he's already
in!

Test with [] and [[]]

5.

$ test -e /etc/hosts.equiv ; print $? 0
or -d or -f
$ test -u /bin/passwd ; print $? 0
$ test -s /etc/hosts ; print $? 0
$ test -L /usr/sbin/getty ; print $? 1
$ test -b /dev/rfd0 ; print $? 1

6. Run a series of tests to determine the file type of "/unix", and what permissions it has.

$ [[-e /unix]] ; print $? 0
$ [[-f /unix]] ; print $? 0
$ [[-s /unix]] ; print $? 0
$ [[-w /unix]] ; print $? 1
$ [[-r /unix]] ; print $? 0
$ [[-x /unix]] ; print $? 0
$ [[-u /unix]] ; print $? 1
$ [[-g /unix]] ; print $? 1
$ [[-k /unix]] ; print $? 1
$ [[-L /unix]] ; print $? 0

6. and 7. These exercises may be easier for the students if they use some vi command
line recall and editing features. For instance, instead of <ESC>-k, llllllllllllllR12345 (l =
ell), the user, after guessing 16000, can change the guess to 24000 by typing r 16=24.

8. $ [[/etc/motd -nt /unix]] ; print $? 0
$ [[-o vi]] ; print $? 0
(may get 1 if emacs is on in bash instead)
$ [[-t 2]] ; print $? 0
$ [[-t 3]] ; print $? 1
$ [[$OLDPWD = ".."]] ; print $? 1

11. The trap from the parent shell overrides the trap in the child shell.
Course materials may not be reproduced in whole or in part
without the prior written permission of IBM.

3-8 AIX 5L Korn Shell Programming © Copyright IBM Corp. 1998, 2003

Student Exercises
V1.2.2

EXempty
 Exercise 4. Shell Programming Constructs

What This Exercise is About

The purpose of the exercise is to provide an opportunity for the
students to review basic testing concepts and practice shell scripting
using return codes, signals, and traps.

What You Should Be Able to Do

At the end of the lab, you should be able to:

 • Use the if - then - else construct for conditional processing
 • Write a loop, using either while - do - done or until - do - done

constructs
 • Write a finite iteration loop using the for - do - done constructs
 • Perform processing dependent on specific values using the case

construct
 • Create simple menus using the select - do - done constructs
 • Terminate an iteration of a loop, and start the next using the

continue statement
 • Terminate an entire loop using the break and/or exit statements

Introduction

This exercise is designed to familiarize you with the various methods
of performing conditional processing. It includes the constructs
covered in the lecture.
Course materials may not be reproduced in whole or in part
without the prior written permission of IBM.

© Copyright IBM Corp. 1998, 2003 Exercise 4. Shell Programming Constructs 4-1

Student Exercises
Exercise Instructions

if - then - elif - else - fi

__ 1. Write a script that reports only the nonexistence of the /etc/host file. Now perform
the same task, but from the command line.

__ 2. Write a script that checks the number of positional parameters entered. Report an
error if not at least three and include an exit status 1, otherwise, display the name of
the script ($0) and exit normally.

__ 3. Continue your script to include an else section that displays the number of positional
parameters (after the if and the then fail). Now add an elif branch to test whether
set -o vi was issued - and if false, exit with a 2. Finally, add one more elif to test the
first positional parameter. If the string is not loop or value you should exit with a
code of 3. Test all three conditions.

until & while Looping

__ 4. Begin a new subshell. Create a file with the name /tmp/$LOGNAME using the
touch command. List it with ls.

__ 5. Create a script with a simple until loop that keeps running until a /tmp/$LOGNAME
file contains some data. Run it in the background. In effect you are writing a monitor
daemon. Run this script in the background and send some data to
/tmp/$LOGNAME to wake the daemon up.

__ 6. Change your until script to a while loop that tests to make sure you have positional
parameters and if so, the loop will print each of the positional parameters in turn and
append each to the /tmp/$LOGNAME file. (Hint: remember “shift” ?)

__ 7. At the command line, enter a one-line, endless loop.

for - in Loops

__ 8. From the command line, create a for loop that will print out odd numbers less than
ten. (Hint: you may use the actual numbers in the list.)

__ 9. Write a script to do a long listing of only the names of the directories in /.
Course materials may not be reproduced in whole or in part
without the prior written permission of IBM.

4-2 AIX 5L Korn Shell Programming © Copyright IBM Corp. 1998, 2003

Student Exercises
V1.2.2

EXempty
 case Statements

__ 10. Create a script using case that checks the first positional parameter to see if it is a
filename in the current directory. If so and it ends with .tmp remove it. If it begins
with an f, then copy it to /tmp. If it contains the letter x, use the chmod command to
add execution permission. Finally, add a means that if the previous tests all fail, it
prints a message saying so. (You will need to create files in your current directory
to match the requirements.)

__ 11. Write a script, using select and case that will allow you to choose your terminal
type. Does this permanently change your TERM variable? Why or why not?

__ 12. Edit the select.ksh script and add the break statement. Then display “TERM is
now $TERM” where appropriate.

__ 13. Write a short script that will read a list of user names from a file called mail.list and
send a mail message to everyone except team01. (You will need to create mail.list
and the message file).

END OF LAB
Course materials may not be reproduced in whole or in part
without the prior written permission of IBM.

© Copyright IBM Corp. 1998, 2003 Exercise 4. Shell Programming Constructs 4-3

Student Exercises
Exercise Instructions With Hints

if - then - elif - else - fi

__ 1. Write a script that reports only the nonexistence of the /etc/host file. Now perform
the same task, but from the command line.

$ vi if-then.ksh
if [[! -f /etc/host]]
then

print no host file
fi

$ chmod u+x if-then.ksh
$ if-then.ksh
$ if [[! -f /etc/host]] ; then print no host file ; fi
$ _

__ 2. Write a script that checks the number of positional parameters entered. Report an
error if not at least three and include an exit status 1, otherwise, display the name of
the script ($0) and exit normally.

$ vi if-then-else.ksh
if [[$# -lt 3]]
then

print "Not enough PPs entered"
exit 1

else
print "There are $# PPs entered"

fi
print "This script is named $0"

$ chmod u+x if-then-else.ksh
$ if-then-else.ksh
$ if-then-else.ksh a b c d
$ _
Course materials may not be reproduced in whole or in part
without the prior written permission of IBM.

4-4 AIX 5L Korn Shell Programming © Copyright IBM Corp. 1998, 2003

Student Exercises
V1.2.2

EXempty
 __ 3. Continue your script to include an else section that displays the number of positional
parameters (after the if and the then fail). Now add an elif branch to test whether
set -o vi was issued - and if false, exit with a 2. Finally, add one more elif to test the
first positional parameter. If the string is not “loop” or “value” you should exit with a
code of 3. Test all three conditions.

$ cp if-then-else.ksh if-then-elif.ksh
$ vi if-then-elif.ksh

if [[$# -lt 3]]
then

print "Not enough PPs entered"
exit 1

elif [[!-o vi]]
then

print "Your vi option is not on"
exit 2

elif [[$1 != "loop" && $1 != "value"]]
then

print "The first PP is neither 'loop' nor 'value'"
exit 3

else
print "There are $# PPs entered"

fi
print "This script is called $0"

$ chmod u+x if-then-elif.ksh
$ if-then-elif.ksh
$ ksh (or bash)
$ set +o vi
$. if-then-elif.ksh a b c
$ ksh (or bash)
$ set -o vi
$. if-then-elif.ksh loop b c
$ _

until & while Looping

__ 4. Begin a new subshell. Create a file with the name /tmp/$LOGNAME using the
touch command. List it with ls.

$ ksh (or bash)
$ touch /tmp/$LOGNAME
$ ls /tmp
$ _
Course materials may not be reproduced in whole or in part
without the prior written permission of IBM.

© Copyright IBM Corp. 1998, 2003 Exercise 4. Shell Programming Constructs 4-5

Student Exercises
__ 5. Create a script with a simple until loop that keeps running until a /tmp/$LOGNAME
file contains some data. Run it in the background. In effect you are writing a monitor
daemon. Run this script in the background and send some data to
/tmp/$LOGNAME to wake the daemon up.

$ vi until.ksh
until [[-s /tmp/$LOGNAME]]
do

sleep 10
done
print "Got it!"

$ chmod u+x until.ksh
$ until.ksh &
$ print "Some data" >> /tmp/$LOGNAME
$ _

__ 6. Change your until script to a while loop that tests to make sure you have positional
parameters and if so, the loop will print each of the positional parameters in turn and
append each to the /tmp/$LOGNAME file. (Hint: remember “shift” ?)

$ vi while.ksh
Note: change the program to look like this:

while [[$# -gt 0]]
do

print $1
sleep 5
shift

done >> /tmp/$LOGNAME

$ chmod u+x while.ksh
$ while.ksh 1 2
$ cat /tmp/$LOGNAME
$ _

__ 7. At the command line, enter a one-line, endless loop.

$ while true ; do sleep 10 ; done
$ (use CTRL-c to stop)
Course materials may not be reproduced in whole or in part
without the prior written permission of IBM.

4-6 AIX 5L Korn Shell Programming © Copyright IBM Corp. 1998, 2003

Student Exercises
V1.2.2

EXempty
 for - in Loops

__ 8. From the command line, create a for loop that will print out odd numbers less than
ten. (Hint: you may use the actual numbers in the list.)

$ for oddnumber in 1 3 5 7 9 ; do print $oddnumber ; done
$ _

__ 9. Write a script to do a long listing of only the names of the directories in /.

$ vi for-in.ksh
for filename in /*
do

if [[-d "$filename"]]
then
ls -ld $filename

fi
done

$ chmod u+x for-in.ksh
$ for-in.ksh
$ _

case Statements

__ 10. Create a script using case that checks the first positional parameter to see if it is a
filename in the current directory. If so and it ends with .tmp remove it. If it begins
with an f, then copy it to /tmp. If it contains the letter x, use the chmod command to
add execution permission. Finally, add a means that if the previous tests all fail, it
prints a message saying so. (You will need to create files in your current directory
to match the requirements.)

$ touch pop.tmp fpop.cp pxp.ksh pop.file
$ vi case.ksh

for filename
do

case $filename in
(*.tmp) rm $filename ;;
(f*) cp $filename /tmp ;;
(*x*) chmod +x $filename ;;
(*) print "File name $filename not processed". ;;

esac
done

$ chmod u+x case.ksh
$ case.ksh pop.tmp fpop.cp pxp.ksh pop.file
$ ls -l pxp.ksh; ls pop.tmp
Course materials may not be reproduced in whole or in part
without the prior written permission of IBM.

© Copyright IBM Corp. 1998, 2003 Exercise 4. Shell Programming Constructs 4-7

Student Exercises
__ 11. Write a script, using select and case that will allow you to choose your terminal
type. Does this permanently change your TERM variable? Why or why not?

$ vi select.ksh
print 'Select your terminal type:'
PS3='terminal? '
select term in 'IBM 3151' 'WYSE 60' 'DEC vt220' 'xterm'
do

case $REPLY in
1) TERM=ibm3151 ;;
2) TERM=wyse60 ;;
3) TERM=vt220 ;;
4) TERM=xterm ;;
*) print 'invalid entry' ;;
esac

done

$ chmod u+x select.ksh
$ select.ksh
$ _

__ 12. Edit the select.ksh script and add the break statement. Then display “TERM is
now $TERM” where appropriate.

$ vi select.ksh
PS3='Select your terminal type'
select term in \

'IBM 3151' \
'WYSE 60' \
'DEC vt220' \
'xterm'

do
case $REPLY in
1) TERM=ibm3151 ; break ;;
2) TERM=wyse60 ; break ;;
3) TERM=vt220 ; break ;;
4) TERM=xterm ; break ;;
*) print 'invalid entry' ;;
esac

done
print TERM now is $TERM

$ select.ksh
$ _
Course materials may not be reproduced in whole or in part
without the prior written permission of IBM.

4-8 AIX 5L Korn Shell Programming © Copyright IBM Corp. 1998, 2003

Student Exercises
V1.2.2

EXempty
 __ 13. Write a short script that will read a list of user names from a file called mail.list and
send a mail message to everyone except team01. (You will need to create mail.list
and the message file).

$ vi party.ksh
for name in $(cat mail.list)
do
if [["$name" = "team01"]]
then

continue
else

mail $name < mail.message
fi
done

$ chmod u+x party.ksh
$ party.ksh
$ _

END OF LAB
Course materials may not be reproduced in whole or in part
without the prior written permission of IBM.

© Copyright IBM Corp. 1998, 2003 Exercise 4. Shell Programming Constructs 4-9

Student Exercises
Solutions

The scripts in these exercises are available in /home/workshop.

3.

$ set +o vi
$ ksh if-then-elif.ksh a b c
$ set -o vi
$ ksh if-then-elif.ksh loop b c

11.No, your TERM variable is not permanently changed because the script ran in a
subshell. If you want the variable to change your current environment, you must source
the script (run it with the dot command).

OPTIONAL EXERCISE:

1) Write an until loop that notifies you every 10 seconds if team20 is not logged in. When
team20 does log in, have the script notify you and end. Run the script in the background
and log team20 in from another telnet session.

Hint:

$ vi until2.ksh
until who| grep team20 > /dev/null
do

echo "team20 is not logged on"
sleep 10

done
echo "team20 has now logged on"

2) The lscfg command is used to display configuration, diagnostic and vital product data
information about a system. The data contains information such as part numbers, serial
numbers, and engineering change levels from the Customized ODM database. Not all
devices support this data. The lsattr command lists out attributes. The lscfg command
provides vital data on each device. Create a shell script that performs all 3 commands and
produces a report which can be printed.

Hint:

$ vi vpdreport.ksh
for DEV in $(lsdev -CF name)

do
echo $(lsdev -Cl $DEV -F "name location")
lsattr -EHl $DEV

done >> $HOME/d.log
lscfg -v >> $HOME/d.log

$ more $HOME/d.log
Course materials may not be reproduced in whole or in part
without the prior written permission of IBM.

4-10 AIX 5L Korn Shell Programming © Copyright IBM Corp. 1998, 2003

Student Exercises
V1.2.2

EXempty
 3) Create a script that asks the user if they would like to see customized, predefined,
defined, or available devices (use PS3) and then allows them to either enter the menu
number or the choice name (i.e. 1 or customized). Use the lsdev command to display the
devices.

Hint:

 • vi devices.ksh

PS3="What devices would you like a listing of?"
select DEV in customized predefined defined available quit
do

case $REPLY in
customized|1) lsdev -CH ;;
predefined|2) lsdev -PH ;;
defined|3) lsdev -CH | grep Defined ;;
available|4) lsdev -CH | grep Available ;;
quit|5) exit ;;
*) echo "Not a choice" ;;

esac
done

Bash Hints

 • The bash shell does not support the print command-be sure to use the echo command
in your scripts.

 • You may want to name your scripts .bash instead of .ksh - this is convention only.
Course materials may not be reproduced in whole or in part
without the prior written permission of IBM.

© Copyright IBM Corp. 1998, 2003 Exercise 4. Shell Programming Constructs 4-11

Student Exercises
Course materials may not be reproduced in whole or in part
without the prior written permission of IBM.

4-12 AIX 5L Korn Shell Programming © Copyright IBM Corp. 1998, 2003

Student Exercises
V1.2.2

EXempty
 Exercise 5. Shell Commands and Features

What This Exercise is About

The purpose of the exercise is to provide the students with a basic
review of shell commands and practice shell scripting using print, read,
eval, and fc.

What You Should Be Able to Do

At the end of the lab, you should be able to:

 • Understand the options of the print and read commands
 • Recognize the function of eval
 • Control shell environment with set options

Introduction

This exercise is designed to enable the student to use the Korn shell
built-in commands. Use of the read and print statements is very
important, as are the options to set.
Course materials may not be reproduced in whole or in part
without the prior written permission of IBM.

© Copyright IBM Corp. 1998, 2003 Exercise 5. Shell Commands and Features 5-1

Student Exercises
Exercise Instructions

Remember: bash does not support the print command, you must use echo.

__ 1. Set the value of the variable x to negative 5. Using the print command, display the
value in two different ways.

__ 2. Write a script that looks like a rolling counter that will increment from 1 to 9.

__ 3. Print a comment to your shell history file. Check your history file to verify your
results. (Korn shell only)

__ 4. Set file descriptor 3 to output to the file /tmp/yy using the exec command. Verify
your results.

Read

__ 5. Use exec to set file descriptor 4 to read input from /etc/passwd. Then read a line
from &4. and print it to STDOUT. (Hint: don't forget to use quotes!). Create a while
loop to read and print the remaining lines from -u4. Finally, read and print all the
lines from /etc/passwd again by applying re-direction at the end of the while loop.
(Korn shell only)

GETOPTS

__ 6. Type in the GETOPTS example from The Getopts Command visual found in the
Shell Commands unit and then run the program with both valid and invalid options.
Verify the program works.

FC

__ 7. Set your editor for the fc command to /usr/bin/vi - or your favorite editor. Display the
last 16 commands on your screen. Create some new command lines using ls, cd,
echo, or any other commands you like. These will be used in the next few steps.
Finally, display the last 16 again.

__ 8. Now, run the command ls -al /home/team01. Edit and execute that command again
but change it from team01 to team02 using fc -e -, or its alias, r. Continue using r a
few more times.

__ 9. Now edit and execute some of these command lines. Remember, by using fc, the
commands will automatically reexecute.
Course materials may not be reproduced in whole or in part
without the prior written permission of IBM.

5-2 AIX 5L Korn Shell Programming © Copyright IBM Corp. 1998, 2003

Student Exercises
V1.2.2

EXempty
 Set

__ 10. List the active options for your shell. Make sure you understand what these are. List
the currently exported variables (use env) then set the option for "allexport". Assign
a value to var5 and run env again. Any difference?

__ 11. Set the following options, then run the commands that follow:

$ set -u
$ print $variable_that_has_no_value

$ set -C
$ print Hello World >text
$ print Goodbye Planet >text
$ print Goodbye Planet >| text

$ set -o ignoreeof
$ <Ctrl>-d

$ set -f
$ ls *

$ set -e
$ trap "print ERRtrap" ERR
$ cd /home/nodir
$ exit (or reset by set +u, etc)

__ 12. If you have extra time, try some of the extra set commands as seen in Unit 5.

END OF LAB
Course materials may not be reproduced in whole or in part
without the prior written permission of IBM.

© Copyright IBM Corp. 1998, 2003 Exercise 5. Shell Commands and Features 5-3

Student Exercises
Exercise Instructions With Hints

Remember: bash does not support the print command, you must use echo.

__ 1. Set the value of the variable x to negative 5. Using the print command, display the
value in two different ways.

$ x=-5 ; print - $x
$ print - -5
$ _

__ 2. Write a script that looks like a rolling counter that will increment from 1 to 9.

$ vi rolling.counter.ksh
for counter in 1 2 3 4 5 6 7 8 9
do

print "$counter \r\c"
sleep 1

done
$ chmod u+x rolling.counter.ksh
$ rolling.counter.ksh
$ _

__ 3. Print a comment to your shell history file. Check your history file to verify your
results. (Korn shell only)

$ print -s This is a comment
$ more $HOME/.sh_history

Note: Choose one: cat, more, pg, or tail.
$ _

__ 4. Set file descriptor 3 to output to the file /tmp/yy using the exec command. Verify your
results.

$ exec 3> /tmp/yy
$ print Hello world >&3 ; print -u3 Goodbye Planet
$ cat /tmp/yy
$ print -u3 Hello world, again
$ cat /tmp/yy
Course materials may not be reproduced in whole or in part
without the prior written permission of IBM.

5-4 AIX 5L Korn Shell Programming © Copyright IBM Corp. 1998, 2003

Student Exercises
V1.2.2

EXempty
 Read

__ 5. Use exec to set file descriptor 4 to read input from /etc/passwd. Then read a line
from &4. and print it to STDOUT. (Hint: don't forget to use quotes!). Create a while
loop to read and print the remaining lines from -u4. Finally, read and print all the
lines from /etc/passwd again by applying re-direction at the end of the while loop.

$ exec 4< /etc/passwd
$ read -u4
$ print "$REPLY"
$ while read

> do
> print "$REPLY"
> done < /etc/passwd

$ _

GETOPTS

__ 6. Type in the GETOPTS example from The Getopts Command visual found in the
Shell Commands unit and then run the program with both valid and invalid options.
Verify the program works.

$ vi getopts.example.ksh
 #!/usr/bin/ksh (or #!/usr/bin/bash or ksh93)
 # Example of getopts
 USAGE="usage: getopts.example.ksh [+-c] [+-v] [-a argument]"
 while getopts :a:cv varflag
 do
 case $varflag in

a) argument=$OPTARG ;;
c) compile=on ;;
+c) compile=off;;
v) verbose=on ;;
+v) verbose=off;;
:) print "You forgot an argument for the switch called a." ;;
\?) print "$OPTARG is not a valid switch" ; print "$USAGE" ; exit 1 ;;

 esac
 done
 shift $(($OPTIND -1))
 print "compile is $compile; verbose is $verbose; argument is $argument"
 # END
$ chmod u+x getopts.example.ksh
$ getopts.example.ksh -c +v
$ getopts.example.ksh -c +v -a Hello
$ getopts.example.ksh +c -v
$ getopts.example.ksh -cd ROM
$ getopts.example.ksh -cva Hello
$ _
(Try more on your own.)
Course materials may not be reproduced in whole or in part
without the prior written permission of IBM.

© Copyright IBM Corp. 1998, 2003 Exercise 5. Shell Commands and Features 5-5

Student Exercises
FC

__ 7. Set your editor for the fc command to /usr/bin/vi - or your favorite editor. Display the
last 16 commands on your screen. Create some new command lines using ls, cd,
echo, or any other commands you like. These will be used in the next few steps.
Finally, display the last 16 again.

$ FCEDIT=vi
$ history

- or -
$ fc -l -15 -1
$ cd
$ ls -al
$ print $MAILMSG
$ ls /home/teamYY (Use a directory different than yours.)
$ print Hello world
$ ps -ef ¦ grep teamXX

Do as many more as you like.
$ history
$ _

__ 8. Now, run the command ls -al /home/team01. Edit and execute that command again
but change it from team01 to team02 using fc -e -, or its alias, r. Continue using r a
few more times.

$ ls -al /home/team01
$ fc -e - 1=2
$ r 2=3
$ r 3=\?
$ _

Do as many more as you like.
__ 9. Now edit and execute some of these command lines. Remember, by using fc, the

commands will automatically reexecute.
Course materials may not be reproduced in whole or in part
without the prior written permission of IBM.

5-6 AIX 5L Korn Shell Programming © Copyright IBM Corp. 1998, 2003

Student Exercises
V1.2.2

EXempty
 Set

__ 10. List the active options for your shell. Make sure you understand what these are. List
the currently exported variables (use env) then set the option for "allexport". Assign
a value to var5 and run env again. Any difference?

$ set -o
$ env | more
$ set -a
$ var5=5
$ env | more
$ _

__ 11. Set the following options, then run the commands that follow:

$ set -u
$ print $variable_that_has_no_value

$ set -C
$ print Hello World >text
$ print Goodbye Planet >text
$ print Goodbye Planet >| text

$ set -o ignoreeof
$ <Ctrl>-d

$ set -f
$ ls *

$ set -e
$ trap "print ERRtrap" ERR
$ cd /home/nodir
$ exit (or reset by set +u, etc)

__ 12. If you have extra time, try some of the extra set commands as seen in Unit 5.

End of Lab
Course materials may not be reproduced in whole or in part
without the prior written permission of IBM.

© Copyright IBM Corp. 1998, 2003 Exercise 5. Shell Commands and Features 5-7

Student Exercises
OPTIONAL EXERCISES:

__ 1. Create a script that prompts a user for filename and if the file is not an ordinary file,
the script ends. If the file is an ordinary file, give the user a menu that prompts them
to list the permissions, view, modify, or save the file. The menu should also offer the
user an “exit”. (remember bash uses echo!)

Hint:

print "Enter a file name: \c"
read filename junk
if [-f $filename]
then
 :
else
 echo "$filename is not an ordinary file"
 exit 25
fi
PS3="Please enter a number: "
select var1 in "list permissions" "view" "modify" "save to diskette"
"exit"
do

case $var1 in
"list permissions") if [-r $filename]

then echo "$filename has read permission"
fi
if [-w $filename]

then echo "$filename has write permission"
fi
if [-x $filename]

then echo "$filename has execute permission"
fi ;;

view) more $filename ;;
modify) vi $filename ;;
"save to diskette") tar -cvf /dev/fd0 $filename ;;
exit) exit ;;
*) echo "not a choice" ;;

 esac
done

__ 2. Create a script that prompts a user to type in a file they wish to find. Use the find
command to see if the file is located on the system somewhere.

clear
USAGE="locate.file filename"

[-d /tmp/locatefile.dir] || mkdir /tmp/locatefile.dir
Course materials may not be reproduced in whole or in part
without the prior written permission of IBM.

5-8 AIX 5L Korn Shell Programming © Copyright IBM Corp. 1998, 2003

Student Exercises
V1.2.2

EXempty
 if [-d /tmp/locatefile.dir]
then

:
else

print "Unable to create a temporary directory under /tmp"
exit 4

fi

results=/tmp/locatefile.dir/$$

print "\n\n***\n\n"
print "WELCOME TO THE FILE LOCATING SCRIPT\n\n"
print "***\n\n"

print "Enter the file you wish to locate: \c"
read file1 junk

if [-z "$junk"]
then

if [-n "$file1"]
then

:
else

print "\n\n******************************"
print "You did not enter a filename."
print "Correct usage is $USAGE"
print "******************************\n\n"
exit 5

fi
else

print "\n\n*************************************"
print "You entered too many files"
print "Correct usage is $USAGE"
print "*************************************\n\n"
exit 6

fi

print "\n\n************************************"
print "Please be patient, this may take a while."
print "*********************************\n\n"

find / -name $file1 > $results 2> /dev/null
Course materials may not be reproduced in whole or in part
without the prior written permission of IBM.

© Copyright IBM Corp. 1998, 2003 Exercise 5. Shell Commands and Features 5-9

Student Exercises
if [-s $results]
then

print "\n\n**"
print "Here are the results, use the space bar to browse."
print "**\n\n"
sleep 6
more $results

else
print "\n\n**********************************"
print "I'm sorry, unable to locate $file1"
print "***********************************\n\n"

fi

rm $results

END OF LAB
Course materials may not be reproduced in whole or in part
without the prior written permission of IBM.

5-10 AIX 5L Korn Shell Programming © Copyright IBM Corp. 1998, 2003

Student Exercises
V1.2.2

EXempty
 Solutions

The scripts in these exercises are available in /home/workshop.

Set

11.

After each of the next steps. The display shows:

print variable_that_has_no_valueparameter not set
print "Hello World" > text
print "Goodbye Planet" > text ksh: text: file already exists
print "Goodbye Planet" >| text
<Ctrl>-d you must type "exit"
ls * * not found
cd /home/nodir ksh:/home/nodir not found

BASH HINTS:

 • Bash does not support the print command, you must use echo.

 • When using echo's special characters (such as \r\c in the rolling counter script) use the
-e option with echo.

 • The -u and the -s option are not supported in the bash shell.

 • Remember, bash does not support "+" options in getopts!
Course materials may not be reproduced in whole or in part
without the prior written permission of IBM.

© Copyright IBM Corp. 1998, 2003 Exercise 5. Shell Commands and Features 5-11

Student Exercises
Course materials may not be reproduced in whole or in part
without the prior written permission of IBM.

5-12 AIX 5L Korn Shell Programming © Copyright IBM Corp. 1998, 2003

Student Exercises
V1.2.2

EXempty
 Exercise 6. Shell Arithmetic

What This Exercise is About

This exercise is concerned with performing arithmetic calculations,
using expr, let, and the bc utility.

What You Should Be Able to Do

At the end of the lab, you should be able to:

 • Use expr for basic arithmetic and for logic evaluations
 • Use let statements to perform arithmetic
 • Use the bc utility for both simple arithmetic and complex

mathematical evaluations

Introduction

This exercise is intended to give the student some practice with
arithmetic techniques and to learn how to perform some logical tests
that are not shell based.
Course materials may not be reproduced in whole or in part
without the prior written permission of IBM.

© Copyright IBM Corp. 1998, 2003 Exercise 6. Shell Arithmetic 6-1

Student Exercises
Exercise Instructions

Expr.

__ 1. Use expr to evaluate the sum "10 - 5 * (4 / 2)". Display your answer and the return
code.

__ 2. Evaluate " 10 % 3 - 3 ". Display your answer and the return code.

__ 3. Set some variables with values. Try some calculations with these.

Logical Evaluations and Let Operations

__ 4. Guess the results of the examples below, then perform the evaluations:

evaluate result $?
$ expr a = b _______ _______
$ expr 1 \& 2 _______ _______
$ expr 0 \& 0 _______ _______
$ expr 0 \¦ 2 _______ _______
$ expr a \¦ b _______ _______

__ 5. Try some simple let operations using the three variables set in the expr exercise.

evaluate result $?
$ ((var1 + var2)) _______ _______
$ let "var1 - var1" _______ _______
$ ((var4=var2+var2)) _______ _______
$ let "var6 = var3 * (var3-var1)" ; print $var6 _______ _______
$ let var7=4+3 var8=var7+1 ; print $var7 $var8 _______ _______

__ 6. Use the following if construct to test some logical lets:

$ if substitute expression here
> then
> print True
> else
> print False
> fi
$ _
Use these expressions: prediction result
((1 != var1)) _______ _______
let "var1 -= 1|| var1 >= 2” _______ _______
let "var1==1 && var2==2” _______ _______
((var1 != 1 ¦¦ var2 == 2)) _______ _______

__ 7. Declare another integer, w, and use it to display the sum of x, y, and z without using
a let or (()) instruction.
Course materials may not be reproduced in whole or in part
without the prior written permission of IBM.

6-2 AIX 5L Korn Shell Programming © Copyright IBM Corp. 1998, 2003

Student Exercises
V1.2.2

EXempty
 Integers and Bases

__ 8. Declare some integers variables, and define some using base 8 and 16. Use the
examples:

$ integer l=10 m=13
$ typeset -i8 n=8 o=12
$ typeset -i16 p=16 q=10

__ 9. Print each variable and explain why your answer is what it is.

__ 10. Finally, convert the value of m into base 16 by assigning it into the base 16 variable
declared above. Convert the value of q into base 8 and the value of n into base 10.

bc Utility

__ 11. Try some simple operations with bc:

$ print "scale = 3; 10/6" ¦ bc
$ print "scale = 4 ; (10/3) * 3" ¦ bc
$_

__ 12. Write a script to calculate pi to a specified, by $1, number of decimal places. (Hint: pi
is 4 times the arc tangent of 1.) (Better hint: Use 4 * a(1) in your formula.)

This program will only accept a scale value as high as ____ .

Find the limit using the trial and error method.

END OF LAB
Course materials may not be reproduced in whole or in part
without the prior written permission of IBM.

© Copyright IBM Corp. 1998, 2003 Exercise 6. Shell Arithmetic 6-3

Student Exercises
Exercise Instructions With Hints

Expr.

__ 1. Use expr to evaluate the sum "10 - 5 * (4 / 2)". Display your answer and the return
code.

$ expr 10 - 5 * \(4 / 2 \)
$ print $?
$_

__ 2. Evaluate " 10 % 3 - 3 ". Display your answer and the return code.

$ expr 10 % 3 - 3
$ print $?
$_

__ 3. Set some variables with values. Try some calculations with these.

$ var1=1 ; var2=2 ; var3=3
$ expr $var1 - $var2 + $var3
$ print $?
$_

Logical Evaluations and Let Operations

__ 4. Guess the results of the examples below, then perform the evaluations:

evaluate result $?
$ expr a = b _______ _______
$ expr 1 \& 2 _______ _______
$ expr 0 \& 0 _______ _______
$ expr 0 \¦ 2 _______ _______
$ expr a \¦ b _______ _______
$ _

__ 5. Try some simple let operations using the three variables set in the expr exercise.

evaluate result $?
$ ((var1 + var2)) _______ _______
$ let "var1 - var1" _______ _______
$ ((var4=var2+var2)) _______ _______
$ let "var6 = var3 * (var3-var1)" ; print $var6 _______ _______
$ let var7=4+3 var8=var7+1 ; print $var7 $var8 _______ _______
$ _
Course materials may not be reproduced in whole or in part
without the prior written permission of IBM.

6-4 AIX 5L Korn Shell Programming © Copyright IBM Corp. 1998, 2003

Student Exercises
V1.2.2

EXempty
 __ 6. Use the following if construct to test some logical lets:

$ if substitute expression here
> then
> print True
> else
> print False
> fi
$ _

Use these expressions: prediction result
((1 != var1)) _______ _______
let "var1 -= 1||var1 >= 2” _______ _______
let "var1==1 && var2==2” _______ _______
((var1 != 1 ¦¦ var2 == 2)) _______ _______

__ 7. Declare another integer, w, and use it to display the sum of x, y, and z without using
a let or (()) instruction.

$ x=3 ; y=6 ; z=9
$ integer w
$ w=x+y+z
$ print $w
$_

Integers and Bases

__ 8. Declare some integers variables, and define some using base 8 and 16. Use the
examples:

$ integer l=10 m=13
$ typeset -i8 n=8 o=12
$ typeset -i16 p=16 q=10
$_

__ 9. Print each variable and explain why your answer is what it is.

$ print $l $m
$ print $n $o
$ print $p $q
$_

__ 10. Finally, convert the value of m to base 16 by assigning it into the base 16 variable
declared above. Convert the value of q into base 8, and the value of n into base10.

$ l=$n ; print $l
$ o=$q ; print $o
$ p=$m ; print $p
$_
Course materials may not be reproduced in whole or in part
without the prior written permission of IBM.

© Copyright IBM Corp. 1998, 2003 Exercise 6. Shell Arithmetic 6-5

Student Exercises
bc Utility

__ 11. Try some simple operations with bc:

$ print "scale = 3; 10/6" ¦ bc
$ print "scale = 4 ; (10/3) * 3" ¦ bc
$_

__ 12. Write a script to calculate pi to a specified, by $1, number of decimal places. (Hint: pi
is 4 times the arc tangent of 1.) (Better hint: Use 4 * a(1) in your formula.)

$ vi picalc.ksh
print "scale=$1 ; 4*a(1)" ¦ bc -l

$ chmod u+x picalc.ksh
$ picalc.ksh x
$_

This program will only accept a scale value as high as ____ .

$ picalc.ksh 1

Find the limit using the trial and error method.

$ picalc.ksh 2
$ picalc.ksh 3
$ picalc.ksh 4
$ picalc.ksh 5
$ picalc.ksh 6
$ picalc.ksh 7
$ _

END OF LAB
Course materials may not be reproduced in whole or in part
without the prior written permission of IBM.

6-6 AIX 5L Korn Shell Programming © Copyright IBM Corp. 1998, 2003

Student Exercises
V1.2.2

EXempty
 Solutions

The scripts in these exercises are available in /home/workshop.

Expr

1. $ expr 10 - 5 * \(4 / 2 \) 0
 $ print $? 1

2. $ expr 10 % 3 - 3 - 2 -2
 $ print $? 0

3. $ var1=1 ; var2=2; var3=3
 $ expr $var1 - $var2 + $var3 2
 $ print $? 0

Logical Evaluations and Let Operations

4. evaluate result $?
$ expr a = b 0 1
$ expr 1 \& 2 1 0
$ expr 0 \& 0 0 1
$ expr 0 \| 2 2 0
$ expr a \| b a 0

5. evaluate result $?
$ ((var1 + var2)) 0
$ let "var1 - var1" 1
$ ((var4=var2+var2)) 0
$ let "var6 = var3 * (var3-var1)" ; print $var6 6 0
$ let var7=4+3 var8=var7+1 ; print $var7 $var8 7,8 0

6. Use these expressions: prediction result
((1 != var1)) F
let "var1 -= 1"||"var1 >= 2" F
let "var1==1 && var2==2" F
((var1 != 1 || var2 == 2)) T

7. $ print $w 18

Integers and Bases

9. $ print $l $m 10 13
 $ print $n $o 8#10 8#14
Course materials may not be reproduced in whole or in part
without the prior written permission of IBM.

© Copyright IBM Corp. 1998, 2003 Exercise 6. Shell Arithmetic 6-7

Student Exercises
 $ print $p $q 16#10 16#A

10.$ l=$n; print $l 8
 $ o=$q; print $o 8#12
 $ p=$m; print $p 16#d

bc Utility

11.$ print "scale = 3 ; 10/6" | bc 1.666
 $ print "scale = 4 ; (10/3) * 3" | bc 9.9999

12.This program will only accept a scale value as high as 98.

BASH HINTS

 • The bash shell does not support the print command-you must use the echo command.
Course materials may not be reproduced in whole or in part
without the prior written permission of IBM.

6-8 AIX 5L Korn Shell Programming © Copyright IBM Corp. 1998, 2003

Student Exercises
V1.2.2

EXempty
 Exercise 7. Typeset and Functions

What This Exercise is About

The purpose of this exercise is to familiarize the student with arrays,
command substitution, function definition, and usage and the creation
of aliases.

What You Should Be Able to Do

At the end of the lab, you should be able to:

 • Understand how to define and access arrays and array elements
 • Perform command substitution
 • Define and use functions
 • Understand the behavior of variables in functions
 • Use traps in functions to control signals
 • Create libraries of functions and understand how to load them
 • Create new commands using aliases

Introduction

This exercise is intended to give you experience in command
substitution, functions and aliases.
Course materials may not be reproduced in whole or in part
without the prior written permission of IBM.

© Copyright IBM Corp. 1998, 2003 Exercise 7. Typeset and Functions 7-1

Student Exercises
Exercise Instructions

Arrays

__ 1. Define an array “colors” to hold red, yellow, green, blue, black, orange, and white.
Display the entire array, then print only the colors of your flag.

__ 2. Add purple as element number 8 and display all. Is it as you expected? Change
element 5 to brown and display again. Finally, eliminate yellow from the array and
display what is left.

__ 3.

Command Substitutions

__ 4. Store the /etc/passwd file into a variable in two different ways.

__ 5. Print out how many users are logged on in sentence form using command
substitution.

__ 6. Use expr to calculate the sum "10 + 3 / (4 - 2) ", nesting will be required, and
assign it to the variable called sum. Then, use a while loop to print out the numbers
0 to 9 with the print control "\c" character, command substitute the output so the
variable called string holds "0123456789". You can use this format:

string=$(______ ; while ______ ; do ______ ; done)

(Hint: You may want to use set -x to watch what happens.)

__ 7. What is the difference between these two?

 PS1="$PWD $ "
 PS1='$PWD $ '

Functions

__ 8. Create a script with a function called add that adds up two numbers passed to it as
positional parameters.

__ 9. Make these additions to the script and predict the outcomes after each line:

Add a statement inside the function to print the value of $0.

Set a variable, testvar, in your main program giving it the value of 1. Print it inside and
outside your function.

Following that testvar print line, set the variable to 2 inside your function. Print it inside
and outside your function.

Insert the command typeset testvar in front of the second assignment. What will this
do?
Course materials may not be reproduced in whole or in part
without the prior written permission of IBM.

7-2 AIX 5L Korn Shell Programming © Copyright IBM Corp. 1998, 2003

Student Exercises
V1.2.2

EXempty
 __ 10. Still using the same script: (predict the outcomes after each line)

Place return 2 inside your function definition. Print $? upon return from the function call.

Replace return 2 with exit 2. What happens now?

Remove the exit 2 line. After the first call to your function, add the line:

unset -f function (where function is the name)

Try calling the function again, and explain what happens.

__ 11. Continuing with the same script: (predict the outcomes after each line)

Set a trap for INT in the main body of your program (before the function call).

Set another trap at the top of your function definition.

Change the trap in the main body to trap "" INT . What happens now?

Typeset and Variables

__ 12. Define this function at the command line level and invoke it to ensure it works:

$ function exp
{
print "In function"
}

$ exp
$_

__ 13. From the command line, list all exported variables without their values. Then list the
readonly ones and explain why they might be protected. Finally, list the integer
variables with their associated values.

__ 14. Create a new variable with:

typeset -i8 a[2]

Assign values to both elements, print all array elements, assign a value to element
number 4, and reprint all elements. Did this work as expected? (Korn Shell only)

Aliases

__ 15. Define an alias for ls that will always list files beginning with "." along with regular
files in your $PWD. Try it once with double quotes, and once with single quotes. Any
difference? Next, clear this new alias and ensure the real ls works again.

__ 16. List all the tracked aliases for your shell. Set the trackall option then run a number
of AIX commands: ls, cat, cp, touch, and so forth, then re-examine the “tracked
aliases” you have. (For the bash shell use the hash command, see student
notebook)
Course materials may not be reproduced in whole or in part
without the prior written permission of IBM.

© Copyright IBM Corp. 1998, 2003 Exercise 7. Typeset and Functions 7-3

Student Exercises
Eval

__ 17. Set four positional parameters to any values. Then display the last argument (Hint:
use \$$#). Is that what you expected? Now run the same command, but place eval
in front of the first word. Is that better? To verify what happened, set xtrace on, and
retype the last command.

__ 18. Using eval with a for loop, set four variables: var1, var2, var3, and var4 to the
numbers 1, 2, 3, and 4. Print out the results and verify.

END OF LAB
Course materials may not be reproduced in whole or in part
without the prior written permission of IBM.

7-4 AIX 5L Korn Shell Programming © Copyright IBM Corp. 1998, 2003

Student Exercises
V1.2.2

EXempty
 Exercise Instructions With Hints

Arrays

__ 1. Define an array “colors” to hold red, yellow, green, blue, black, orange, and white.
Display the entire array, then print only the colors of your flag. (Bash users should
use ‘echo’ instead of ‘print’)

ksh$ set -A colors red yellow green blue black orange white
bash$ colors=(red yellow green blue black orange white)
$ print ${colors[*]}

- or -
$ print ${colors[@]}
$ for shade in 0 6 3

> do
> print ${colors[$shade]}
> done

$ _

__ 2. Add purple as element number 8 and display all. Is it as you expected? Change
element 5 to brown and display again. Finally, eliminate yellow from the array and
display what is left.

$ colors[8]=purple
$ print ${colors[*]}
$ colors[5]=brown
$ print ${colors[*]}
$ colors[1]=
$ print ${colors[*]}
$ _

Command Substitutions

__ 3. Store the /etc/passwd file into a variable in two different ways.

$ variable=`cat /etc/passwd`
$ print $variable
$ variable=$(< /etc/passwd)
$ print $variable
$ _

__ 4. Print out how many users are logged on in sentence form using command
substitution.

$ print "There are $(who| wc -l) users logged on the system."
Course materials may not be reproduced in whole or in part
without the prior written permission of IBM.

© Copyright IBM Corp. 1998, 2003 Exercise 7. Typeset and Functions 7-5

Student Exercises
__ 5. Use expr to calculate the sum "10 + 3 / (4 - 2) ", nesting will be required, and
assign it to the variable called sum. Then, use a while loop to print out the numbers
0 to 9 with the print control "\c" character, command substitute the output so the
variable called string holds "0123456789". You can use this format:

string=$(______ ; while ______ ; do ______ ; done)

(Hint: You may want to use set -x to watch what happens.)

$ sum=$(expr 10 + 3 / \(4 - 2 \)) ; print $sum
$ string=$(s=-1 ; while (((s+=1) <= 9)) ; do print "$s\c" ;
done)
$ print $string
$ _

__ 6. What is the difference between these two?

 PS1="$PWD $ "
 PS1='$PWD $ '

$ PS1="$PWD $ "
(Change directories many times and watch what happens)

$ PS1='$PWD $ '
(Change directories many times and watch what happens)

$ _

Functions

__ 7. Create a script with a function called add that adds up two numbers passed to it as
positional parameters.

$ vi add
 function add
 {
 let sum=$1+$2
 }
 add $1 $2
 print $sum

$ chmod u+x add
$ add 3 5

8

$ _
Course materials may not be reproduced in whole or in part
without the prior written permission of IBM.

7-6 AIX 5L Korn Shell Programming © Copyright IBM Corp. 1998, 2003

Student Exercises
V1.2.2

EXempty
 __ 8. Make these additions to the script and predict the outcomes after each line:

Add a statement inside the function to print the value of $0.

Set a variable, testvar, in your main program giving it the value of 1. Print it inside and
outside your function.

Following that testvar print line, set the variable to 2 inside your function. Print it inside
and outside your function.

Insert the command typeset testvar in front of the second assignment. What will this
do?

$ vi add2 (script should look like this)
 function add2
 {
 let sum=$1+$2
 print function name = $0
 print testvar inside = $testvar
 typeset testvar
 testvar=2
 print testvar inside = $testvar
 }
 testvar=1
 print testvar outside = $testvar
 add2 $1 $2
 print sum outside = $sum
 print testvar outside = $testvar

$ chmod u+x add2
$ add2 3 5
$ _

__ 9. Still using the same script: (predict the outcomes after each line)

Place return 2 inside your function definition. Print $? upon return from the function call.

Replace return 2 with exit 2. What happens now?

Remove the exit 2 line. After the first call to your function, add the line:

unset -f function (where function is the name)

Try calling the function again, and explain what happens.

$ vi add3 (script should look like this)
 function add3
 {
 let sum=$1+$2
 print function name = $0
 print testvar inside = $testvar
 typeset testvar
 testvar=2
Course materials may not be reproduced in whole or in part
without the prior written permission of IBM.

© Copyright IBM Corp. 1998, 2003 Exercise 7. Typeset and Functions 7-7

Student Exercises
 print testvar inside = $testvar
 return 2 # then exit 2, then remove
 }
 testvar=1
 print testvar outside = $testvar
 add3 $1 $2
 print return code = $?
 print sum outside = $sum
 print testvar outside = $testvar
 unset -f add3 # then remove
 add3 $1 $2 # then remove
$ chmod u+x add3
$ add3 3 5
$ _

__ 10. Continuing with the same script: (predict the outcomes after each line)

Set a trap for INT in the main body of your program (before the function call).

Set another trap at the top of your function definition.

Change the trap in the main body to trap "" INT . What happens now?

$ vi add4 (script should look like this)
 function add4
 { # 1) new line here
 trap "print function received INT ; exit" INT
 print function name = $0
 print testvar inside = $testvar
 typeset testvar
 testvar=2
 print testvar inside = $testvar
 let sum=$1+$2
 return 2
 }
 testvar=1
 print testvar outside = $testvar
 trap "print program received INT ; exit" INT
 # trap "" INT
 sleep 9
 add4 $1 $2
 print return code = $?
 print sum outside = $sum
 print testvar outside = $testvar
$ chmod u+x add4
$ add4 3 5
$ _
Course materials may not be reproduced in whole or in part
without the prior written permission of IBM.

7-8 AIX 5L Korn Shell Programming © Copyright IBM Corp. 1998, 2003

Student Exercises
V1.2.2

EXempty
 Typeset (or declare) and Variables

__ 11. Define this function at the command line level and invoke it to ensure it works:

$ function exp
{
print "In function"
}

$ exp
$_

__ 12. From the command line, list all exported variables without their values. Then list the
readonly ones and explain why they might be protected. Finally, list the integer
variables with their associated values. Bash users: use ‘declare’

$ typeset +x
$ typeset +r
$ typeset -i
$ _

__ 13. Create a new variable with:

typeset -i8 a[2]

Assign values to both elements, print all array elements, assign a value to element
number 4, and reprint all elements. Did this work as expected? (Korn Shell only)

$ typeset -i8 a[2]
$ a=1 ; a[1]=2
$ print ${a[@]}
$ a[4]=4 ; print ${a[@]}
$ _

Aliases

__ 14. Define an alias for ls that will always list files beginning with "." along with regular
files in your $PWD. Try it once with double quotes, and once with single quotes. Any
difference? Next, clear this new alias and ensure the real ls works again.

$ alias ls="ls -a $PWD"
$ ls
$ cd /
$ ls
$ alias
$ alias ls='ls -a $PWD'
$ ls
$ cd -
$ ls
$ alias
$ unalias ls
Course materials may not be reproduced in whole or in part
without the prior written permission of IBM.

© Copyright IBM Corp. 1998, 2003 Exercise 7. Typeset and Functions 7-9

Student Exercises
__ 15. List all the tracked aliases for your shell. Set the trackall option then run a number
of AIX commands: ls, cat, cp, touch, and so forth, then re-examine the “tracked
aliases” you have. (For the bash shell use the hash command, see student
notebook)

$ alias -t
$ set -o trackall
$ ls
$ cat /etc/motd
$ cp /etc/motd my.motd
$ touch your.motd
$ alias -t
$ _

Eval

__ 16. Set four positional parameters to any values. Then display the last argument (Hint:
use \$$#). Is that what you expected? Now run the same command, but place eval
in front of the first word. Is that better? To verify what happened, set xtrace on, and
retype the last command.

$ set a b c d
$ print The last argument is \$$#
$ eval print The last argument is \$$#
$ set -x
$ eval print The last argument is \$$#

+ eval print The last argument is $4
+ print The last argument is d

$ set +x
$ _

__ 17. Using eval with a for loop, set four variables: var1, var2, var3, and var4 to the
numbers 1, 2, 3, and 4. Print out the results and verify.

$ vi eval.ksh
for i in 1 2 3 4
do

eval var$i=$i
eval print var$i = \$var$i

done

$ chmod u+x eval.ksh
$ eval.ksh
$ _

END OF LAB
Course materials may not be reproduced in whole or in part
without the prior written permission of IBM.

7-10 AIX 5L Korn Shell Programming © Copyright IBM Corp. 1998, 2003

Student Exercises
V1.2.2

EXempty
 Optional Exercises

__ 1. Use the system variable SECONDS to put the time of day into your prompt. (This file
is located in /home/workshop/settime.ksh)

$ vi .profile
export SECONDS="$(date '+3600*%H+60*%M+%S')"
typeset -Z2 hour minute
timenow='$(((hour=(SECONDS/3600)%24))).$(((minute=SECONDS/60%60))'
export PS1="($timenow) > "

$. .profile
12:34 > _

__ 2. Define the array below to hold a sequence of alphabet characters:

$ set -A chars z a b c d e f g h i j k l m n o p q r s t u v w x y z

Write a function that expects an alphabet character as its only positional parameter. It
should work out the position of the character in the array “chars” using a while loop to
progress through the array until a match is found. When you have found the array
element number of the positional parameter passed to the function, print out the next
character in the array. For example, you type m, it prints n. You need to load the
function first by running the script.

$ vi bet
 function bet
 {
 integer n=0
 while [[${chars[n]} != $1]]
 do
 n=n+1
 done
 if [[n -eq 26]]
 then
 print a
 else
 print ${chars[n+1]}
 fi
 }
$ bet m
n
$ _
Course materials may not be reproduced in whole or in part
without the prior written permission of IBM.

© Copyright IBM Corp. 1998, 2003 Exercise 7. Typeset and Functions 7-11

Student Exercises
__ 3. Type in the card dealing pickacard.ksh program from Unit 7. Play with it to verify it
works, then adapt it so it deals another card by request. Use let for loop control and
case to handle the evaluation of card values. Have the program print out the total
value of the cards chosen and the name of each of card picked.

Logic hints:

Initialize loop counters, card value total, deck array size (52)
set-up card deck array
while total value < 21 and "yes" to another card

pick a card - choose a random array element (% deck size)
print the card chosen
add its value to the total value so far
print the total value so far selected
ask if another card is to be drawn
put the last card in the deck in place of the chosen card
reduce the card deck size by 1

repeat the loop

$ vi pickacard.ksh
#!/usr/bin/ksh
This is an example of the complete program
integer number=0 total=0 size=52 element
for suit in CLUBS DIAMONDS HEARTS SPADES
do
 for value in ACE 2 3 4 5 6 7 8 9 10 JACK QUEEN KING
 do
 card[number]="$value of $suit"
 number=number+1
 done
done
another_card=yes
while ((total < 21)) && [["$another_card" = "yes"]]
do
 element=RANDOM%size
 choice=${card[element]}
 print $choice
 case $choice in
 (KING*) total=total+10 ;;
 (QUEEN*) total=total+10 ;;
 (JACK*) total=total+10 ;;
 (10*) total=total+10 ;;
 (9*) total=total+9 ;;
 (8*) total=total+8 ;;
 (7*) total=total+7 ;;
 (6*) total=total+6 ;;
Course materials may not be reproduced in whole or in part
without the prior written permission of IBM.

7-12 AIX 5L Korn Shell Programming © Copyright IBM Corp. 1998, 2003

Student Exercises
V1.2.2

EXempty
 (5*) total=total+5 ;;
 (4*) total=total+4 ;;
 (3*) total=total+3 ;;
 (2*) total=total+2 ;;
 (ACE*) total=total+1 ;;
 (*) print "Do you always cheat?" ;;
 esac
 print That makes $total
 read another_card?"Another card [yes or no]: "
 size=size-1
 card[element]=${card[size]}
done

$ ksh pickacard.ksh
$ _

END OF LAB
Course materials may not be reproduced in whole or in part
without the prior written permission of IBM.

© Copyright IBM Corp. 1998, 2003 Exercise 7. Typeset and Functions 7-13

Student Exercises
Solutions

The scripts in these exercises are available in /home/workshop.

Command Substitutions

5. Want to see what happened? Type

set -x

at the prompt and run the command again.

6. What is the difference between these two substitutions?

$ PS1="$PWD $ "(Change directories many times and watch what happens)

WON'T change as you 'cd'

$ PS1='$PWD $ '(Change directories many times and watch what happens)

WILL change as you 'cd'

Typeset and Variables

12. They are protected to keep the system secure from the users!

13. $ print ${a[@]} 1 2 4

BASH HINTS:

 • Bash does not support the print command, you must use echo instead.

 • Bash does not support the typeset command, you must use declare instead.

 • set -A is not supported in the bash shell. Instead you can set up an array on one
command line like this “colors=(red yellow green blue black orange white)”
Course materials may not be reproduced in whole or in part
without the prior written permission of IBM.

7-14 AIX 5L Korn Shell Programming © Copyright IBM Corp. 1998, 2003

Student Exercises
V1.2.2

EXempty
 Exercise 8. More Shell Variables

What This Exercise is About

The purpose of the exercise is to familiarize the student with the
concepts of handling information contained in strings, specifically
those held in variables.

What You Should Be Able to Do

At the end of the lab, you should be able to:

 • Manipulate character strings
 • Understand and use more typeset options

Introduction

This exercise will test the knowledge learned regarding some complex
shell syntax for command line expansions as a means of saving
execution time.
Course materials may not be reproduced in whole or in part
without the prior written permission of IBM.

© Copyright IBM Corp. 1998, 2003 Exercise 8. More Shell Variables 8-1

Student Exercises
Exercise Instructions

Variable Replacements

__ 1. Run the env command to examine your environment variables with the export
attribute. If TMOUT is not currently set, use the ${ } syntax to set it to 60 seconds.
Then using the null command, how can you produce an error message if the
variable "var" is not set, but produce no output or side-effects if it is?

__ 2. View /etc/profile for TERMDEF and explain how it does what it does.

String Manipulations

__ 3. Set a variable to hold an eight character string, such as var=abcdefgh. Use the
shell ${ % or # } syntax to chop the string into eight one character strings: var1 to
var8. (Hint, use your <ESC>k or up arrow to lessen the amount of typing.)

__ 4. Use the Korn shell typeset or Bash shell declare command to re-chop the var string
into eight more one character strings, type1 to type8. (Korn Shell only, bash users
can try printf if interested)

__ 5. Write a script that asks a user to enter their e-mail address, and then address them
by their username only. (That is, user enters mary_smith@us.com, you reply "hello
mary_smith!"

Formatting (Korn Shell only)

__ 6. Set the following variables:

num1=000001

num2=000123

num3=012345

Use typeset to clear the zeros and print the numbers.

__ 7. Use typeset with a while loop to print the numbers 1 to 10 in a two-digit format:, 01,
02, 03, ... 10. (Hint: while (((i=i+1)<= 10))

__ 8. Transform an uppercase string into lowercase. What happens if the string used is
mixed case?
Course materials may not be reproduced in whole or in part
without the prior written permission of IBM.

8-2 AIX 5L Korn Shell Programming © Copyright IBM Corp. 1998, 2003

Student Exercises
V1.2.2

EXempty
 Challenge

__ 9. In some shells, notably the C Shell, there are functions named pushd and popd that
implement a stack of directory names. This allows you to move to another directory
temporarily and remember where you were. This is helpful when doing work
between two directories. You want to be able to tell the user where they are after the
function completes. A stack is a last-in, first-out list. Write two suitable Shell
functions.

Use shell ${# or % } syntax to get the directory name. What do you do if the list is
empty?

Hint: you will need to initialize the stack only on the first use of the function.

What else might you have to do before using either function?

END OF LAB
Course materials may not be reproduced in whole or in part
without the prior written permission of IBM.

© Copyright IBM Corp. 1998, 2003 Exercise 8. More Shell Variables 8-3

Student Exercises
Exercise Instructions With Hints

Variable Replacements

__ 1. Run the env command to examine your environment variables with the export
attribute. If TMOUT is not currently set, use the ${ } syntax to set it to 60 seconds.
Then using the null command, how can you produce an error message if the
variable "var" is not set, but produce no output or side-effects if it is?

$ env
$ unset TMOUT
$ TMOUT=${TMOUT:=60}
$ print $TMOUT
$ print ${var?this is an error message}
$ _

__ 2. View /etc/profile for TERMDEF and explain how it does what it does.

$ more /etc/profile
$ _

String Manipulations

__ 3. Set a variable to hold an eight character string, such as var=abcdefgh. Use the
shell ${ % or # } syntax to chop the string into eight one character strings: var1 to
var8. (Hint, use your <ESC>k or up arrow to lessen the amount of typing!)

$ var=abcdefgh
$ var1=${var%???????}; print $var1
$ tmpvar1=${var%??????}; print $tmpvar1
$ tmpvar2=${var%?????}; print $tmpvar2
$ tmpvar3=${var%????}; print $tmpvar3
$ tmpvar4=${var%???}; print $tmpvar4
$ tmpvar5=${var%??}; print $tmpvar5
$ tmpvar6=${var%?}; print $tmpvar6
$ var2=${tmpvar1#?}; print $var2
$ var3=${tmpvar2#??}; print $var3
$ var4=${tmpvar3#???}; print $var4
$ var5=${tmpvar4#????}; print $var5
$ var6=${tmpvar5#?????}; print $var6
$ var7=${tmpvar6#??????}; print $var7
$ var8=${var#???????}; print $var8
$ print $var $var1 $var2 $var3 $var4 $var5 $var6 $var7 $var8

- or -
$ integer count=0
$ var=abcdefgh
Course materials may not be reproduced in whole or in part
without the prior written permission of IBM.

8-4 AIX 5L Korn Shell Programming © Copyright IBM Corp. 1998, 2003

Student Exercises
V1.2.2

EXempty
 $ mask="???????"
$ while (((count += 1) < 9))

> do
> eval var$count=${var%$mask}
> mask=${mask#?}
> var=${var#?}
> done

$ print $var $var1 $var2 $var3 $var4 $var5 $var6 $var7 $var8
$ _

__ 4. Use the Korn shell typeset or Bash shell declare command to re-chop the var string
into eight more one character strings, type1 to type8. (Korn Shell only, bash users
can try printf if interested)

$ var=abcdefgh
$ typeset -L1 type1=$var
$ typeset -L2 tmpvar1=$var
$ typeset -L3 tmpvar2=$var
$ typeset -L4 tmpvar3=$var
$ typeset -L5 tmpvar4=$var
$ typeset -L6 tmpvar5=$var
$ typeset -L7 tmpvar6=$var
$ typeset -R1 type2=$tmpvar1 type3=$tmpvar2 type4=$tmpvar3
$ typeset -R1 type5=$tmpvar4 type6=$tmpvar5 type7=$tmpvar6
$ typeset -R1 type8=$var
$ print $type1 $type2 $type3 $type4 $type5 $type6 $type7

$type8
$ _

- or -
$ integer count=0
$ var=abcdefgh
$ while (((count += 1) < 9))

> do
> eval typeset -L1 type$count=$var
> var=${var#?}
> done

$ print $type1 $type2 $type3 $type4 $type5 $type6 $type7
$type8

$ _
Course materials may not be reproduced in whole or in part
without the prior written permission of IBM.

© Copyright IBM Corp. 1998, 2003 Exercise 8. More Shell Variables 8-5

Student Exercises
__ 5. Write a script that asks a user to enter their e-mail address, and then address them
by their username only. (that is, user enters mary_smith@us.com, you reply "hello
mary_smith!"

$ vi chop.ex
print "Please enter your e-mail address:\c"
read emailvar
usernamevar=${emailvar%@*}
print "Hello $usernamevar !!!"

$ chmod u+x chop.ex
$ chop.ex
$ _

Formatting -- (Korn Shell only)

__ 6. Set the following variables:

num1=000001
num2=000123
num3=012345

Use typeset to clear the zeros and print the numbers.

$ num1=000001 ; num2=000123 ; num3=012345
$ typeset -LZ6 num1 num2 num3
$ print $num1 $num2 $num3
$ _

__ 7. Use typeset with a while loop to print the numbers 1 to 10 in a two-digit format:, 01,
02, 03, ... 10. (Hint: while (((i=i+1)<= 10))

$ typeset -RZ2 i=0
$ while (((i=i+1) <= 10))

> do
> print $i
> done

$ _

__ 8. Transform an uppercase string into lowercase. What happens if the string used is
mixed case?

$ typeset -l uc_string=UPPER
$ print $uc_string
$ _
Course materials may not be reproduced in whole or in part
without the prior written permission of IBM.

8-6 AIX 5L Korn Shell Programming © Copyright IBM Corp. 1998, 2003

Student Exercises
V1.2.2

EXempty
 Challenge

__ 9. In some shells, notably the C Shell, there are functions named pushd and popd that
implement a stack of directory names. This allows you to move to another directory
temporarily and remember where you were. This is helpful when doing work
between two directories. You want to be able to tell the user where they are after the
function completes. A stack is a last-in, first-out list. Write two suitable Shell
functions.

Use shell ${# or % } syntax to get the directory name. What do you do if the list is
empty?

Hint: you will need to initialize the stack only on the first use of the function.

function pushd
{

dname=$1
cd ${dname:?"Missing directory name?"}
DIRLIST="$dname ${DIRLIST:-$PWD}"
print "$DIRLIST"

}
$ _
function popd
{

DIRLIST=${DIRLIST#* }
cd ${DIRLIST%% *}
print "$PWD"

}
$ _

What else might you have to do before using either function?

END OF LAB
Course materials may not be reproduced in whole or in part
without the prior written permission of IBM.

© Copyright IBM Corp. 1998, 2003 Exercise 8. More Shell Variables 8-7

Student Exercises
Solutions

The scripts in these exercises are available in /home/workshop.

String Manipulations

3.

$var $type $chop abcdefgh
$var1 $type1 $chop1 a
$var2 $type2 $chop2 b
$var3 $type3 $chop3 c
$var4 $type4 $chop4 d
$var5 $type5 $chop5 e
$var6 $type6 $chop6 f
$var7 $type7 $chop7 g
$var8 $type8 $chop8 h

Formatting

6. $ print $num1 $num2 $num3
 1 123 12345
 $ print $num1 $num2 $num3 | tr -d " "
 112312345

7. 01
 02
 03
 04
 05
 06
 07
 08
 09
 10

8. The reply is:
 upper
 Any lower case characters remain unaffected.

Challenge

9. You would need to initialize the DIRLIST variable somehow.
Course materials may not be reproduced in whole or in part
without the prior written permission of IBM.

8-8 AIX 5L Korn Shell Programming © Copyright IBM Corp. 1998, 2003

Student Exercises
V1.2.2

EXempty
 Bash Hints

 • The bash shell does not support the print command, you must use echo.

 • When using \c with echo, don't forget to use the -e option.

 • Bash does not support many of the typeset options; how else can the exercises be
accomplished in bash?
Course materials may not be reproduced in whole or in part
without the prior written permission of IBM.

© Copyright IBM Corp. 1998, 2003 Exercise 8. More Shell Variables 8-9

Student Exercises
Course materials may not be reproduced in whole or in part
without the prior written permission of IBM.

8-10 AIX 5L Korn Shell Programming © Copyright IBM Corp. 1998, 2003

Student Exercises
V1.2.2

EXempty
 Exercise 9. Regular Expressions & Data Selection

What This Exercise is About

The purpose of the exercise is to use some of the more common data
selection tools and techniques. The students will have the opportunity
to combine the use of regular expressions with grep and use cut,
paste, and other utilities.

What You Should Be Able to Do

At the end of the lab, you should be able to:

 • Use regular expressions
 • Use grep commands
 • Use cut and paste

Introduction

The use of regular expressions is very helpful for a number of tools.
The most obvious use is with grep but we shall see sed and awk, and
also use them. The exercise concentrates on use of tr, cut and paste,
and other selections and data manipulation tools.
Course materials may not be reproduced in whole or in part
without the prior written permission of IBM.

© Copyright IBM Corp. 1998, 2003 Exercise 9. Regular Expressions & Data Selection 9-1

Student Exercises
Exercise Instructions

Regular Expressions Using grep

__ 1. Copy the /home/workshop/phone.list file to your home directory, then find the
following lines:

People whose surnames start with J to P:

People whose first names start with the letters M to R:

People whose numbers don't end with 1, 3, or 6:

People whose surnames start with F through P, and whose phone numbers end with 3
or 6:

__ 2. List entries which contain a sequence of two to four occurrences of 2, 3, or 5. Then
list people with six character surnames and three or four character first names.

__ 3. Find people whose first names contain a sequence of two identical characters. Then
list the people whose numbers contain a duplicated digit anywhere in the number.

Translating text

__ 4. Use the tr utility to convert all text in a file to uppercase.

Cutting and pasting

__ 5. Set the var variable to be abcdefgh. Use the cut command to chop up the var string
into 8 separate parts, chop1 to chop8.

__ 6. Cut the group names and members from the /etc/group file into a new group file in
your home directory. PLEASE take care not to corrupt /etc/group. Use tr to
separate the words with a space.

/etc/group before: $HOME/group after:

system:!:0:root system root

bin:!2:bin bin bin

sys:!:3:bin,sys sys bin sys

__ 7. Use cut and paste to change the order of the data in phone.list. You would like to
have phone_numberlastname, firstname

END OF LAB
Course materials may not be reproduced in whole or in part
without the prior written permission of IBM.

9-2 AIX 5L Korn Shell Programming © Copyright IBM Corp. 1998, 2003

Student Exercises
V1.2.2

EXempty
 Exercise Instructions With Hints

Regular Expressions Using grep

__ 1. Copy the /home/workshop/phone.list file to your home directory, then find the
following lines:

People whose surnames start with J to P:

$ cp /home/workshop/phone.list $HOME/phone.list
$ grep '^[J-P]' $HOME/phone.list
$ _

People whose first names start with the letters M to R:

$ grep ', [M-R]' $HOME/phone.list
$ _

People whose numbers don't end with 1, 3, or 6:

$ grep -v '[136]$' $HOME/phone.list
- or -
$ grep '[^136]$' $HOME/phonelist
$ _

People whose surnames start with F through P, and whose phone numbers end with 3
or 6:

$ grep '^[F-P].*[36]$' $HOME/phone.list
$ _

__ 2. List entries which contain a sequence of two to four occurrences of 2, 3, or 5. Then
list people with six character surnames and three or four character first names.

$ grep '[235]\{2,4\}' $HOME/phone.list
$ grep '^.\{6\}, .\{3,4\} ' $HOME/phone.list
$ _

__ 3. Find people whose first names contain a sequence of two identical characters. Then
list the people whose numbers contain a duplicated digit anywhere in the number.

$ grep ', .*\([A-Z,a-z]\)\1' $HOME/phone.list
$ grep '\([0-9]\).*\1' $HOME/phone.list
$ _

Translating text

__ 4. Use the tr utility to convert all text in a file to upper case.

$ tr "[a-z]" "[A-Z]" < phone.list
$ _
Course materials may not be reproduced in whole or in part
without the prior written permission of IBM.

© Copyright IBM Corp. 1998, 2003 Exercise 9. Regular Expressions & Data Selection 9-3

Student Exercises
Cutting and pasting

__ 5. Set the var variable to be abcdefgh. Use the cut command to chop up the var
string into 8 separate parts, chop1 to chop8.

$ var=abcdefgh
$ chop1=$(print $var ¦ cut -c1)
$ chop2=$(print $var ¦ cut -c2)
$ chop3=$(print $var ¦ cut -c3)
$ chop4=$(print $var ¦ cut -c4)
$ chop5=$(print $var ¦ cut -c5)
$ chop6=$(print $var ¦ cut -c6)
$ chop7=$(print $var ¦ cut -c7)
$ chop8=$(print $var ¦ cut -c8)
$ print $chop1 $chop2 $chop3 $chop4 $chop5 $chop6 $chop7

$chop8
- or -

$ integer count=0 (bash: declare -i count=0)
$ while (((count +=1) < 9))

> do
> eval chop$count=$(print abcdefgh ¦ cut -c $count)
> done

$ _
$ print $chop1 $chop2 $chop3 $chop4 $chop5 $chop6 $chop7

$chop8
$ _

__ 6. Cut the group names and members from the /etc/group file into a new group file in
your home directory. PLEASE take care not to corrupt /etc/group. Use tr to
separate the words with a space.

/etc/group before: $HOME/group after:
system:!:0:root system root
bin:!2:bin bin bin
sys:!:3:bin,sys sys bin sys

$ cat /etc/group (to become familiar with the file)
$ cut -d: -f1,4 /etc/group | tr ":" " " | tr "," " " >

$HOME/group.
$ cat $HOME/group
$ _

__ 7. Use cut and paste to change the order of the data in phone.list. You would like to
have phone_numberlastname, firstname

$ cut -f2 phone.list | paste -d"\t\n" - phone.list | cut -f1,2
$ _

END OF LAB
Course materials may not be reproduced in whole or in part
without the prior written permission of IBM.

9-4 AIX 5L Korn Shell Programming © Copyright IBM Corp. 1998, 2003

Student Exercises
V1.2.2

EXempty
 OPTIONAL EXERCISES

These exercises ask the student to create scripts. Some example hints have been
provided; but there are many solutions; try to do it more then one way.

__ 1. Using grep, create a script to check to see if any users are logged in more than
once.

$ vi usercount
for username in $(who | tr -s " " | cut -f1 -d" ")
do varcount=$(who | grep -c $username)

if [[$varcount -gt 1]]
then

echo $username is logged on $varcount times >
$HOME/usercountlog

fi
done
uniq $HOME/usercountlog
$ chmod u+x usercount ; usercount
$ _

__ 2. Cat out /etc/passwd and become familiar with it's format. Create a script that
checks for "back doors"- that is, any user beside root that has a userid of 0.

$ cat /etc/passwd
$ vi backdoorchk.ex

echo "the following users have a userid of 0"
grep "^.*:.*:0:.*:.*:.*:.*" /etc/passwd

$ chmod u+x backdoorchk.ex
$ backdoorchk.ex
$ _

__ 3. Create a script that asks a user to enter an ip address. After they enter the ip
address, check to make sure it is in the correct format. (1-3 numbers followed by a
period, followed by 1-3 numbers, followed by a period, and so forth.)

print "enter ip address"
read ip_address
print ${ip_address}
if print ${ip_address}| grep
'^[0-9]\{1,3\}\.[0-9]\{1,3\}\.[0-9]\{1,3\}\.[0-9]\{1,3\}$' >
/dev/null
then print "correct format"
else print "incorrect format"
fi
$ _

END OF LAB
Course materials may not be reproduced in whole or in part
without the prior written permission of IBM.

© Copyright IBM Corp. 1998, 2003 Exercise 9. Regular Expressions & Data Selection 9-5

Student Exercises
Solutions

The scripts and files in these exercises are available in /home/workshop.

BASH HINTS

 • The bash shell does not support the print command. Use echo instead.
Course materials may not be reproduced in whole or in part
without the prior written permission of IBM.

9-6 AIX 5L Korn Shell Programming © Copyright IBM Corp. 1998, 2003

Student Exercises
V1.2.2

EXempty
 Exercise 10. The sed utility

What This Exercise is About

The purpose of the exercise is to use some of the more popular sed
commands and to use other tools.

What You Should Be Able to Do

At the end of the lab, you should be able to use sed commands.

Introduction

The sed utility is designed to handle data files of simple text.
Course materials may not be reproduced in whole or in part
without the prior written permission of IBM.

© Copyright IBM Corp. 1998, 2003 Exercise 10. The sed utility 10-1

Student Exercises
Exercise Instructions

sed

Substitutions

__ 1. Write a command that removes the first two characters of each phone number and
replaces it with X.

__ 2. Remove the first names from phone.list and store the changed list in another file.

__ 3. Substitute the numbers in front of the dash with 555.

__ 4. Replace each surname by the first initial and a period.

__ 5. Using a multi-line command, replace the numbers in front of the dash with 555 for
phone numbers starting from 1-4 and 666 for numbers starting from 6-9.

Delete and Print

__ 6. Delete all entries where the surname begins with L.

__ 7. What is the difference between these two commands?

sed p $HOME/phone.list
sed -n p $HOME/phone.list

__ 8. Output the first four lines of the phone.list file.

__ 9. Output lines that contain the numbers 4 to 6.

Append, Insert and Change

__ 10. Insert 2 blank lines at the end of the phone.list file.

__ 11. Print a title line before the normal sed output:

"Name:<tab><tab><tab>Phone Number:"

__ 12. Change the third and fourth lines of the file into "Line Deleted".

sed with grep

__ 13. There is a command found on systems using the MKS tools that may be useful. It is
called gres. It does a find and replace of your RE string as in

gres "[ABC]" "xx" example

Here [ABC] is the pattern to match and "xx" is the replacement string. Construct a
version of this program using the Korn Shell and sed. You can assume for a first version
that the input file is supplied as an argument.

END OF LAB
Course materials may not be reproduced in whole or in part
without the prior written permission of IBM.

10-2 AIX 5L Korn Shell Programming © Copyright IBM Corp. 1998, 2003

Student Exercises
V1.2.2

EXempty
 Exercise Instructions With Hints

sed

Substitutions

__ 1. Write a command that removes the first two characters of each phone number and
replaces it with X.

$ sed 's/[0-9]\{2\}/X/' phone.list

__ 2. Remove the first names from phone.list and store the changed list in another file.

Note: Be careful of whitespace - is it tabs or spaces?
$ sed 's/, .* / /' $HOME/phone.list > new.phone.list

__ 3. Substitute the numbers in front of the dash with 555.

$ sed 's/...-/555-/' $HOME/phone.list
- or -

$ sed 's/[0-9]\{3\}-/555-/' phone.list

__ 4. Replace each surname by the first initial and a period.

$ sed 's/^\(.\).*, \(.*\)/\1. \2/' $HOME/phone.list

__ 5. Using a multi-line command, replace the numbers in front of the dash with 555 for
phone numbers starting from 1-4 and 666 or numbers starting from 6-9.

$ sed 's/[1-4]..-/555-/
> s/[6-9]..-/666-/' $HOME/phone.list

$ _

Delete and Print

__ 6. Delete all entries where the surname begins with L.

$ sed '/^L/d' $HOME/phone.list
$ _

__ 7. What is the difference between these two commands?

$ sed p $HOME/phone.list
$ sed -n p $HOME/phone.list
$ _

__ 8. Output the first four lines of the phone.list file.

$ sed -n '1,4p' $HOME/phone.list
$ _

__ 9. Output lines that contain the numbers 4 to 6.

$ sed -n '/.*[4-6].*/p' $HOME/phone.list
$ _
Course materials may not be reproduced in whole or in part
without the prior written permission of IBM.

© Copyright IBM Corp. 1998, 2003 Exercise 10. The sed utility 10-3

Student Exercises
Append, Insert and Change

__ 10. Insert 2 blank lines at the end of the phone.list file.

$ sed '$a\
> \
> ' $HOME/phone.list

$ _

__ 11. Print a title line before the normal sed output:

"Name:<tab><tab><tab>Phone Number:"

$ sed '1i\
> Name: Phone Number: ' $HOME/phone.list

$ _

__ 12. Change the third and fourth lines of the file into "Line Deleted".

$ sed '3,4c\
> Line Deleted\
> Line Deleted' $HOME/phone.list

$ _

sed with grep

__ 13. There is a command found on systems using the MKS tools that may be useful. It is
called gres. It does a find and replace of your RE string as in

gres "[ABC]" "xx" example
Here [ABC] is the pattern to match and "xx" is the replacement string. Construct a
version of this program using the Korn shell and sed. You can assume for a first version
that the input file is supplied as an argument.

$ cat ./gres
#!/bin/ksh
if [[$# < 3]]
then print Usage: gres pattern replacement file

exit 1
fi
patt=$1
repl=$2
if [-f $3]
then file=$3
else echo $3 is not a file

exit 2
fi
SEP="$(print | tr '\012' '\001')"
sed -e "sSEPpattSEPrepl$SEP" $file

END OF LAB
Course materials may not be reproduced in whole or in part
without the prior written permission of IBM.

10-4 AIX 5L Korn Shell Programming © Copyright IBM Corp. 1998, 2003

Student Exercises
V1.2.2

EXempty
 Solutions

The scripts in these exercises are available in /home/workshop.

13. You should find that the lines are reversed. This has been done by using the Hold
Space and deleting lines from the pattern space.

BASH HINTS

 • The bash shell does not support the print command. Use echo instead.
Course materials may not be reproduced in whole or in part
without the prior written permission of IBM.

© Copyright IBM Corp. 1998, 2003 Exercise 10. The sed utility 10-5

Student Exercises
Course materials may not be reproduced in whole or in part
without the prior written permission of IBM.

10-6 AIX 5L Korn Shell Programming © Copyright IBM Corp. 1998, 2003

Student Exercises
V1.2.2

EXempty
 Exercise 11. Using awk

What This Exercise is About

The purpose of the exercise is to learn and use awk.

What You Should Be Able to Do

At the end of the lab, you should be able to:

 • Understand the basic parts of an awk program
 • Use awk to manipulate and output data

Introduction

awk is a program that operates on data. It is often used as a report
generator or as a means of reformatting data based on input patterns.
Course materials may not be reproduced in whole or in part
without the prior written permission of IBM.

© Copyright IBM Corp. 1998, 2003 Exercise 11. Using awk 11-1

Student Exercises
Exercise Instructions

awk

Basics

__ 1. Print the Lastname, Math, and English scores for all the students in the
/home/workshop/results file. For safety's sake, make a copy of the file in your
home directory first.

__ 2. Now use the BEGIN { getline } syntax and print the same information. Note any
differences.

__ 3. Next, swap the Math and English scores, but keep the headings the same.

__ 4. Create a program structure that calculates the total number of lines and words in the
phone.list file and also displays the average number of words per line. However
there is a coding difference depending on whether you use the BEGIN statement or
not. Make the program work correctly twice, once with and once without BEGIN.

Functions and Files

__ 5. Write an awk script prefix.awk which takes the phone number of the results file and
prefixes any number that has the first digit less than 4 with 555 and any other
number with 666.

__ 6. Write an awk script which changes any occurrence of the school Georgia and
replaces it with Tech. Also, display how many replacements were made.

__ 7. Next, copy your prefix.awk program to a file called prefix2.awk. Edit the new file so
you can use it as a command file with the -f option to awk.

for - while - if

__ 8. Create a script with a for loop that will print out the frequencies of lines having no
words, one word, two words, etc., up to a maximum of ten words.

__ 9. Now make a copy of the last script and use a while loop instead of the for loop.

Arrays

__ 10. Create a script using arrays which lists the lastnames of the results file next to the
Science scores - in reverse order. Then print the sum of the Science scores.

END OF LAB
Course materials may not be reproduced in whole or in part
without the prior written permission of IBM.

11-2 AIX 5L Korn Shell Programming © Copyright IBM Corp. 1998, 2003

Student Exercises
V1.2.2

EXempty
 Exercise Instructions With Hints

awk

Basics

__ 1. Print the Lastname, Math, and English scores for all the students in the
/home/workshop/results file. For safety's sake, make a copy of the file in your
home directory first.

$ cp /home/workshop/results $HOME/results
$ awk '{ print $2, $5, $6 }' $HOME/results
$ _

__ 2. Now use the BEGIN { getline } syntax and print the same information. Note any
differences.

$ awk 'BEGIN { getline }
> { print $2, $5, $6 }' $HOME/results

$ _

__ 3. Next, swap the Math and English scores, but keep the headings the same.

$ awk 'BEGIN { print "LastName", "Math", "English" ; getline }
> { print $2, $6, $5 }' $HOME/results

$ _

__ 4. Create a program structure that calculates the total number of lines and words in the
phone.list file and also displays the average number of words per line. However
there is a coding difference depending on whether you use the BEGIN statement or
not. Make the program work correctly twice, once with and once without BEGIN.

$ awk ' BEGIN { print "Lines\tWords\tAverage So Far" }
{ wcount += NF }
END { print NR, "\t", wcount, "\t", wcount / NR }'
$HOME/phone.list

$ awk '{ wcount += NF }
END { print "Lines\tWords\tAverage"
print NR, "\t", wcount, "\t", wcount / NR }'
$HOME/phone.list

$ _
Course materials may not be reproduced in whole or in part
without the prior written permission of IBM.

© Copyright IBM Corp. 1998, 2003 Exercise 11. Using awk 11-3

Student Exercises
Functions and Files

__ 5. Write an awk script called prefix.awk which takes the phone number of the results
file and prefixes any number that has the first digit less than 4 with 555 and any
other number with 666.

$ vi prefix.awk
awk 'BEGIN { getline }

{ x=substr($4,1,1)
if (x<4) {
print $2, "555-"$4

}
else {
print $2, "666-"$4

}
}' $HOME/results

$ prefix.awk
$ _

__ 6. Write an awk script which changes any occurrence of the school Georgia and
replaces it with Tech. Also, display how many replacements were made.

$ awk '{ print gsub("Georgia","Tech"), "\t", $0 }'
$HOME/results

$ _

__ 7. Next, copy your prefix.awk program to a file called prefix2.awk. Edit the new file so
you can use it as a command file with the -f option to awk.

$ cp prefix.awk prefix2.awk
$ vi prefix2.awk

BEGIN {getline}
{ x = substr($4,1,1)

if (x<4) {
print $2, "555-"$4

}
else {
print $2, "666-"$4

}
}

$ _
$ awk -f prefix2.awk $HOME/results
$ _
Course materials may not be reproduced in whole or in part
without the prior written permission of IBM.

11-4 AIX 5L Korn Shell Programming © Copyright IBM Corp. 1998, 2003

Student Exercises
V1.2.2

EXempty
 for - while - if

__ 8. Create a script with a for loop that will print out the frequencies of lines having no
words, one word, two words, etc., up to a maximum of ten words.

$ vi for.awk
awk ' { len[NF]++ }

END { for(i=0 ; i <= NR+1 ; i++) {
if (len[i]){
print len[i], " lines with ", i, " words"

}
}

} ' $HOME/results
$ for.awk
$ _

__ 9. Now make a copy of the last script and use a while loop instead of the for loop.

$ cp for.awk while.awk
$ vi while.awk

awk '{ len[NF]++ }
END { i = 0
while(i <= NR+1) {
if (len[i]) {
print len[i], " lines with ", i, " words"

}
i++

}
} ' $HOME/results

$ while.awk
$ _

Arrays

__ 10. Create a script using arrays which lists the lastnames of the results file next to the
Science scores - in reverse order. Then print the sum of the Science scores.

$ vi array.awk
awk '{ x[NR,1] = $7; x[1,NR] = $2; sum += $7 }

END {
for (i = NR; i > 1; --i)

{ name = NR - i + 2
print x[1,i], x[i,1] }
print "Sum of column 7 = "sum

}' $HOME/results
$ array.awk
$ _

END OF LAB
Course materials may not be reproduced in whole or in part
without the prior written permission of IBM.

© Copyright IBM Corp. 1998, 2003 Exercise 11. Using awk 11-5

Student Exercises
OPTIONAL EXERCISES:

__ 1. Create a script that uses sed and awk to check the output of the df command for the
percentage of space used in each filesystem. If the percentage is more then 80%
used, send a note to root. One example is shown below, however there are
several ways to do this.

#!/usr/bin/ksh
star()
{
print "***\a"
}
MAX=80
df -k | awk '{ print $4, $7 }' |
while read USED FILESYS
do

if [[$USED != '%Used']]
then

USED=‘print ${USED} | sed s/%//‘
if [[${USED} -ge $MAX]]
then

star
print "Filesystem ${FILESYS} needs checking!!"
star

fi
fi

done

END OF LAB
Course materials may not be reproduced in whole or in part
without the prior written permission of IBM.

11-6 AIX 5L Korn Shell Programming © Copyright IBM Corp. 1998, 2003

Student Exercises
V1.2.2

EXempty
 Solutions

The scripts in these exercises are available in /home/workshop.
Course materials may not be reproduced in whole or in part
without the prior written permission of IBM.

© Copyright IBM Corp. 1998, 2003 Exercise 11. Using awk 11-7

Student Exercises
Course materials may not be reproduced in whole or in part
without the prior written permission of IBM.

11-8 AIX 5L Korn Shell Programming © Copyright IBM Corp. 1998, 2003

V4.1

backpg

Back page

���®

	Front cover
	Contents
	Trademarks
	Exercises description
	Exercise 1. Using Shell Basics
	Exercise 2. Variables
	Exercise 3. Testing
	Exercise 4. Shell Programming Constructs
	Exercise 5. Shell Commands and Features
	Exercise 6. Shell Arithmetic
	Exercise 7. Typeset and Functions
	Exercise 8. More Shell Variables
	Exercise 9. Regular Expressions & Data Selection
	Exercise 10. The sed utility
	Exercise 11. Using awk

