
V4.1

cover

���
 Front cover
Korn and Bash
Shell Programming
(Course code AL32)

Student Notebook
ERC 1.0

IBM Certified Course Material

Student Notebook
Trademarks

IBM® is a registered trademark of International Business Machines Corporation.

The following are trademarks of International Business Machines Corporation in the United
States, or other countries, or both:

Java and all Java-based trademarks are trademarks of Sun Microsystems, Inc. in the
United States, other countries, or both.

Windows is a trademark of Microsoft Corporation in the United States, other countries, or
both.

UNIX® is a registered trademark of The Open Group in the United States and other
countries.

Linux® is a registered trademark of Linus Torvalds in the United States, other countries, or
both.

Other company, product, or service names may be trademarks or service marks of others.

AIX® AIX 5L™ Language Environment®
OS/2® POWER™ RISC System/6000®
RS/6000®
October 2007 edition

The information contained in this document has not been submitted to any formal IBM test and is distributed on an “as is” basis without
any warranty either express or implied. The use of this information or the implementation of any of these techniques is a customer
responsibility and depends on the customer’s ability to evaluate and integrate them into the customer’s operational environment. While
each item may have been reviewed by IBM for accuracy in a specific situation, there is no guarantee that the same or similar results will
result elsewhere. Customers attempting to adapt these techniques to their own environments do so at their own risk.

 © Copyright International Business Machines Corporation 2007. All rights reserved.
This document may not be reproduced in whole or in part without the prior written permission of IBM.
Note to U.S. Government Users — Documentation related to restricted rights — Use, duplication or disclosure is subject to restrictions
set forth in GSA ADP Schedule Contract with IBM Corp.

Student Notebook
V4.1

TOC
 Contents

Trademarks . xi

Course description . xiii

Agenda . xv

Unit 1. Basic Shell Concepts . 1-1
Unit Objectives . 1-2
Shells . 1-3
This Course . 1-5
Directories . 1-6
Basic File Commands . 1-7
A File . 1-8
AIX File Names . 1-9
What Is a Shell Script? . 1-10
Invoking Shells . 1-11
Invoking Scripts . 1-12
Korn Shell Configuration Files . 1-13
What Are Metacharacters? . 1-15
Wildcard Metacharacters . 1-16
Sample Directory . 1-17
Expansion Examples . 1-18
More Shell Metacharacters . 1-19
Quoting Metacharacters . 1-20
Process I/O . 1-21
Input Redirection . 1-22
Output Redirection . 1-23
Output Appending . 1-24
Association . 1-25
Setting I/O or File Descriptors . 1-26
Setting I/O Descriptor Examples . 1-27
Pipes . 1-28
Command Grouping { { and () . 1-29
Background Processing . 1-30
Shell Job Control . 1-31
Job Control Example . 1-32
Command Substitution . 1-33
Command Substitution Examples (1 of 2) . 1-34
Command Substitution Examples (2 of 2) . 1-35
Command Line Editing and Recall . 1-36
Checkpoint . 1-38
Unit Summary . 1-39
Course materials may not be reproduced in whole or in part
without the prior written permission of IBM.

© Copyright IBM Corp. 2007 Contents iii

Student Notebook
Unit 2. Variables. 2-1
Unit Objectives .2-2
Setting Variables .2-3
Referencing Variables .2-4
Positional Parameters .2-5
Setting Positional Parameters .2-6
Variable Parameters .2-7
Some Shell Parameters .2-8
Shifting Arguments .2-9
Parameter Code Example .2-10
Parameter Output Example .2-11
This Shell and the Next .2-12
Inheritance Example - The export Command .2-13
Korn Shell Variables .2-14
Environment Variables .2-15
Korn Environment Variables (1 of 2) .2-16
Korn Environment Variables (2 of 2) .2-17
Korn Shell 93 Variables .2-18
Bash Environment Variables .2-19
Checkpoint .2-20
Unit Summary .2-21

Unit 3. Return Codes and Traps . 3-1
Unit Objectives .3-2
Return Values .3-3
Exit Status .3-4
Conditional Execution .3-5
The test Command .3-6
File Test Operators .3-7
Numeric Expressions .3-8
String Expressions .3-9
More Shell Test Operators .3-10
Shell [[]] Expressions .3-11
Compound Expressions .3-12
Practice Test .3-13
Signals .3-14
What You Can Do with Signals .3-15
The Kill Command .3-16
Signal List (1 of 2) .3-17
Signal List (2 of 2.) .3-18
Catching Signals with Traps .3-19
Trap Example .3-20
Checkpoint .3-21
Unit Summary .3-22

Unit 4. Flow Control. 4-1
Unit Objectives .4-2
The Simple if - then - else Construct .4-3
Course materials may not be reproduced in whole or in part
without the prior written permission of IBM.

iv Korn and Bash Shell Programming © Copyright IBM Corp. 2007

Student Notebook
V4.1

TOC
 The Full if - then - else Construct . 4-4
if Example . 4-5
Conditional Loop Syntax . 4-6
while true Example . 4-7
for Loop Syntax . 4-8
for - in Loop Example . 4-9
for Loop Example . 4-10
Arithmetic for loop . 4-11
The case Statement . 4-12
case Code Example . 4-13
case Code Output . 4-14
Mini Quiz . 4-15
The Shell select Syntax . 4-16
select Code Example . 4-17
select Output Example . 4-18
More on Select . 4-19
Select Example Using $REPLY . 4-20
exit The Loop . 4-21
break the Loop . 4-22
continue the Loop . 4-23
null Logic . 4-24
Program Logic Constructs Example . 4-25
Checkpoint (1 of 2) . 4-26
Checkpoint (2 of 2) . 4-27
Unit Summary . 4-28

Unit 5. Shell Commands . 5-1
Unit Objectives . 5-2
The Print Command (ksh 88 and ksh 93) . 5-3
Special print Characters . 5-4
The echo Command (bash) . 5-5
print Examples . 5-6
The printf Command - An Advanced Print . 5-7
The read Command . 5-8
read Examples . 5-9
read Command Options . 5-10
read Options for ksh93 . 5-11
read Options for bash . 5-12
read Options Examples (1 of 2) . 5-13
read Options Examples (2 of 2) . 5-14
Processing Options . 5-15
The getopts Command . 5-16
getopts Syntax Example . 5-17
getopts Example . 5-18
getopts Notes . 5-19
The fc Command . 5-20
fc Examples - Edit and Execute, List . 5-21
The set Command . 5-22
Course materials may not be reproduced in whole or in part
without the prior written permission of IBM.

© Copyright IBM Corp. 2007 Contents v

Student Notebook
Korn Shell Options with Set (1 of 2) .5-23
Korn Shell Options with Set (2 of 2) .5-24
Additional ksh93 Shell Options .5-25
Bash Shell Options with Set .5-26
Set Quiz .5-27
Shell Built-in Commands .5-28
AIX Shell Commands .5-29
Checkpoint .5-30
Unit Summary .5-31

Unit 6. Arithmetic. 6-1
Unit Objectives .6-2
expr Arithmetic .6-3
expr Arithmetic Operators .6-4
expr Examples .6-5
The let Command .6-6
let Arithmetic Operators .6-7
let Arithmetic Examples .6-8
let Logical Operators .6-9
let Logical Examples .6-10
base#number Syntax .6-11
Shell integer Variables .6-12
integer Examples .6-13
Implicit let Command .6-14
bc - Mathematics .6-15
bc Operators .6-16
Checkpoint .6-17
Unit Summary .6-18

Unit 7. Shell Types, Commands, and Functions . 7-1
Unit Objectives .7-2
Defining Arrays .7-3
Assigning Array Elements .7-4
Associative Arrays in ksh93 .7-5
Referencing Array Elements .7-6
Array Examples .7-7
Another Array Example .7-8
Defining Functions .7-9
Functions and Variables .7-10
function Example .7-11
Ending Functions .7-12
Functions and Traps .7-13
Functions in ksh93 .7-14
Functions in bash .7-15
The typeset/declare Commands .7-16
typeset Examples .7-17
typeset with Functions .7-18
typeset with Functions Examples .7-19
Course materials may not be reproduced in whole or in part
without the prior written permission of IBM.

vi Korn and Bash Shell Programming © Copyright IBM Corp. 2007

Student Notebook
V4.1

TOC
 autoload Functions . 7-20
Aliases . 7-21
Processing Aliases . 7-22
Preset Aliases . 7-23
The alias Command . 7-24
alias Examples . 7-25
Tracked Aliases . 7-26
Hashing in bash . 7-27
The whence Command . 7-28
The eval Command . 7-29
eval Examples . 7-30
Command Line Processing . 7-31
Checkpoint . 7-32
Unit Summary . 7-33

Unit 8. More on Shell Variables . 8-1
Unit Objectives . 8-2
Variable Replacements . 8-3
Variable Replacement Examples . 8-4
Shell Substrings . 8-5
Shell Substring Examples . 8-6
Shell Substring Quiz . 8-7
Variable Lengths . 8-8
typeset Options Review . 8-9
Further typeset Options . 8-10
typeset Examples . 8-11
Compound Variables in ksh93 . 8-12
Variable Pattern Substitution in bash and ksh93 . 8-13
Tilde Expansions . 8-14
Checkpoint . 8-15
Unit Summary . 8-16

Unit 9. Regular Expressions and Text Selection Utilities 9-1
Unit Objectives . 9-2
Sample Data File . 9-3
Regular Expressions . 9-4
Regular Expression Metacharacters . 9-5
Extending the Pattern . 9-6
Simple Regular Expression Examples . 9-7
Quoted Braces . 9-8
Quoted Parentheses . 9-9
Regular Expressions — Quiz . 9-10
grep command . 9-11
grep Examples . 9-12
tr For Translations . 9-13
tr Examples . 9-14
The cut Command . 9-15
cut Examples . 9-16
Course materials may not be reproduced in whole or in part
without the prior written permission of IBM.

© Copyright IBM Corp. 2007 Contents vii

Student Notebook
What If There Is No Common Delimiter? .9-17
The paste Command .9-18
Checkpoint .9-19
Unit Summary .9-20

Unit 10. The sed Utility . 10-1
Unit Objectives .10-2
sed .10-3
Line Selection .10-4
The Substitute Instruction .10-5
Substitutions - Quiz .10-6
sed with Quoted Parentheses .10-7
Delete and Print .10-8
Append, Insert, and Change .10-9
Command Files .10-10
A Practical Example .10-11
Multiple Editing Instructions .10-12
Internal Operation .10-13
Grouping Instructions .10-14
Checkpoint .10-15
Unit Summary .10-16

Unit 11. The awk Program . 11-1
Unit Objectives .11-2
What Is Awk? .11-3
Sample Data - awk .11-4
awk Regular Expressions .11-5
awk Command Syntax .11-6
The print Statement .11-7
awk Fields and Records .11-8
print Examples .11-9
Comparison Operators and Examples .11-10
Arithmetic Operators .11-11
User Variables and Expressions .11-12
BEGIN and END Processing .11-13
BEGIN without END Example .11-14
END without BEGIN Example .11-15
Built-In Variables .11-16
Built-In Variables Examples (1 of 2) .11-17
Built-In Variables Examples (2 of 2) .11-18
if - else if - else Statement .11-19
The while Loop .11-20
The for Loop .11-21
The break, continue and next Statements .11-22
The exit Statement .11-23
Arrays .11-24
printf for Formatted Printing .11-25
printf Formats .11-26
Course materials may not be reproduced in whole or in part
without the prior written permission of IBM.

viii Korn and Bash Shell Programming © Copyright IBM Corp. 2007

Student Notebook
V4.1

TOC
 Functions in Awk . 11-27
Built-In Arithmetic Functions . 11-28
Built-In String Functions . 11-29
Built-In String Functions Examples . 11-30
Checkpoint . 11-31
Unit Summary . 11-32

Unit 12. Good Practices and Review . 12-1
Unit Objectives . 12-2
Planning and Design . 12-3
Use of Comments . 12-4
Commenting Out . 12-5
Script Layout . 12-6
Debugging Code . 12-7
DEBUG Traps . 12-8
Maintaining Code . 12-9
Good Functions . 12-10
Performance Issues for Shell Scripts . 12-11
Timing Commands . 12-12
Times for Shells . 12-13
Shell Performance . 12-14
Shell Script Performance . 12-15
Good Rules To Follow . 12-16
Checkpoint . 12-17
Summary . 12-18
Course Summary . 12-19

Appendix A. Utilities for Personal Productivity - Optional. A-1

Appendix B. vi Reference . B-1

Appendix C. Checkpoint Solutions . C-1

Bibliography. .X-1
Course materials may not be reproduced in whole or in part
without the prior written permission of IBM.

© Copyright IBM Corp. 2007 Contents ix

Student Notebook
Course materials may not be reproduced in whole or in part
without the prior written permission of IBM.

x Korn and Bash Shell Programming © Copyright IBM Corp. 2007

Student Notebook
V4.1

TMK
 Trademarks

The reader should recognize that the following terms, which appear in the content of this
training document, are official trademarks of IBM or other companies:

IBM® is a registered trademark of International Business Machines Corporation.

The following are trademarks of International Business Machines Corporation in the United
States, or other countries, or both:

Java and all Java-based trademarks are trademarks of Sun Microsystems, Inc. in the
United States, other countries, or both.

Windows is a trademark of Microsoft Corporation in the United States, other countries, or
both.

UNIX® is a registered trademark of The Open Group in the United States and other
countries.

Linux® is a registered trademark of Linus Torvalds in the United States, other countries, or
both.

Other company, product, or service names may be trademarks or service marks of others.

AIX® AIX 5L™ Language Environment®
OS/2® POWER™ RISC System/6000®
RS/6000®
Course materials may not be reproduced in whole or in part
without the prior written permission of IBM.

© Copyright IBM Corp. 2007 Trademarks xi

Student Notebook
Course materials may not be reproduced in whole or in part
without the prior written permission of IBM.

xii Korn and Bash Shell Programming © Copyright IBM Corp. 2007

Student Notebook
V4.1

Uempty
 Course description

Korn and Bash Shell Programming

Duration: 5 days

Purpose

This course will teach you how to use shell scripts and utilities for
practical system administration of the IBM RISC System/6000.

Audience

Support staff of AIX for RISC System/6000.

Prerequisites

An understanding of programming fundamentals: variables, flow
control concepts such as repetition and decision. A working
knowledge of AIX including the use of the vi editor, find and grep
commands. Students without this experience should attend AIX
Version 5 Basics Plus.

Objectives

After completing this course, students should be able to:

 • Distinguish Korn and bash shell specific features

 • Use utilities such as sed and awk to manipulate data

 • Understand system shell Scripts such as /etc/shutdown

 • Write useful shell Scripts to aid system administration

Contents

 • Basic shell concepts

 • Flow control in a shell Script

 • Functions and typeset

 • Shell features such as arithmetic and string handling

 • Using regular expressions

 • Using sed, awk and other AIX utilities
Course materials may not be reproduced in whole or in part
without the prior written permission of IBM.

© Copyright IBM Corp. 2007 Course description -xiii

Student Notebook
Course materials may not be reproduced in whole or in part
without the prior written permission of IBM.

-xiv Korn and Bash Shell Programming © Copyright IBM Corp. 2007

Student Notebook
V4.1

Uempty
 Agenda

Course Times: 9:00 - 17:00 (16:00 on the last day)

Day 1

Course and Student Introductions
Unit 1 Basic Shell Concepts
Lab 1 Using Shell Basics
Lunch
Lab 1 (Cont)
Unit 2 Variables
Lab 2 Variables
Unit 3 Return Codes and Traps

Day 2

Lab 3 Testing
Unit 4 Flow Control
Lunch
Lab 4 Shell Programming Constructs
Unit 5 Shell Commands
Lab 5 Shell Commands and Features

Day 3

Lab 5 (Cont)
Unit 6 Arithmetic
Lab 6 Shell Arithmetic
Lunch
Unit 7 Shell Types, Commands, and Functions
Lab 7 Typeset and Functions

Day 4

Unit 8 More on Shell Variables
Lab 8 More on Shell Variables
Unit 9 Regular Expressions and Text Selection
Lunch
Unit 9 (Cont)
Lab 9 Regular Expressions and Data Selection
Unit 10 The sed Utility
Course materials may not be reproduced in whole or in part
without the prior written permission of IBM.

© Copyright IBM Corp. 2007 Agenda -xv

Student Notebook
Day 5

Lab 10 The sed Utility
Unit 11 The awk Program
Lab 11 Using awk
Lunch
Lab 11 (Cont)
Unit 12 Good Practices and Review
Close
Course materials may not be reproduced in whole or in part
without the prior written permission of IBM.

-xvi Korn and Bash Shell Programming © Copyright IBM Corp. 2007

Student Notebook
V4.1

Uempty
 Unit 1. Basic Shell Concepts

What this unit is about

This unit introduces the Korn and Bash shells and environments.

What you should be able to do

After completing this unit, you should be able to:

 • Recognize file types
 • Identify metacharacters
 • Use various quoting mechanisms
 • Redirect file input and output

How you will check your progress

Accountability:

 • Checkpoint questions
 • Hands-on exercises
Course materials may not be reproduced in whole or in part
without the prior written permission of IBM.

© Copyright IBM Corp. 2007 Unit 1. Basic Shell Concepts 1-1

Student Notebook
Figure 1-1. Unit Objectives AL321.0

Notes:

© Copyright IBM Corporation 2007

Unit Objectives
After completing this unit, you should be able to:

Describe the AIX shells

Use the AIX filesystem

Create a shell script

Use metacharacters

Use I/O redirection

Use pipes and tees

Group commands

Run background processes

Use shell job control

Use command line recall and editing
Course materials may not be reproduced in whole or in part
without the prior written permission of IBM.

1-2 Korn and Bash Shell Programming © Copyright IBM Corp. 2007

Student Notebook
V4.1

Uempty
Figure 1-2. Shells AL321.0

Notes:

Any of the AIX shells can be the initial login shell for a user. Each has different features and
syntax. Shells have some built-in commands which we will cover in later units. The AIX
operating system provides a number of useful commands that are available from all shells.
Examples of these will appear in this and later units.

The Korn shell adds C shell features to the Bourne shell to produce the most user-friendly
and powerful shell. It is also faster than the other shells. The Korn shell is more recent than
the other shells, but retains backward compatibility with the Bourne shell. David G. Korn
wrote the Korn shell at AT&T's Bell Labs (now Lucent) where it is now widely used.

Bourne shell is the oldest shell; it was written at AT&T's Bell Labs by Steven Bourne.

Another shell that is commonly found on open platforms and Linux in particular is the Free
Software Foundation GNU Bourne Again SHell (bash). This is a Bourne shell compatible
rewrite but with many extensions and additional features, similar to the Korn shell.

© Copyright IBM Corporation 2007

Shells

What is a shell?
– User interface to AIX
– Command interpreter
– Programming language

AIX shells:
– Bourne - bsh
– Bourne-Again - bash
– C - csh
– Distributed - dsh
– Korn (88) - ksh
– Korn (93) - ksh93
– POSIX - psh
– Restricted - rsh
– Trusted - tsh
– Default - sh (links to ksh in AIX V4 and V5)
Course materials may not be reproduced in whole or in part
without the prior written permission of IBM.

© Copyright IBM Corp. 2007 Unit 1. Basic Shell Concepts 1-3

Student Notebook
The C shell has a completely different syntax to Bourne shell. It provides some advanced
features such as job-control and command-line editing. It was written by Bill Joy at the
University of California at Berkeley. It's primary use is as an interactive shell and is not
usually used in writing shell scripts.

The dsh, or Distributed shell, distributes commands among the nodes of a cluster. It uses a
daemon to gather state info of the nodes. A small script then gets this information and then
remotely executes the commands via rsh or ssh.

POSIX is Portable Operating System Interface — Xopen. The IEEE POSIX 1003.2 shell
and Utilities Language Committee report is the Open Systems definition of a shell. The
Korn shell conforms to this document. A POSIX shell is implemented under AIX Version 4
and 5 as a link to the Korn shell.

The Restricted shell provides a limited subset of the commands in Bourne shell:

 • You can't change your working directory
 • You may not run operating system commands unless they are in the working directory
 • The command search path cannot be changed
 • Redirection is not allowed

The Trusted shell is a subset of the Korn shell, but it is AIX-specific, and is one of the
enhanced security features of AIX Version 3:

 • Only “trusted” and shell built-in commands can be executed
 • The internal field separator characters cannot be reset
 • Functions may not be defined
 • There is no command history
 • The command search path is fixed in a special start-up profile file (/etc/tsh_profile)

The default login shell for each user (in /etc/passwd) is the /bin/ksh Korn shell. The Bourne
shell is the default login shell for older UNIX systems, and early versions of AIX.

The default shell is /bin/sh. For AIX Version 3 this was a link to the /bin/bsh Bourne shell
program. In AIX Version 4 and 5 it is a link to /bin/ksh the Korn shell.

This course will concentrate on the Korn and Bash shells, pointing out differences from the
Bourne shell.
Course materials may not be reproduced in whole or in part
without the prior written permission of IBM.

1-4 Korn and Bash Shell Programming © Copyright IBM Corp. 2007

Student Notebook
V4.1

Uempty
Figure 1-3. This Course AL321.0

Notes:

If using the Korn shell 93, bash, or Bourne shell, please check the student notes for slight
differences. If any of the shells differ greatly from the Korn shell 88, it will be noted on the
slide.

During the first exercise, you will be instructed to copy all the pre-typed exercises to your
$HOME. You are able to copy all at once, or as needed -- “on demand” if I may be so bold.

NOTICE: The instructor may have special login/password information for your class.
Please pay attention when this is discussed!

© Copyright IBM Corporation 2007

This Course

AIX 5 loads with the 88 Korn Shell, the 93 Korn Shell, the
Bourne Shell, and the Bash Shell (and more).
root may create different users who log into different shells.
The default shell in AIX 5 is 88 Korn Shell.
This course focuses on the 88 Korn Shell. The slight
differences in the other three shells will be noted on the slide
or in the student notes.
Available logins are:
– team01, team02, team03, team04, team05
– bash01, bash02, bash03, bash04, bash05
– ksh9301, ksh9302, ksh9303, ksh9304, ksh9305
The password is the same as your login name
All exercises are located in /home/workshop:
– They need to be copied into your $HOME
Course materials may not be reproduced in whole or in part
without the prior written permission of IBM.

© Copyright IBM Corp. 2007 Unit 1. Basic Shell Concepts 1-5

Student Notebook
Figure 1-4. Directories AL321.0

Notes:

Each user on the system has a home directory with their portion of the tree underneath: like
/home/pat for user pat. In AIX Version 3.2, /home replaced /u.

On the next page, you will see summary table of commands to manipulate the file-system.

© Copyright IBM Corporation 2007

The filesystem comprises directories in a hierarchical structure

Refer to the files and directories with a a full or relative path
name

"." represents current dir, ".." represents parent directory

usr var

/

tmphome

adm

etc

spoolchrispat

bin sbin

Directories
Course materials may not be reproduced in whole or in part
without the prior written permission of IBM.

1-6 Korn and Bash Shell Programming © Copyright IBM Corp. 2007

Student Notebook
V4.1

Uempty
Figure 1-5. Basic File Commands AL321.0

Notes:

Notes:

The current directory is referred to by “.” or the “.” notation, and is used to specify a relative
pathname to a directory or file from the current directory, for example, from /home, ./chris
refers to Chris's home directory. Entering cd with no directory changes the working
directory to your home directory.

To refer to the parent of the current directory (go up a layer) we use the “..” notation, for
example, from /home/chris, ../pat is Pat's home directory.

The Korn shell provides cd and pwd as built-in commands. AIX provides pwd as an
operating system command. Additional features are provided with the Korn shell cd:

cd - changes to the last working directory

cd old new replaces the string old with new in the current directory pathname, and
tries to change directory to the resultant path, for example, if /home/pat is
the working directory, cd pat chris will change to /home/chris.

© Copyright IBM Corporation 2007

Command Argument Function

mkdir directory Create new directory directory

rmdir directory Delete empty directory directory

rm file Remove a file

rm -r directory Delete directory directory and any sub-
directories

ls directory Give a listing of directory -
many options: l, R, d, a i, t

pwd Print working directory - where you are in
the tree right now

mv old new Rename a file or directory - "new" can be a new
file name, or a directory in which to place the file

cp old new Copies a file to a new name

ln name copy Creates another name without copying the
contents

cd directory Change working directory to directory

Basic File Commands
Course materials may not be reproduced in whole or in part
without the prior written permission of IBM.

© Copyright IBM Corp. 2007 Unit 1. Basic Shell Concepts 1-7

Student Notebook
Figure 1-6. A File AL321.0

Notes:

Directories and devices are known as special files — the operating system controls their
use.

Some other operating systems impose a record structure on all files — AIX does not have
this restriction. You can have whatever you like in an ordinary file.

One special file that we'll be using a lot is /dev/null — this is a bottomless pit where output
can be directed if you want to lose it.

The file command can be used to find out what type a particular file is, that is, binary
executable, C program text, and so forth.

If the file is a binary file, do not use the cat command to view it. Use the strings command.
This command will send at least 4 contiguous, ASCII, printable characters to STDOUT.

© Copyright IBM Corporation 2007

A File

Definition:
– Collection of data, located on a portion of a disk.
– Stream of characters or a byte stream.

No structure is imposed on an ordinary file by the operating
system.

Examples:
– Binary executable code – /bin/ksh
– Text data – /etc/passwd
– C program text – /home/pat/prog.c
– Device special file – /dev/null
– Directory special file – /home

$ file filename – to find out which file type
$ strings filename – if the file type is 'binary'
Course materials may not be reproduced in whole or in part
without the prior written permission of IBM.

1-8 Korn and Bash Shell Programming © Copyright IBM Corp. 2007

Student Notebook
V4.1

Uempty
Figure 1-7. AIX File Names AL321.0

Notes:

Remember .filename files (dot files) are hidden from the normal ls command unless you
use the -a option, or you are root.

Unlike DOS, AIX does not impose limitations on file name structure — you can have a 20
character file name with a .pat on the end if that makes your happy.

There is a limit of 256 characters on the length of a shell command line, and 255 characters
on file names. As complicated and lengthy commands are sometimes necessary, it is
usually wise to avoid very long file names.

© Copyright IBM Corporation 2007

AIX File Names

Should be descriptive of the content

Are case-sensitive

Should use only alphanumeric characters:

UPPERCASE lowercase digits
. @ - _

Should not begin with "+" or "-" sign

Should not contain embedded blanks or tabs

Should not contain shell "special" characters:
* ? > < / ; & ! ~ $ \ |
[] { } () ` ` ' ' " "
Course materials may not be reproduced in whole or in part
without the prior written permission of IBM.

© Copyright IBM Corp. 2007 Unit 1. Basic Shell Concepts 1-9

Student Notebook
Figure 1-8. What Is a Shell Script? AL321.0

Notes:

The first line of a shell script can be read as an instruction to the shell to run the script in a
new specified type of shell. This ensures that scripts are correctly run when you have
switched your login to another shell type.

#!/usr/bin/ksh, or #!/usr/bin/ksh93 or #!/usr/bin/bash, and so forth, as the first line ensures
that the script is always run in the proper shell.

© Copyright IBM Corporation 2007

What Is a Shell Script?

A readable text file which can be edited with a text editor
– /usr/bin/vi shell_prog

Anything that you can do from the shell prompt

A program, containing:
– System commands
– Variable assignments
– Flow control syntax
– Shell commands

And comments
– #!/bin/ksh is not a comment if #! is in the first position
Course materials may not be reproduced in whole or in part
without the prior written permission of IBM.

1-10 Korn and Bash Shell Programming © Copyright IBM Corp. 2007

Student Notebook
V4.1

Uempty
Figure 1-9. Invoking Shells AL321.0

Notes:

There are many options for invoking the Korn shell. These are described fully in Unit 5. The
Bourne and Bash shells share the options shown above with the Korn shell.

With the -c option, multiword commands must be enclosed in quotes, so that they are
treated logically as a single word.

A waiting shell is sleeping until its new shell signals that it has completed.

The exec command is a shell built-in command.

To open a new Korn shell version 93, type ksh93.

To open a new Bash shell, type bash.

To open a new Bourne shell, type bsh.

© Copyright IBM Corporation 2007

-ksh
ksh

-ksh
ksh

Invoking Shells
$ ksh begins a new 88 Korn shell,

interrupting the current one

$ ksh -c commands runs commands in a shell

$ ksh -r starts a restricted shell

waiting shell

terminates the current shell and
replaces with new shell

$ exec ksh terminated shell

new shell
Course materials may not be reproduced in whole or in part
without the prior written permission of IBM.

© Copyright IBM Corp. 2007 Unit 1. Basic Shell Concepts 1-11

Student Notebook
Figure 1-10. Invoking Scripts AL321.0

Notes:

The “.” method (sourcing) causes the entire prog file to be read by the shell before it
executes any of it. Other methods of invoking scripts execute each line of code as it is read
in. Don’t forget, if #! is used in position 1, the ‘sourcing’ gives way to the named shell.

The “.” method is used when you want to change your current environment. For example, if
the prog script changed any variables, the variables would be changed after the script
completes when using “.”. If the prog script changes directories, you will be in the new
directory when the script completes. You need only “r:” permissions on the script.

The next two methods, ksh prog and prog run the script in a subshell. If the prog script
changed any variables, those new values are reset to old values when the subshell closes.
Likewise, if the prog script changed directories, that will not affect the parent shell. When
the prog script is finished running, you will be back to your original environment. The prog
script will not change any variables or directories when executed this way. You will need
both “r” and “x” permissions on the script itself.

The last method, exec prog, replaces your current shell.

© Copyright IBM Corporation 2007

$. prog (sourced) in current shell environment

$ ksh prog run prog in a new Korn shell
$ prog (or ./prog) run in a new shell if prog is executable

$ exec prog run prog in a new shell to replace the
current one

waiting shell
-ksh

ksh

-ksh
ksh

terminated shell
prog

prog
-ksh

prog

Invoking Scripts
Course materials may not be reproduced in whole or in part
without the prior written permission of IBM.

1-12 Korn and Bash Shell Programming © Copyright IBM Corp. 2007

Student Notebook
V4.1

Uempty
Figure 1-11. Korn Shell Configuration Files AL321.0

Notes:

If you use the Korn shell as your login shell, your .profile file should contain settings for
ENV. For example, it is typical to include the following lines in the script:

ENV=$HOME/.kshrc
export ENV

This variable sets up the $HOME/.kshrc file to be executed for all Korn shells - login and
subshells. This is the difference between .profile and .kshrc. .profile is only executed once
-- when you login. Therefore, any environment you set up there will only be set up in your
login shell (except for variables which can be exported). The .kshrc file will be executed for
all Korn shells, login and sub, so this is where you put things you want permanently part of
your Korn shell environment, but that can’t be exported, for example, aliases and set
commands.

For privileged shells, run with the “-p” option, the user's .profile and ENV files are replaced
by /etc/suid_profile. A privileged shell is automatically invoked if your effective user id (UID)
is different from your real UID, or your effective group (GID) is different from your real GID.

© Copyright IBM Corporation 2007

Invoking the Korn Shell sources:

Sourced by all AIX processes

Sourced by login shells

Login shells source these files in the
user's home directory

A resource file listed in the ENV
environment variable will be sourced by
the shell

/etc/environment

/etc/profile

.profile

.exrc (.vimrc)

$ENV
.kshrc (.bashrc)

Each new explicit Korn shell sources the ENV file again

time

* If using CDE, .dtprofile must be changed to force an execute of
.profile. If using bash, please refer to student notes.

Korn Shell Configuration Files
Course materials may not be reproduced in whole or in part
without the prior written permission of IBM.

© Copyright IBM Corp. 2007 Unit 1. Basic Shell Concepts 1-13

Student Notebook
The AIX Windows Common Desktop Environment (CDE) provides access to Korn shell
windows. Normally these are not login shells. A .dtprofile file will be sourced if found in the
home directory. To force it to execute your .profile as well, you must uncomment the
DTSOURCEPROFILE=TRUE statement.

The Trusted shell uses /etc/tsh_profile in place of /etc/profile and the user's .profile file.

The C shell sources .login and .cshrc files in the user's home directory, instead of
/etc/profile and the users' .profile and .kshrc files.

Only Korn shells source the ENV file. You invoke an explicit shell when you use the Korn
shell directly or explicitly. For example when you use commands like:

ksh, ksh prog, ksh -c commands

When you run a program (other than by the dot method) that has the special comment
#!/usr/bin/ksh as its first line, you also invoke an explicit shell.

Another common file used is .exrc. This file contains commands used to control your vi
editor environment. For example:

 set showmode
 set tabstop=4
 ab IBM International Business Machines, Inc.

in your .exrc file. You do not need to use the colon before the command in the vi interactive
form of the command.

The Bash shell looks for (in this order):

1. /etc/environment for all AIX processes
2. /etc/profile
3. $HOME/.bash_profile

if not found, then
$HOME/.bash_login

if not found, then
$HOME/.profile

The BASH_ENV variable is slightly different from the ENV variable. A file named
$HOME/.bashrc will be executed for any interactive Bash shell, even if the BASH_ENV
variable is not set. (This is NOT true with the Korn shell ENV variable). However, if you
want $HOME/.bashrc to be executed for non-interactive shells (running shell scripts
without the #! line), then you must set the BASH_ENV variable. Also, the .bashrc file is only
executed for sub-bash shells. You must force an execute of it (source) for login shells.

Often, this is placed in .bash_profile (or .bash_login or .profile).

Refer to the previous notes on .kshrc to explain the difference of what to put in
.bash_profile (.profile) and .bashrc (.kshrc). The Bash shell also provides
$HOME/.bash_logout to be executed each time you log out.
Course materials may not be reproduced in whole or in part
without the prior written permission of IBM.

1-14 Korn and Bash Shell Programming © Copyright IBM Corp. 2007

Student Notebook
V4.1

Uempty
Figure 1-12. What Are Metacharacters? AL321.0

Notes:

Metacharacters do not represent themselves. The three types are a way of classifying the
metacharacters. Wildcards are the most commonly used (like *, ?). Korn and Bash shell
uses metacharacters, like ? and +. The third type are quotes like double, single and the \
escape character.

Unit 5 shows how wildcard metacharacters can be turned off using shell options.

© Copyright IBM Corporation 2007

What Are Metacharacters?

Characters with special meaning

– Three types
• Wildcard (or expansion)
• Shell
• Quoting

– Shell processes metacharacters before executing a command

– There are many different shell metacharacters

– Metacharacters can be mixed

Wildcard metacharacters can be turned off by shell options
Course materials may not be reproduced in whole or in part
without the prior written permission of IBM.

© Copyright IBM Corp. 2007 Unit 1. Basic Shell Concepts 1-15

Student Notebook
Figure 1-13. Wildcard Metacharacters AL321.0

Notes:

Filenames beginning with a “.” must be matched explicitly, with a “.” as the first character in
your pattern.

There are many more Character Equivalence Classes: [:alpha:], [:alnum:], [:cntrl:],
[:graph:], [:print:], [:punct:], [:xdigit:] and [:blank:]. Further description of these is in the
AIX Commands Reference manual, under ksh, bsh, csh, and especially ed.

Commands and utilities such as grep, sed and awk also use pattern matching
metacharacters and Character Equivalence Classes. These have similar functions but
are not identical (see units 9, 10 and 11):

* to match any number of the preceding character (so it must always follow
something),

. the dot matches any single character, rather than the ?,
[^ab] with a ^ in place of a ! to signify an exclusion list,
^ can be used to signify the beginning of a line,
$ will signify the end of a line.

© Copyright IBM Corporation 2007

Range list of all upper case letters
All lower case letters: a, b, c,... z
Digits: 0, 1, 2,... 9
Spacing characters: tab, space, and so forth

Character Equivalence Classes can be used in place of range
lists, to avoid National Language collation problems:

Match any number of any characters
Match any single character
Match a single character from the bracketed list
Match any single character except those listed
Inclusive range for a list

*
?
[abc]
[!az]
[a-z]

[[:upper:]]
[[:lower:]]
[[:digit:]]
[[:space:]]

-
-
-
-
-

-
-
-
-

Metacharacters that form patterns that are expanded into matching
filenames from the current directory:

Wildcard Metacharacters
Course materials may not be reproduced in whole or in part
without the prior written permission of IBM.

1-16 Korn and Bash Shell Programming © Copyright IBM Corp. 2007

Student Notebook
V4.1

Uempty
Figure 1-14. Sample Directory AL321.0

Notes:

These files will be used for the examples of metacharacter file name expansion on
following pages.

© Copyright IBM Corporation 2007

usr vartmphome

adm

etc

spoolchrispat

bin

/

data_file table1shell_progscript3script2diary.apple dirA

File1

Sample Directory
Course materials may not be reproduced in whole or in part
without the prior written permission of IBM.

© Copyright IBM Corp. 2007 Unit 1. Basic Shell Concepts 1-17

Student Notebook
Figure 1-15. Expansion Examples AL321.0

Notes:

Assume the current directory is /home/chris.

Remember, the wildcard expands before the command runs.

© Copyright IBM Corporation 2007

Expansion Examples

$ rm d*y removes the diary file

$ file script* identifies script2 and script3

$ head script[345] displays the top lines of script3

$ more script[3-6] displays script3 screen by screen

$ tail script[!12] displays the last lines of script3

Now, it's your turn...

$ touch ?a*

$ pg [st][ah]*

$ ls d*

$ lpr [a-z]*t[0-9]
Course materials may not be reproduced in whole or in part
without the prior written permission of IBM.

1-18 Korn and Bash Shell Programming © Copyright IBM Corp. 2007

Student Notebook
V4.1

Uempty
Figure 1-16. More Shell Metacharacters AL321.0

Notes:

These will process in the shell, as in while using ls or cd or lpr, etc.

© Copyright IBM Corporation 2007

More Shell Metacharacters
The Korn shell can match multiple patterns

*(pattern|pattern...) zero or more occurrences
?(pattern|pattern...) zero or one occurrence
+(pattern|pattern...) one or more occurrences
@(pattern|pattern...) exactly one occurrence
!(pattern&pattern...) anything except

One or more patterns, separated with "|" for "or", "&" for "and"
Examples:

*([0-9]) 0 or more consecutive digits
?(warning) 0 or 1 occurrence of "warning"
+([[:upper:]]|[a-z]) 1 or more consecutive letters
@([0-9]|abc) 1 digit or "abc"
!(err*|fail*) Word cannot start with "err" or "fail"
Course materials may not be reproduced in whole or in part
without the prior written permission of IBM.

© Copyright IBM Corp. 2007 Unit 1. Basic Shell Concepts 1-19

Student Notebook
Figure 1-17. Quoting Metacharacters AL321.0

Notes:

Try these examples: (assume you are the user ‘chris’ and you have a file called “table1” in
the current directory).

1. echo $HOME t*
/home/chris table1

2. echo ‘$HOME ta*’
$HOME ta*

3. echo “$HOME t*”
/home/chris t*

In #2, we used single quotes. Single quotes tell the shell to ignore the special meaning of
all metacharacters between the quotes. We get everything back literally.

Why did #3 expand the variable, and not the wildcard? Double quotes make the shell
ignore the special meaning of all metacharacters except for the $, ‘ (backquote), and \. In
#3, the double quotes allow the $ to expand, but the * is NOT an exception listed above, so
it will not expand.

© Copyright IBM Corporation 2007

Quoting Metacharacters
Stops normal shell metacharacter processing, including metacharacter

expansion

To form strings

"double quotes" remove the special meaning of all
shell metacharacters except for the
$, `(backquote), and \

To form literal strings

'single quotes' remove any special meaning of the
characters within the single quotes

For a literal character

\character removes the special meaning of the
character immediately following the \
Course materials may not be reproduced in whole or in part
without the prior written permission of IBM.

1-20 Korn and Bash Shell Programming © Copyright IBM Corp. 2007

Student Notebook
V4.1

Uempty
Figure 1-18. Process I/O AL321.0

Notes:

You can define how the file descriptors 3 to 9 are handled. You might want to use descriptor
3 to output to a named file, while 4 outputs to a printer device file. Remember that your
screen is addressed through its device file, for example, /dev/tty0, for both reading of input
and displaying of output.

Remember that the device file /dev/tty always refers to your keyboard or screen.

The defaults for the first three file descriptors can be changed as we will see next.

© Copyright IBM Corporation 2007

ProcessInput
(0)

(1)

(2)
Output

Error

Standard in - keyboard
Standard out - screen
Standard error - screen

Defaults

User-
defined

{ 0<
1>
2>
3

9

File descriptor table

.

.

.{

Process I/O

Every process has a file descriptor table associated with it
Course materials may not be reproduced in whole or in part
without the prior written permission of IBM.

© Copyright IBM Corp. 2007 Unit 1. Basic Shell Concepts 1-21

Student Notebook
Figure 1-19. Input Redirection AL321.0

Notes:

In the first example, the user is creating a note to send to the user marty. In the second
example, the file letter has previously been created using an editor such as /usr/bin/vi. The
file descriptor “0” is changed so that input is taken from the named file. It is possible to write
"0<", but the file descriptor number is usually omitted.

HERE documents are usually seen in scripts. You could use the HERE document syntax
for the first mail example. The “>” in front of each HERE document line is the shell
secondary prompt; shell prompts are configurable (see unit 2 for example). This will also
work in a shell script, allowing input to come from the text of the script between the END
markers rather than from a file.

Note that the final END marker is on a line by itself. You could use any string of characters
to mark the ends, but the words END or EOF or HERE seem appropriate. A space must
separate the chosen marker from “<<“.

If “-” follows the “<<“, that is “<<- END”, leading tabs are ignored in the input text. A “\” will
prevent substitutions from taking place. Otherwise, you can refer to variables and
substitute command values.

© Copyright IBM Corporation 2007

Input Redirection
Redirecting standard input from a file: <

command < filename

$ mail marty
Subject: Hello
A letter to see if you are still with us.
<Ctrl-d>
$ _
$ mail -s "Hello" marty < letter
$ _

Input may also be given inline. This is called a HERE document.

command << END
text
…
END
Course materials may not be reproduced in whole or in part
without the prior written permission of IBM.

1-22 Korn and Bash Shell Programming © Copyright IBM Corp. 2007

Student Notebook
V4.1

Uempty
Figure 1-20. Output Redirection AL321.0

Notes:

In this example, the files listing and errors are created, or overwritten if the file already
exists.

It is permissible to write command 1> filename, but the 1 is usually omitted. However,
for redirecting error output, the 2 is mandatory.

To redirect other I/O descriptors, use the syntax n>, where 3<=n<=9

Note that the number in the error message is unique for each type of message and product.

© Copyright IBM Corporation 2007

Output Redirection
Redirecting standard output to a file: >

command > filename

$ ls /home/chris
data_file script2 script3 shell_prog table1
$ _

$ ls /home/chris > listing
$ _

Redirecting standard error output to a file: 2>
command 2> filename

$ cat /home/chris/printout
cat: 0652-050 Cannot open printout.
$ _

$ cat /home/chris/printout 2> errors
$ _
Course materials may not be reproduced in whole or in part
without the prior written permission of IBM.

© Copyright IBM Corp. 2007 Unit 1. Basic Shell Concepts 1-23

Student Notebook
Figure 1-21. Output Appending AL321.0

Notes:

The line_count file is appended to — the original contents remain intact.

It is permissible to write command 1>> filename. Again, appending to other I/O
descriptors uses the n>> syntax.

© Copyright IBM Corporation 2007

Output Appending
Appending standard output to a file: >>

command >> filename

$ wc -l /home/chris/script3
42 /home/chris/script3

$ _

$ wc -l /home/chris/script3 >> line_count
$ _

Appending standard error output to a file: 2>>
command 2>> filename

$ wc -c /home/chris/characters
wc: 0652-755 Cannot open characters.
$ _

$ wc -w /home/chris/words/ 2>> errors
$ _
Course materials may not be reproduced in whole or in part
without the prior written permission of IBM.

1-24 Korn and Bash Shell Programming © Copyright IBM Corp. 2007

Student Notebook
V4.1

Uempty
Figure 1-22. Association AL321.0

Notes:

The order of association is significant. If we had put command 2>&1 > file, the error output
would appear at the default destination for the standard output, while the standard output
goes to the file.

The cmd 1>&2 syntax is used often in shell scripting in order to create your own error
messages in your shell scripts.

Consider this: Your user runs your shell script (named prog) and sends error messages to
an error file (ex: prog 2> errors). You want to echo to the screen that the user did something
incorrect, ex: echo “You did not provide enough arguments”. If you want your message to
go to the users errors file, you must use the 1>&2 syntax. (that is, echo “you did not provide
enough arguments” 1>&2)

© Copyright IBM Corporation 2007

File descriptors can be joined, so that they output to the same place

command > file 2>&1

Redirects standard error to join with standard out

What do you think these command do?

$ cat message_file 2>&1 > errors_file
$ cat message_file 1>&2

0
1

2

Association
Course materials may not be reproduced in whole or in part
without the prior written permission of IBM.

© Copyright IBM Corp. 2007 Unit 1. Basic Shell Concepts 1-25

Student Notebook
Figure 1-23. Setting I/O or File Descriptors AL321.0

Notes:

Once executed, each of the above settings remains active for the duration of the shell.
Settings for file descriptors 0, 1 and 2 remain active in subsequent shells. They are reset by
using exec to run a replacement shell or command.

There is no way to list the current configuration of file descriptors for the shell.

© Copyright IBM Corporation 2007

Setting I/O or File Descriptors
The built-in shell command exec allows you to

Open
Associate
Close

file descriptors

$ exec n>of Opens output file descriptor n to file "of"

$ exec n<if Opens input file descriptor n to read file "if"

$ exec m>&n Associates output file descriptor m with n

$ exec m<&n Associates input file descriptor m with n

$ exec n>&- Closes output file descriptor n

$ exec n<&- Closes input file descriptor n
Course materials may not be reproduced in whole or in part
without the prior written permission of IBM.

1-26 Korn and Bash Shell Programming © Copyright IBM Corp. 2007

Student Notebook
V4.1

Uempty
Figure 1-24. Setting I/O Descriptor Examples AL321.0

Notes:

File descriptor 3 is redirected by the association step, so that output to file descriptor 3 is
logged in Lee's err file — rather than the original out file destination. At the end of the
example, Lee's out file contains only the date command output. Lee's err file contains both
the listing of Lee's home directory and wc command outputs.

© Copyright IBM Corporation 2007

Setting I/O Descriptor Examples
To open file descriptor 3 for output to Lee's out file and file descriptor 4 to

Lee's err file
$ exec 3> /home/lee/out
$ exec 4> /home/lee/err
$ date >&3
$ ls /home/lee 2>&4

To associate output to file descriptor 3 with file descriptor 4
$ exec 3>&4
$ wc -l /home/lee/script3 >&3
$ wc -l /home/lee/table1 >&4

To close file descriptors 3 and 4
$ exec 3>&-
$ exec 4>&-
Course materials may not be reproduced in whole or in part
without the prior written permission of IBM.

© Copyright IBM Corp. 2007 Unit 1. Basic Shell Concepts 1-27

Student Notebook
Figure 1-25. Pipes AL321.0

Notes:

A command which takes input from its standard input and outputs to standard output after
processing is called a filter. All but the last command in a pipeline is run in a subshell.

There is a 32 KB limit on the amount of data passing along the pipeline. If a command
generates more than 32 KB of output it must sleep until the next command processes
some of the data; then it can awaken.

Commands can be sequenced with semi-colons, but there is no interaction between them:

cd /home/robin ; pwd
The tee command is quite useful particularly if you want to view output and keep it for later
use. To append to an existing file with tee, use the -a option.

By default, only standard output goes over the pipe. Standard error still comes to the
screen (unless redirected). How can it be set up so the standard error goes over the pipe
also (for instance to record in a log file)?

Answer: cmd 2>&1 | tee logfile

© Copyright IBM Corporation 2007

Commands can be joined, so one inputs into the next
command1 | command2 | command3

Gives a command pipeline
$ ls /home/robin | sort -r | lp

sorts the file list into reverse order, and prints it

Pipelines may have a branch using the tee command file descriptor
$ ls /home/francis | tee raw_list | sort -r | lp

saves the unsorted list in the file raw_list

ls sort lp0 0 0 111

222

ls sort lp
0 0 01 11

222

tee
0 1

2

1

raw_list

Pipes
Course materials may not be reproduced in whole or in part
without the prior written permission of IBM.

1-28 Korn and Bash Shell Programming © Copyright IBM Corp. 2007

Student Notebook
V4.1

Uempty
Figure 1-26. Command Grouping { { and () AL321.0

Notes:

{ } Shell built-in commands can be run in the current shell if they appear in “{ }”
parentheses. Because it is not a subshell, changes to the environment do affect the main
shell.

Input and output redirection can be applied to the grouped commands after the
parentheses, for example:

{ command1 ; command2 ;} > /dev/null 2>&1

The semicolons are mandatory following each command within the { }.

() Even shell built-in commands can be run in the subshell if they appear in “()”
parentheses. As it is a subshell, changes to the environment do not affect the main shell.

The semicolons allow the commands to appear on the same line, you could have new lines
instead:

(command1
command2)

© Copyright IBM Corporation 2007

To combine the output of several commands: { } or ()
{ command ; command ... ; }

Runs commands in the current shell
Directory (or environment) changes remain in effect

{ cd /home/lynn ; chown lynn:bin s* ;}

(command ; command ...)
Does not change your current environment

(cd /home/lynn ; chown lynn:bin d*)

This leaves the working directory unchanged on completion

-sh

waiting shell
-sh

Command Grouping { } and ()

command line
Course materials may not be reproduced in whole or in part
without the prior written permission of IBM.

© Copyright IBM Corp. 2007 Unit 1. Basic Shell Concepts 1-29

Student Notebook
Figure 1-27. Background Processing AL321.0

Notes:

You can specify a process id number or shell job number to wait for instead of waiting for all
background processes. The wait command is a shell built-in command. It completes with
the same exit status as the background task. Wait can also wait for a specific job to
complete and return its status. We shall learn about a command's exit status in Unit 3.

You will not be notified that the job is completed until the next time you press ENTER.

© Copyright IBM Corporation 2007

sh

sleep &

date wait

Background Processing
Execute command in the background: &

$ sleep 999 &

Waiting for the end...
$ date
Mon Dec 31 11:59:59 EST 2007
$ wait

When all background processes have finished
$ _
Course materials may not be reproduced in whole or in part
without the prior written permission of IBM.

1-30 Korn and Bash Shell Programming © Copyright IBM Corp. 2007

Student Notebook
V4.1

Uempty
Figure 1-28. Shell Job Control AL321.0

Notes:

The jobs command has three options:

-l Lists process ids along with the job ids,

-n Lists only jobs that have stopped or exited since last notified,

-p Lists only the process group.

The disown command is a built in command in ksh93. It allows you to disassociate a
background job from the current shell. The effect is that the job is not killed when the shell
exits. It can be compared to the nohup command, but is used after the job is already
running. Syntax: disown %job#

© Copyright IBM Corporation 2007

Shell Job Control
The shell assigns job numbers to background or suspended processes

The jobs command lists your current shell processes and their job ids
<Ctrl-z> suspends the current foreground job
bg runs a suspended job in background
fg brings to foreground a suspended or background job
Jobs can be stopped with the kill command
The disown command can be used in ksh93

kill, fg and bg work with the following arguments:
pid process ID
%job_id job ID
%% %+ current job
%- previous job
%command match a command name
%?string match string in command line
Course materials may not be reproduced in whole or in part
without the prior written permission of IBM.

© Copyright IBM Corp. 2007 Unit 1. Basic Shell Concepts 1-31

Student Notebook
Figure 1-29. Job Control Example AL321.0

Notes:

© Copyright IBM Corporation 2007

$ cc -o RUNME program_in.c
... After some time running this long compilation...
Ctrl-z
[2] + 5692 Stopped (SIGTSTP) cc -o RUNME program_in.c
$ jobs
+ [2] Stopped (SIGTSTP) cc -o RUNME program_in.c
- [1] Running sleep 999 &
$ bg %+
[2] cc -o RUNME program_in.c
$ jobs
+ [2] Running cc -o RUNME program_in.c
- [1] Running sleep 999 &
$ kill %cc
[2] + 5692 Terminated cc -o RUNME program_in.c
$ fg %1
sleep 999
$ _
Completing the sleep in the foreground...
$ jobs
$ _

Job Control Example
Course materials may not be reproduced in whole or in part
without the prior written permission of IBM.

1-32 Korn and Bash Shell Programming © Copyright IBM Corp. 2007

Student Notebook
V4.1

Uempty
Figure 1-30. Command Substitution AL321.0

Notes:

Bourne, Bash, and Korn shells have available the first form using grave accents, more
usually called back quotes. The second is Korn shell specific syntax. Clearly nesting is
easier with the Korn shell form.

If you use a case statement with the Korn Shell $(...) command substitution, you
must use the optional “(“in front of each pattern. Be careful to leave spaces around
brackets, to avoid confusion with the double parens form of the let command -- as in (()) .

Substituted commands run in subshells, but you can use redirection in place of a
command.

Command substitution is helpful in generating reports “real time”.

Ex:

print “Today is $(date)”
print “There are $(who|wc -l) users on the system”
print “There are $(ps -ef|wc -l) processes running”

© Copyright IBM Corporation 2007

Command substitution allows you to use the output of a command or
group of commands:

In a variable assignment
In part of an argument list

Nesting is possible but can be EXTREMELY confusing:

Bourne, Korn, and Bash variable=`command`
-- or --

Korn and Bash variable=$(command)

var=`cmd1 \`cmd2 \\\`cmd3\\\` \` `
-- or --

var=$(cmd1 $(cmd2 $(cmd3)))

Command Substitution
Course materials may not be reproduced in whole or in part
without the prior written permission of IBM.

© Copyright IBM Corp. 2007 Unit 1. Basic Shell Concepts 1-33

Student Notebook
Figure 1-31. Command Substitution Examples (1 of 2) AL321.0

Notes:

Inside the backquotes (grave accents), a backslash normally only removes the special
meaning of: \, ' or $.

Between backquotes that are themselves double quoted, the backslash also removes the
special meaning of a double quote, for example:

var="output $(print \"text to print\") "

© Copyright IBM Corporation 2007

Command Substitution Examples (1 of 2)
Here is command substitution in action...

$ d=$(date)
$ print $d
Fri Feb 29 02:29:00 EST 2008
$ _
$ print "Contents of a file" > tmp_file
$ c=`cat tmp_file`
$ r=$(< tmp_file) no command, no Sub-Shell
$ print "Cat: $c"
Cat: Contents of a file
$ print "<: $r"
<: Contents of a file
$ _
Course materials may not be reproduced in whole or in part
without the prior written permission of IBM.

1-34 Korn and Bash Shell Programming © Copyright IBM Corp. 2007

Student Notebook
V4.1

Uempty
Figure 1-32. Command Substitution Examples (2 of 2) AL321.0

Notes:

The first example will list all files, sorted by time, and then show only the top line, or file
name, after the “: “.

The second example executes the “date” command and uses the output within the print
statement.

© Copyright IBM Corporation 2007

Command Substitution Examples (2 of 2)
Can you explain exactly what is happening here?

$ print "Most recent file: $(ls -t | head -1)"
Most recent file: tmp_file
$ _
$ print "Today is $(date)"
Today is Sat July 07 07:07:07 EDT 2007
$ _
Course materials may not be reproduced in whole or in part
without the prior written permission of IBM.

© Copyright IBM Corp. 2007 Unit 1. Basic Shell Concepts 1-35

Student Notebook
Figure 1-33. Command Line Editing and Recall AL321.0

Notes:

Appendix A, at the back of your notes, contains a detailed reference for the "vi" command.
Below are the special "vi" sub-commands that work with "set -o vi" editing of a
command line:

\ Filename completion.
Replaces the current word with the longest common prefix of all
filenames matching the current word with an asterisk appended.
If the match is unique, a "/" is appended if the file is a directory and a
space is appended if the file is not a directory.

* Appends an asterisk to the current word and attempts filename
generation.
If no match is found, it rings the bell.
Otherwise, the word is replaced by the matching pattern and input mode
is entered.

= Lists the file names that match the current word as if an asterisk were
appended to it.

© Copyright IBM Corporation 2007

Command Line Editing and Recall
vi option for the Korn Shell and emacs for the Bash Shell give:

Command line editing
Command recall

$ set -o vi or set -o emacs

For vi simply press ESC to enter editing mode:
h to move the cursor left
l to move the cursor right
- or k fetches commands from the history file
+ or j if you go too far back

Plus other vi commands to perform line editing

For emacs:
Arrows work, DELete and BackSpace work, else <Ctrl-b>, <Ctrl-f>,
<Ctrl-d>
Up arrow to fetch previous command
(Check out the Student Notes for more fun stuff!)
Course materials may not be reproduced in whole or in part
without the prior written permission of IBM.

1-36 Korn and Bash Shell Programming © Copyright IBM Corp. 2007

Student Notebook
V4.1

Uempty
 _ (Underscore) Optionally preceded by a Count, for example, "5_".
Causes the countth word of the previous command line to be appended
and input mode entered.
The last word of the previous command line is used if Count is omitted.

/ Command search
Searches command history for this string. Use "n" to go to the next, "N"
to go to the previous.

@Letter Searches the alias list for an alias named Letter.
If an alias of this name is defined, its value is placed into the input queue
for processing.

Sends the line after inserting a "#" in front of the line.
Useful for causing the current line to be inserted in the history without
being executed.

<Ctrl-c> Terminates the "set -o vi" edit.

<Ctrl-j> (New line) Executes the current line, regardless of the mode.

<Ctrl-l> Line feeds and prints the current line.
Has effect only in control mode.

<Ctrl-m> (Return) Executes the current line, regardless of the mode.

Any other command in vi:

set -o emacs (used as default in most Bash shells)

<Tab> filename completion
<Tab><Tab> filename completion list
<Ctrl-b> move back one character
<Ctrl-f> move forward one character
<Ctrl-d> delete 1 character forward
 Delete 1 character behind
<Esc> ~ username completion
<Esc> $ variable completion
<Esc> @ hostname completion
<Esc> ! command completion
<Esc> completion

Any other command in emacs.

Question: In what file would you put “set -o vi” or “set -o emacs” to make it permanent?

Answer: .kshrc or .bashrc (whatever your ENV or BASH_ENV variable is set to). NOT
.profile because then command line editing would only work in your login shell.
Course materials may not be reproduced in whole or in part
without the prior written permission of IBM.

© Copyright IBM Corp. 2007 Unit 1. Basic Shell Concepts 1-37

Student Notebook
Figure 1-34. Checkpoint AL321.0

Notes:

Write down your answers here:

1.

2.

3.

4.

5.

6.

7.

8.

9.

10.

© Copyright IBM Corporation 2007

Checkpoint

1. What type of file is /dev/tty3?
2. How could we find out a file type?
3. How can we get .kshrc to run in an explicit Korn Shell?
4. How can we specify the first character in a file name to be

uppercase?
5. How can we ignore error messages from a command?
6. How do you make the normal output of a command appear

as error output?
7. How can we group commands, in order to redirect the

standard output from all of them?
8. What will kill 1 do?
9. If you have submitted a job to run in foreground, how could

you move it to background?
10.How would you set up a command line recall facility?
Course materials may not be reproduced in whole or in part
without the prior written permission of IBM.

1-38 Korn and Bash Shell Programming © Copyright IBM Corp. 2007

Student Notebook
V4.1

Uempty
Figure 1-35. Unit Summary AL321.0

Notes:

© Copyright IBM Corporation 2007

Unit Summary

AIX shells
Hierarchical file-system
Filenames and types
Shell scripts
Invoking shells
Shell metacharacters: Expansion and quoting
Redirection -- < and << input, > and >> output, 2> and 2>>
error
Setting file descriptors
Pipes and tees
Command grouping
Background processes
Shell job control
Shell command editing
Course materials may not be reproduced in whole or in part
without the prior written permission of IBM.

© Copyright IBM Corp. 2007 Unit 1. Basic Shell Concepts 1-39

Student Notebook
Course materials may not be reproduced in whole or in part
without the prior written permission of IBM.

1-40 Korn and Bash Shell Programming © Copyright IBM Corp. 2007

Student Notebook
V4.1

Uempty
 Unit 2. Variables

What this unit is about

This unit describes how to set and reference variables. In addition, we
present positional parameters and variable inheritance.

What you should be able to do

After completing this unit, you should be able to:

 • Set and reference variables
 • Access positional parameters
 • Analyze variable inheritance

How you will check your progress

 • Checkpoint questions
 • Machine exercises
Course materials may not be reproduced in whole or in part
without the prior written permission of IBM.

© Copyright IBM Corp. 2007 Unit 2. Variables 2-1

Student Notebook
Figure 2-1. Unit Objectives AL321.0

Notes:

© Copyright IBM Corporation 2007

Unit Objectives
After completing this unit, you should be able to:

Set variables

Reference variables

Use positional parameters

Shift arguments

Set positional parameters

Use shell parameters

Understand inheritance

List shell variables

List environment variables
Course materials may not be reproduced in whole or in part
without the prior written permission of IBM.

2-2 Korn and Bash Shell Programming © Copyright IBM Corp. 2007

Student Notebook
V4.1

Uempty
Figure 2-2. Setting Variables AL321.0

Notes:

There are no spaces around the “=”. Variable assignments remain in effect for the duration
of the shell.

It is a good idea not to use uppercase names for your variables; the shell does, and there
could be conflicts. There are no shell limitations on the length of a variable name, or the
length of its contents.

A readonly variable cannot be assigned a new value or be unset. The shell itself can
change readonly variables, for example, if you make any shell-set variable readonly. The
command is a shell built-in. To initialize a readonly variable, set the value when declaring
the variable. The typeset command is a shell builtin (not available in all shells). There will
be more in later units. You cannot assign values with the readonly command in the Bourne
shell.

With no further arguments, both readonly and typeset -r list the variables that are readonly.

With AIX Version 4, a new option readonly -p gives a list of readonly variables in the format
“readonly var=val”.

© Copyright IBM Corporation 2007

Setting Variables
To assign a value to a variable: name=value
$ var1=Fri
$ _

To "unset" the value to a variable:
$ unset var1

To protect a variable against further changes:
readonly name=value

- or -
typeset -r name=value

$ readonly var1=Sun
$ var1=Mon
ksh: var1: This variable is read only
$ _
$ readonly -p displays full list
Course materials may not be reproduced in whole or in part
without the prior written permission of IBM.

© Copyright IBM Corp. 2007 Unit 2. Variables 2-3

Student Notebook
Figure 2-3. Referencing Variables AL321.0

Notes:

The print command is a Korn shell builtin command. You can get the same functionality by
using either the /bin/echo command provided by the AIX operating system, or the echo
command builtin to the shells. In bash, you must use echo.

Unset variables have no value, and so nothing is printed when you reference them in a
print command.

© Copyright IBM Corporation 2007

Referencing Variables
To reference a variable, prefix name with a $

$ print $var1
Fri
$ _

To separate a variable reference from other text use: ${ }

$ print The course ends on $var1day
The course ends on
$ print The course ends on ${var1}day
The course ends on Friday
$ _
Course materials may not be reproduced in whole or in part
without the prior written permission of IBM.

2-4 Korn and Bash Shell Programming © Copyright IBM Corp. 2007

Student Notebook
V4.1

Uempty
Figure 2-4. Positional Parameters AL321.0

Notes:

In the Bourne shell you cannot reference more than nine arguments at once.

If you want to pass arguments that begin with a “-” or “+”, you can use the convention that
“--” marks the end of options for a command or script. You will see how to use this in Unit 5
with the option processing command getopts. For example:

params.ksh -- -arg1 +arg2 arg3

This will prevent “-arg1” being treated as an option rather than an argument.

© Copyright IBM Corporation 2007

Positional Parameters
Parameters can be passed to shell scripts as arguments on the command

line

$ params.ksh arg1 arg2

"arg1" is positional parameter number 1
"arg2" is positional parameter number 2
Others are unset

They are referenced in the script by:

$1 to $9 for the first nine
${10} to ${n} for all after the first nine
Course materials may not be reproduced in whole or in part
without the prior written permission of IBM.

© Copyright IBM Corp. 2007 Unit 2. Variables 2-5

Student Notebook
Figure 2-5. Setting Positional Parameters AL321.0

Notes:

set is a shell built-in command. Here, parameter 3 was cleared (or unset) by the use of the
set command.

The shell command unset can be used to clear a variable from memory and remove it:

unset var1

or

unset -v var1

AIX Version 4 introduced the -v option for unset. This option corresponds to the POSIX
standard recommendation.

© Copyright IBM Corporation 2007

Setting Positional Parameters
In a shell script the set command can:

Change the values of positional parameters
Unset positional parameters previously set

$ cat first.ksh
print $1 $2 $3
set apple banana
print $1 $2 $3

$ first.ksh a b c
a b c
apple banana

$ _
Course materials may not be reproduced in whole or in part
without the prior written permission of IBM.

2-6 Korn and Bash Shell Programming © Copyright IBM Corp. 2007

Student Notebook
V4.1

Uempty
Figure 2-6. Variable Parameters AL321.0

Notes:

The IFS (Internal Field Separator) variable contains the Field Separator characters. In most
shells these characters default to Space, Tab, and Newline.

We shall see more of IFS later.

© Copyright IBM Corporation 2007

Variable Parameters
Shell scripts set a number of other shell parameters:

$# The number of positional parameters set

$@ Positional parameters in a space separated list

$* Positional parameters in a list separated by the
first Internal Field Separator (the default is a space)

In double quotes, $@ and $* behave differently:

"$@" = "$1" "$2" "$3" . . .

"$*" = "$1 $2 $3 . . . "
Course materials may not be reproduced in whole or in part
without the prior written permission of IBM.

© Copyright IBM Corp. 2007 Unit 2. Variables 2-7

Student Notebook
Figure 2-7. Some Shell Parameters AL321.0

Notes:

As $0 remains fixed for the duration of a shell script, it is not affected by the shift command
seen earlier. It is the pathname used to invoke the script.

$- Shell options used to invoke the shell, for example, -r

If you see “ism” in the Shell Options, these are the usual default options for a command
login shell. The option letters mean the shell is in interactive mode, it uses STDIN for
commands, and it has job control (m=monitor) enabled respectively. We shall see all of the
options in Unit 5.

We shall see more of $? in the next unit. You should note that PID is a very common
abbreviation used in documentation and commands.

© Copyright IBM Corporation 2007

Some Shell Parameters
Shell parameters that remain fixed for the duration of the script:

$0 The (path)name used to invoke the shell script

$$ The Process ID (PID) of current process (shell)

Parameters set as the script executes commands:

$! The PID of the last background process

$? The return code from the last command executed
Course materials may not be reproduced in whole or in part
without the prior written permission of IBM.

2-8 Korn and Bash Shell Programming © Copyright IBM Corp. 2007

Student Notebook
V4.1

Uempty
Figure 2-8. Shifting Arguments AL321.0

Notes:

You can specify a number of parameters for shift, for example,

shift 3

moves three parameters to the left, discarding the leftmost three. The shell provides shift
as a built-in command.

The shift command is very helpful inside of loops, which we will see later.

© Copyright IBM Corporation 2007

Discarding the first or leftmost argument

Decrementing the number of positional parameters

Allowing Bourne shell to reference more than 9 arguments

In a shell script the shift command moves arguments to the left:
$ params.ksh arg1 arg2 arg3

Sets

After
shift

arg1 arg2 arg3

arg2 arg3

$2

$1

$1 $3

$2

arguments

Shifting Arguments
Course materials may not be reproduced in whole or in part
without the prior written permission of IBM.

© Copyright IBM Corp. 2007 Unit 2. Variables 2-9

Student Notebook
Figure 2-9. Parameter Code Example AL321.0

Notes:

On the next page we shall see what this does.

© Copyright IBM Corporation 2007

Parameter Code Example
So, let's put all of it into action in a shell script.

$ cat second.ksh
print $$
print $0
print "$# PPs as entered"
print "PP1=$1 PP2=$2 PP3=$3 PP4=$4"
shift
print $0
print "$# PPs after a shift"
print "PP1=$1 PP2=$2 PP3=$3 PP4=$4"
set "$@"
print 'Set "$@" - parameters in double quotes'
print "PP1=$1 PP2=$2 PP3=$3 PP4=$4"
set "$*"
print 'Set "$*" - parameters space separated'
print "PP1=$1 PP2=$2 PP3=$3 PP4=$4"

$ _
Course materials may not be reproduced in whole or in part
without the prior written permission of IBM.

2-10 Korn and Bash Shell Programming © Copyright IBM Corp. 2007

Student Notebook
V4.1

Uempty
Figure 2-10. Parameter Output Example AL321.0

Notes:

© Copyright IBM Corporation 2007

Parameter Output Example
Here's what it does.

$ second.ksh Atlanta NYC "Chicago and D.C."
4687
second.ksh
3 PPs as entered
PP1=Atlanta PP2=NYC PP3=Chicago and D.C. PP4=
second.ksh
2 PPs after a shift
PP1=NYC PP2=Chicago and D.C. PP3= PP4=
Set "$@" - parameters in double quotes
PP1=NYC PP2=Chicago and D.C. PP3= PP4=
Set "$* "- parameters space separated
PP1=NYC Chicago and D.C. PP2= PP3= PP4=
$ _
Course materials may not be reproduced in whole or in part
without the prior written permission of IBM.

© Copyright IBM Corp. 2007 Unit 2. Variables 2-11

Student Notebook
Figure 2-11. This Shell and the Next AL321.0

Notes:

Attributes of variables are also inherited — like a readonly attribute for example.

In the Korn shell you can use the export command to set variable values and export them
in one step: For example,

$ export var=value

or

$ typeset -x var=value

With AIX Version 4 “export -p” gives a list of exported variables in the format “export
var=val”.

The set command also reports variable settings in single quotes.

The env command performs a similar function to the “export” built-in command above, but it
is an external operating system command.

You will see more about typeset in later units.

© Copyright IBM Corporation 2007

What happens to variables when you spawn a Subshell?

Unless you export variables, they will not be passed on.
$ set to list all variables and values

$ export var export variable var so that it will
- or - be inherited by subshells, or

$ typeset -x var use typeset in the Korn shell
$ declare -x var use declare in the Bash shell

$ export to list variables that are exported,
- or - other variables will be unset in a

$ typeset -x subshell

waiting shell
-ksh

ksh

This Shell and the Next
Course materials may not be reproduced in whole or in part
without the prior written permission of IBM.

2-12 Korn and Bash Shell Programming © Copyright IBM Corp. 2007

Student Notebook
V4.1

Uempty
Figure 2-12. Inheritance Example - The export Command AL321.0

Notes:

Important points to note here are:

 • To use a value in a script or subshell, it must be exported.

 • You can never pass a value back (or up) from a subshell to a calling shell with an
exported variable.

 • Unset or unexported variables have a NULL (string) value.

What do you think would happen if we opened a second subshell AFTER we set x=3?
Would the value pass down to the second subshell?

© Copyright IBM Corporation 2007

Inheritance Example - The export Command
Let's see inheritance in action...

$ x=324 We can set a variable x
$ print "$$: X=$x" in our current shell
4589: X=324
$ ksh In a subshell, x is unset
$ print "$$: X=$x" - there is no value to print
4590: X=
$ _ Ctrl-d Returning to the main shell...
$ print "$$: X=$x"
4589: X=324 x will have its value restored
$ export x If we export x, a subshell
$ ksh can inherit the value of x
$ print "$$: X=$x"
4591: X=324
$ x=3 If we change x from the
$ _ Ctrl-d subshell the change does
$ print "$$: X=$x" not affect the main Shell
4589: X=324
Course materials may not be reproduced in whole or in part
without the prior written permission of IBM.

© Copyright IBM Corp. 2007 Unit 2. Variables 2-13

Student Notebook
Figure 2-13. Korn Shell Variables AL321.0

Notes:

Every variable above holds integer values. None of the above are exported by default.

Notice that each variable name is in uppercase. Shell variable names are generally upper-
case. To avoid conflicts, you should avoid using uppercase variable names.

You can set SECONDS to an initial value, so that subsequent references yield that value
plus the number of seconds since shell invocation, for example,
$ SECONDS=35

You can initialize the RANDOM number sequence by assigning a value to the variable, for
example,
$ RANDOM=$$

You can clear the ERRNO variable by assigning the value zero to it, that is,
$ ERRNO=0

Other shell variables (which we shall see next) also lose their special meanings if they are
unset.

© Copyright IBM Corporation 2007

Korn Shell Variables

Korn Shell sets certain variables each time they are referenced:

SECONDS seconds since Shell invocation

RANDOM random number in the range 0 to 32767

LINENO current line number within a Shell Script
or function

ERRNO system error number of the last failed
system call – a system-dependent value!
Course materials may not be reproduced in whole or in part
without the prior written permission of IBM.

2-14 Korn and Bash Shell Programming © Copyright IBM Corp. 2007

Student Notebook
V4.1

Uempty
Figure 2-14. Environment Variables AL321.0

Notes:

The shell sets default values for PATH, PS1 and PS2. The shell normally does not set a
value for SHELL. The AIX login process sets the value for TERM; this is taken from the
Object Data Manager (ODM).

You can customize the shell prompts.

 • In PS1 “!” is replaced by the command number

 • Use single quotes to include shell set variables

$ PS1=!' $SECONDS : '

Shell defaults for PS1 through PS4 are:

PS1='$ '
PS2='> '
PS3='? '
PS4='+ '

© Copyright IBM Corporation 2007

Several variables define the environment of a Shell:

CDPATH a search path for the cd command

HOME your home directory

IFS input field separators (space, tab, newline)

PATH the system command search path

PS1 the primary Shell command prompt

PS2 a secondary prompt for multi-line entry

PS3 prompt for the select command

PS4 debug prompt for ksh with the -x option

PWD the current working directory

OLDPWD previous working directory for cd -

Environment Variables
Course materials may not be reproduced in whole or in part
without the prior written permission of IBM.

© Copyright IBM Corp. 2007 Unit 2. Variables 2-15

Student Notebook
Figure 2-15. Korn Environment Variables (1 of 2) AL321.0

Notes:

None of the above are exported by default.

COLUMNS defaults to 80, LINES to 24. Both of these variables control window editing and, as
we shall see in Unit 4, the select command.

By default, ENV is not set.

HISTFILE implicitly defaults to $HOME/.sh_history, while $HISTSIZE has the value 128.

LC_COLLATE is normally set to “En_GB” or “en_GB” in the UK, and “En_US” or
“C(POSIX)” in America.

Unit 5 describes the fc command, and Unit 7 the function of FPATH.

© Copyright IBM Corporation 2007

Korn Shell specific features require environment variables:

COLUMNS screen width

LINES screen length

SHELL the pathname of the shell

TERM the terminal type (selects terminfo file)

ENV program/script to be sourced for each new shell

FCEDIT an editor for the fc command

FPATH a search path for function definition files

HISTFILE your history file

HISTSIZE limit of history commands accessible

Korn Environment Variables (1 of 2)
Course materials may not be reproduced in whole or in part
without the prior written permission of IBM.

2-16 Korn and Bash Shell Programming © Copyright IBM Corp. 2007

Student Notebook
V4.1

Uempty
Figure 2-16. Korn Environment Variables (2 of 2) AL321.0

Notes:

The shell sets default values for IFS and MAILCHECK. The login program sets up the
HOME variable. The shell normally does not set a value for MAIL.

MAILCHECK holds an integer value, unset removes the special meaning.

TMOUT holds an integer value. The shell default value of zero means no timeout. The Korn
shell waits one minute before dying after issuing a warning message and a beep.

We shall see more of PS3 and REPLY in Unit 4; OPTARG and OPTIND in Unit 5.

The Bourne shell provides further environment variables:

NLFILE file with extended character set details
NCLTAB sort collating sequence
SHACCT command history for use by system accounting
TIMEOUT minutes to Bourne shell timeout — which is without warning!

© Copyright IBM Corporation 2007

Korn Environment Variables (2 of 2)

LC_COLLATE sorting sequence for pattern ranges

MAIL the name of your mail file

MAILCHECK mail check frequency (default 600 seconds)

MAILMSG the "you have new mail" message

PPID the parent process ID

REPLY set by select command and the read
command if no argument is given

EDITOR the editor for command line editing

VISUAL a visual editor – overrides EDITOR
Course materials may not be reproduced in whole or in part
without the prior written permission of IBM.

© Copyright IBM Corp. 2007 Unit 2. Variables 2-17

Student Notebook
Figure 2-17. Korn Shell 93 Variables AL321.0

Notes:

Use ${ } with .sh.version.

© Copyright IBM Corporation 2007

Korn Shell 93 Variables
There are several additional variables and variable meanings in ksh93.
Here are a few:

TMOUT also used to timeout of select menu
.sh.version identifies version of the shell -- use ${ }
Course materials may not be reproduced in whole or in part
without the prior written permission of IBM.

2-18 Korn and Bash Shell Programming © Copyright IBM Corp. 2007

Student Notebook
V4.1

Uempty
Figure 2-18. Bash Environment Variables AL321.0

Notes:

In Korn shell, we can set PS1=’$PWD =>’ to have our working directory reflected in the
prompt. In bash, we can also use the following prompt string customizations:

\d date
\H hostname
\h hostname up to first “.”
\T time in 12 hour HH:MM:SS
\t time in HH:MM:SS
\u username
\h hostname
\n newline
\w current working directory
\W basename of current working directory

Examples: PS1=”\w=> ”

PS1=”\n[\u@\h \w]\n\$ ” Can you describe this?

© Copyright IBM Corporation 2007

Bash Environment Variables
Bash variables are the same unless noted here:

BASH_ENV instead of ENV program to be sourced for each new
interactive shell

PS1 has additional features (see below)

Some additional variables in bash:

BASH_VERSION version number for the instance of bash
HOSTNAME name of current host
HOSTTYPE describes machine bash is running on
SHLVL shell level - how deeply you are nested
Course materials may not be reproduced in whole or in part
without the prior written permission of IBM.

© Copyright IBM Corp. 2007 Unit 2. Variables 2-19

Student Notebook
Figure 2-19. Checkpoint AL321.0

Notes:

Write down your answers here:

1.

2.

3.

4.

5.

6.

© Copyright IBM Corporation 2007

Checkpoint

1. How could we use positional parameter 3 in a shell script?

2. Which variable contains the number of positional
parameters?

3. How can we change the value of a variable set in a different
process?

4. What is the variable IFS?

5. How can we reset PS1 to show the current directory?

6. By setting a variable, how can we have a command recall
facility?
Course materials may not be reproduced in whole or in part
without the prior written permission of IBM.

2-20 Korn and Bash Shell Programming © Copyright IBM Corp. 2007

Student Notebook
V4.1

Uempty
Figure 2-20. Unit Summary AL321.0

Notes:

© Copyright IBM Corporation 2007

Unit Summary

Setting variables

Referencing variables

Using positional parameters

Shifting arguments

Setting positional parameters

Using shell parameters

Understanding inheritance

Shell variables

Environment variables
Course materials may not be reproduced in whole or in part
without the prior written permission of IBM.

© Copyright IBM Corp. 2007 Unit 2. Variables 2-21

Student Notebook
Course materials may not be reproduced in whole or in part
without the prior written permission of IBM.

2-22 Korn and Bash Shell Programming © Copyright IBM Corp. 2007

Student Notebook
V4.1

Uempty
 Unit 3. Return Codes and Traps

What this unit is about

This unit provides the students with the opportunity to review basic
testing concepts and explore shell scripting using return codes,
signals, and traps.

What you should be able to do

After completing this unit, you should be able to:

 • Identify conditional execution statements
 • Analyze return codes and signals
 • Test variables or files for specified conditions
 • Handle signals in a script with traps

How you will check your progress

Accountability:

 • Checkpoint questions
 • Hands on exercises
Course materials may not be reproduced in whole or in part
without the prior written permission of IBM.

© Copyright IBM Corp. 2007 Unit 3. Return Codes and Traps 3-1

Student Notebook
Figure 3-1. Unit Objectives AL321.0

Notes:

© Copyright IBM Corporation 2007

Unit Objectives

After completing this unit, you should be able to:

Recognize return values
Identify exit codes
Identify conditional execution
Use the test command
Understand compound expressions
Examine file test operators
Use numerical expressions
Understand string expressions
Understand shell test operators
Use shell [[]] expressions
Handle signals
Understand sending signals
Understand catching signals
Course materials may not be reproduced in whole or in part
without the prior written permission of IBM.

3-2 Korn and Bash Shell Programming © Copyright IBM Corp. 2007

Student Notebook
V4.1

Uempty
Figure 3-2. Return Values AL321.0

Notes:

The “0” does not mean “zero errors” -- it simply means the previous command was
successful.

© Copyright IBM Corporation 2007

Return Values
Each command, pipeline, or group of commands returns a value to

its parent process.

$? contains the value of the return code

zero means success

non-zero means an error occurred

The single value returned by a pipeline is the return code of the last
command in the pipeline.

For grouped commands – that is, () or { } – the return code is
that of the last command executed in the group.
Course materials may not be reproduced in whole or in part
without the prior written permission of IBM.

© Copyright IBM Corp. 2007 Unit 3. Return Codes and Traps 3-3

Student Notebook
Figure 3-3. Exit Status AL321.0

Notes:

The exit command is a shell built-in command.

© Copyright IBM Corporation 2007

Exit Status
A shell script provides a return code using the exit command.

$ print $$ check the shell process id
879
$ ksh start a new subshell
$ print $$ and check its process id
880
$ exit quit the subshell
$ print $? and print the return code
0
$ print $$
879
$ ksh begin another subshell
$ print $$
890
$ exit 101 exit with a value to set
$ print $? the return code
101
$ print $$
879
$ _
Course materials may not be reproduced in whole or in part
without the prior written permission of IBM.

3-4 Korn and Bash Shell Programming © Copyright IBM Corp. 2007

Student Notebook
V4.1

Uempty
Figure 3-4. Conditional Execution AL321.0

Notes:

The -f option to the rm command prevents interactive questions being displayed when file
permissions do not allow read or write for the named file. The command returns status “0”
only if the named file is deleted.

The operating system command who lists the users logged on to the system. The grep
operating system command searches standard input for the pattern specified. Only if a
match is found will it return an exit status “0” (the return code).

© Copyright IBM Corporation 2007

Conditional Execution
A return code (or exit status) can be used to determine whether or not to

execute the next command.

If command1 is successful execute command2

command1 && command2

$ rm -f file1 && print file1 removed

If command1 is not successful execute command2

command1 || command2

$ who|grep marty || print Marty logged off
Course materials may not be reproduced in whole or in part
without the prior written permission of IBM.

© Copyright IBM Corp. 2007 Unit 3. Return Codes and Traps 3-5

Student Notebook
Figure 3-5. The test Command AL321.0

Notes:

Test operators form expressions that we shall see later.

The keywords true and false have their obvious meanings.

If you use metacharacters with test or [] they will be expanded: with [[]] they are only
expanded if they appear as a pattern in a string expression; refer to shell [[]]
Expressions later in this unit.

The Korn and Bash shells provide additional operators for use with the test command
compared to the Bourne shell, as well as further operators for use with the [[]] syntax.

© Copyright IBM Corporation 2007

The test Command
The test command is used for expression evaluation

test expression
- or

[expression]

Returns zero if the expression is true
Returns non-zero if the expression is false

The Korn and Bash shells provide an improved version

[[expression]]

Easier syntax
Includes same functionality as test
Additional operators
Shell expansions prevented
Course materials may not be reproduced in whole or in part
without the prior written permission of IBM.

3-6 Korn and Bash Shell Programming © Copyright IBM Corp. 2007

Student Notebook
V4.1

Uempty
Figure 3-6. File Test Operators AL321.0

Notes:

Note a file will appear to be writable even though it is within a read-only file system. Only
the file access control list is examined, not the file system status.

An executable directory file is a directory that can be searched; you may cd to the directory.

The operator "-e" was added with AIX Version 4.

The above tests can be done any of the following three ways:

test -s file
[-s file]
[[-s file]]

© Copyright IBM Corporation 2007

File Test Operators
File status can be examined using several operators.

Operator: True if ...:
-s file file has a size greater than zero
-r file file exists and is readable
-w file file exists and is writable
-x file file exists and is executable
-u file file exists and has the SUID bit set
-g file file exists and has the SGID bit set
-k file file exists and has the SVTX sticky bit set
-e file file exists
-f file file exists and is an ordinary file
-d file file exists and is a directory
-c file file exists as a character special file
-b file file exists and is a named pipe file
-p file file exists and is a named pipe file
-L file file exists and is a symbolic link
Course materials may not be reproduced in whole or in part
without the prior written permission of IBM.

© Copyright IBM Corp. 2007 Unit 3. Return Codes and Traps 3-7

Student Notebook
Figure 3-7. Numeric Expressions AL321.0

Notes:

Numerical values are compared using the above operators. If variable x has been assigned
a numerical value, you test x as follows:

$ x=2
$ test $x -eq 1
$ [$x -eq 2]
$ [[$x -eq 3]]

© Copyright IBM Corporation 2007

Numeric Expressions
For arithmetic expressions and integer values use:

Expression: True if ...:

exp1 -eq exp2 exp1 is equal to exp2

exp1 -ne exp2 exp1 is not equal to exp2

expl -lt exp2 exp1 is less than exp2

exp1 -le exp2 exp1 is less than or equal to exp2

exp1 -gt exp2 exp1 is greater than exp2

exp1 -ge exp2 exp1 is greater than or equal to exp2
Course materials may not be reproduced in whole or in part
without the prior written permission of IBM.

3-8 Korn and Bash Shell Programming © Copyright IBM Corp. 2007

Student Notebook
V4.1

Uempty
Figure 3-8. String Expressions AL321.0

Notes:

Character strings are compared using the above operators. If variable TERM has been
assigned a character string, you test TERM as follows:

Examples:

[-n $TERM]
test -n $TERM
[[-n $TERM]]

To avoid syntax errors from test or from the shell, you usually surround the $variable with
double quotes — as in “$TERM”. This avoids problems testing with NULL strings in
particular.

© Copyright IBM Corporation 2007

String Expressions
To examine strings use one of the following:

Expression: True if ...:

-n str str is non-zero in length

-z str str is zero in length

str1 = str2 str1 is the same as str2

str1 != str2 str1 is not the same as str2
Course materials may not be reproduced in whole or in part
without the prior written permission of IBM.

© Copyright IBM Corp. 2007 Unit 3. Return Codes and Traps 3-9

Student Notebook
Figure 3-9. More Shell Test Operators AL321.0

Notes:

You can use metacharacters in filenames.

More examples:

-O file file exists and its owner is the effective user id

-G file file exists and its group is the effective group id

-S file file exists as a socket special file

© Copyright IBM Corporation 2007

More Shell Test Operators
The shell provides a number of additional test operators.

Expression: True if ...:

file1 -ef file2 file1 is another name for file2

file1 -nt file2 file1 is newer than file2

file1 -ot file2 file1 is older than file2

-t des file descriptor des is open and
associated with a terminal device
Course materials may not be reproduced in whole or in part
without the prior written permission of IBM.

3-10 Korn and Bash Shell Programming © Copyright IBM Corp. 2007

Student Notebook
V4.1

Uempty
Figure 3-10. Shell [[]] Expressions AL321.0

Notes:

Remember that shell metacharacters may be used in patterns.

Also, due to locale settings, some string comparisons may not give the answers you
expect. This is particularly true if LANG is not set to en_US.

Although “=” does work, it is considered obsolete in ksh93, the “==” is the most recent
preferred syntax.

Examples: [[abc == *c]] true

[[abc != ?c?]] true

[[abc < def]] true

© Copyright IBM Corporation 2007

Shell [[]] Expressions

When using the shell [[]] syntax there are a few extra expressions.

Expression: True if ...:

str = pattern str matches pattern

str != pattern str does not match pattern

str1 < str2 str1 is before str2 in the ASCII collation seq.

str1 > str2 str1 is after str2 in the ASCII collation seq.

-o opt option opt is on for this shell

You may use shell metacharacters in the patterns.
Course materials may not be reproduced in whole or in part
without the prior written permission of IBM.

© Copyright IBM Corp. 2007 Unit 3. Return Codes and Traps 3-11

Student Notebook
Figure 3-11. Compound Expressions AL321.0

Notes:

Notice that with test or [] you need to escape shell metacharacters (like parentheses).
Compound expressions are valuable with multiple test operators and tests.

Examples:

test $# -eq 2 -a $? -eq 0
[$# -eq 2 -a $? -eq 0]
[[$# -eq 2 && $? -eq 0]]

© Copyright IBM Corporation 2007

Compound Expressions
For the [] or test command

exp1 -a exp2 binary and operation
exp1 -o exp2 binary or operation
! exp logical negation
\(\) used to group expressions

For the [[]] syntax

exp1 && exp2 true if both expressions are true -
the second is only evaluated if the first is true

exp1 || exp2 true if either expression is true -
the second is only evaluated if the first is false

! exp logical negation
() used to group expressions
Course materials may not be reproduced in whole or in part
without the prior written permission of IBM.

3-12 Korn and Bash Shell Programming © Copyright IBM Corp. 2007

Student Notebook
V4.1

Uempty
Figure 3-12. Practice Test AL321.0

Notes:

© Copyright IBM Corporation 2007

$ [[-s /etc/passwd || -r /etc/group]]
$ print $? True or False?

$ test -f /etc/motd -a ! -d /home
$ print $? True or False?

$ x="005"
$ y=" 10"
$ test "$y" -eq 10
$ print $? True or False?

$ ["$x" = 5]
$ print $? True or False?

$ [[-n "$x"]]
$ print $? True or False?

$ test -S /dev/tty0
$ print $? True or False?

$ [[1234 = +([0-9])]]
$ print $? True or False?

Practice Test
Course materials may not be reproduced in whole or in part
without the prior written permission of IBM.

© Copyright IBM Corp. 2007 Unit 3. Return Codes and Traps 3-13

Student Notebook
Figure 3-13. Signals AL321.0

Notes:

To terminate a foreground process you can press the Interrupt key sequence (normally
<Ctrl-c>). Your input causes the relevant signal to be sent to your foreground process by
the system.

The kill command is the only way to terminate a background process.

© Copyright IBM Corporation 2007

Signals

The kernel sends signals to processes during their execution

– Certain system events issue signals when they
• Run out of paging space
• Receive special key sequences like <Ctrl-c>

– The kill command sends a specific signal to a process
Course materials may not be reproduced in whole or in part
without the prior written permission of IBM.

3-14 Korn and Bash Shell Programming © Copyright IBM Corp. 2007

Student Notebook
V4.1

Uempty
Figure 3-14. What You Can Do with Signals AL321.0

Notes:

Signals are a form of simple interprocess communication. If a process takes default action
on a signal, this normally means terminate (die!). If you do not want the default you can
either ignore or trap the signal.

© Copyright IBM Corporation 2007

What You Can Do with Signals

Signals sent to processes may be:

Caught the process deals with it

Ignored nothing happens

Defaulted use default handlers
Course materials may not be reproduced in whole or in part
without the prior written permission of IBM.

© Copyright IBM Corp. 2007 Unit 3. Return Codes and Traps 3-15

Student Notebook
Figure 3-15. The Kill Command AL321.0

Notes:

The current process group means all processes started from, and including, the current
login shell. The -s sig and -l $? options were introduced with AIX Version 4.1.

To signal the current process group:

kill -sig 0 -or- kill -s sig 0

To send a signal to all of your processes, except those with PPID 1 (do not use if you are
root):

kill -sig -1 -or- kill -s sig -1

The full signal list is held in /usr/include/sys/signal.h.

We know in many cases the default action is for the process to die upon receipt of the
signal. However, some signals are ignored. A list of useful signals follows on the next
pages.

Note: The output of kill -l in ksh93 is not as verbose as ksh(88).

© Copyright IBM Corporation 2007

The Kill Command
To send a signal to a process:

kill -sig pid -or- kill -s sig pid

To list all defined signals

kill -l (lowercase "ell")

To list a specific signal

kill -l # (replace # with a number)

To list the signal that caused an exit error

kill -l $?
Course materials may not be reproduced in whole or in part
without the prior written permission of IBM.

3-16 Korn and Bash Shell Programming © Copyright IBM Corp. 2007

Student Notebook
V4.1

Uempty
Figure 3-16. Signal List (1 of 2) AL321.0

Notes:

The INT (2) signal key sequence may vary with terminal type. For early versions of AIX and
IBM-3151 ASCII terminals it is <Ctrl-c>; other common sequences are <Ctrl-BackSpace>
and <Delete>.

The default key configurations for a terminal can be changed through smit — terminal
attributes — or by using the stty command for the session. To change the QUIT sequence
to <Ctrl-t>: $ stty quit ^t

Signal names include a “SIG” prefix to the signal codes listed above, that is, SIGDANGER.
By default background processes stop if they attempt to read from a terminal. To set this
behavior for background processes that attempt to write to a terminal, use:

$ stty tostop

You should avoid the KILL signal except as a last resort. If you send a KILL to a process it
can never be caught so it is impossible to perform cleanup actions (like removing lock files
etc.). Signals KILL (9), SEGV (11), STOP (17) and SAK(63) may not be trapped under AIX
V3 or V4.

© Copyright IBM Corporation 2007

Signal List (1 of 2)
Here is a list of some useful signals.

Signal: Event:

0 EXIT issued when a process or function completes
(shell specific)

1 HUP you logged out while the process was still running
– sent to sub-shells too

2 INT interrupt pressed <Ctrl-c>

3 QUIT quit key sequence pressed <Ctrl-\>

9 KILL special 'force' signal, cannot be ignored

15 TERM default kill command signal

18 TSTP process suspend <Ctrl-z>
Course materials may not be reproduced in whole or in part
without the prior written permission of IBM.

© Copyright IBM Corp. 2007 Unit 3. Return Codes and Traps 3-17

Student Notebook
Figure 3-17. Signal List (2 of 2.) AL321.0

Notes:

A reserved key sequence, called the secure attention key (SAK), allows a user to request a
trusted communication path which is part of TCB (Trusted Computing Base).

© Copyright IBM Corporation 2007

Signal List (2 of 2)
Signal: Event:

19 CONT continue if stopped – issued by kill to a
suspended process before TERM or HUP

29 PWR power failure imminent – save data now!

33 DANGER paging space low

63 SAK you pressed <Ctrl-x> and <Ctrl-r> the SAK
sequence
Course materials may not be reproduced in whole or in part
without the prior written permission of IBM.

3-18 Korn and Bash Shell Programming © Copyright IBM Corp. 2007

Student Notebook
V4.1

Uempty
Figure 3-18. Catching Signals with Traps AL321.0

Notes:

The shell trap command allows your script to catch specific signal.

You should use single quotes to enclose the action to protect it from shell expansions,
although double quotes may also work. Single quotes are preferred because the shell
scans the action twice; once when it prepares to run the trap command, and once when the
shell executes the trap. Think about when you want variables, and so forth, to expand. In
the shell signal names or numbers may be used, but names are more portable. For the
Bourne shell only numbers are allowed.

The syntax of the trap command is:

trap “actions to do instead of signals default actions” sig1 sig2 sig3 ..

The signals trapped can be system or user initiated. Once a signal is set to be ignored,
subshells also ignore that signal, and cannot then trap the signals themselves.

Notice that you need to explicitly use exit if you want to terminate the script from within a
trap. Otherwise, after the trap executes, control is passed back to the next command in the
script.

© Copyright IBM Corporation 2007

Catching Signals with Traps
The trap command specifies any special processing you want to do

when the process receives a signal:

To process signals

$ trap 'rm /tmp/$$; print signal!; exit 2' 2 3

To ignore signals

$ trap '' INT QUIT

To reset signal processing

$ trap - INT QUIT - or - trap 2 3

To list traps set

$ trap
Course materials may not be reproduced in whole or in part
without the prior written permission of IBM.

© Copyright IBM Corp. 2007 Unit 3. Return Codes and Traps 3-19

Student Notebook
Figure 3-19. Trap Example AL321.0

Notes:

Which directory does the trap command use for the ./psummary command/script? Do
you think a relative or full path name would be best in this situation?

© Copyright IBM Corporation 2007

#!/usr/bin/ksh
ps_monitor
monitor processes using ps -elf at intervals
of 30 seconds for 2 minutes. If interrupted,
a summary report is produced by executing
psummary.
#
trap 'print $0: interrupt received ;

./psummary ;
exit' 2 3 15

ps -elf > /tmp/pdata
sleep 30
ps -elf >> /tmp/pdata
sleep 30
ps -elf >> /tmp/pdata
sleep 30
ps -elf >> /tmp/pdata
sleep 30
ps -elf >> /tmp/pdata
trap - 2 3 15

Trap Example
Course materials may not be reproduced in whole or in part
without the prior written permission of IBM.

3-20 Korn and Bash Shell Programming © Copyright IBM Corp. 2007

Student Notebook
V4.1

Uempty
Figure 3-20. Checkpoint AL321.0

Notes:

Write down your answers here:

1.

2.

3.

4.

5.

6.

7.

© Copyright IBM Corporation 2007

Checkpoint

1. How can you tell whether a command you have just entered
was successful?

2. How can you test if file datafile is non-empty?

3. How can you check if you have been logged on for more than
20 minutes, and if so, print out a suitable message?

4. How could you log off, using the kill command?

5. If you are a DBA is this a desirable command to terminate
the <oracle_server>? kill -KILL <oracle_server>

6. What does this command do? trap echo you did
<Ctrl-c> 2

7. How could you get <Ctrl-c> to log you off?
Course materials may not be reproduced in whole or in part
without the prior written permission of IBM.

© Copyright IBM Corp. 2007 Unit 3. Return Codes and Traps 3-21

Student Notebook
Figure 3-21. Unit Summary AL321.0

Notes:

© Copyright IBM Corporation 2007

Unit Summary

Return values
Exit status
Conditional execution
The test command
Compound expressions
File test operators
Numerical expressions
String expressions
Shell test operators
Shell [[]] expressions
Signals
Sending signals – kill command
Catching signals – trap command
Course materials may not be reproduced in whole or in part
without the prior written permission of IBM.

3-22 Korn and Bash Shell Programming © Copyright IBM Corp. 2007

Student Notebook
V4.1

Uempty
 Unit 4. Flow Control

What this unit is about

This unit presents flow control using conditional loops and decision
making.

What you should be able to do

After completing this unit, you should be able to:

 • Generate if-then-else statements
 • Generate while/until loops
 • Understand and use for loops
 • Create case and select constructs
 • Leave loops prematurely

How you will check your progress

Accountability:

 • Checkpoint questions
 • Machine exercises
Course materials may not be reproduced in whole or in part
without the prior written permission of IBM.

© Copyright IBM Corp. 2007 Unit 4. Flow Control 4-1

Student Notebook
Figure 4-1. Unit Objectives AL321.0

Notes:

© Copyright IBM Corporation 2007

Unit Objectives

After completing this unit, you should be able to:

Generate the if - then - else construct

Generate conditional loops with until and while

Understand specific value iteration with for

Use multiple choice pattern matching with case

Use the select command for menus

Use break and continue in Loops

Identify Doing Nothing – the null Command
Course materials may not be reproduced in whole or in part
without the prior written permission of IBM.

4-2 Korn and Bash Shell Programming © Copyright IBM Corp. 2007

Student Notebook
V4.1

Uempty
Figure 4-2. The Simple if - then - else Construct AL321.0

Notes:

In one of its simplest forms, the if-then-else construct is as easy as it sounds.

In the example above, the script will check to see if your User ID is between 0 and 99 and if
it is, the prompt will be a pound sign, or that of a ‘system user’. Otherwise, the prompt will
be that of a ‘regular user’.

© Copyright IBM Corporation 2007

The Simple if - then - else Construct

if expression1
then

commands to be executed if expression1 is
true

else
commands to be executed if all expressions

are false
fi

if [["$UID" -lt "100"]]
then

export PS1="# "
else

export PS1="$ "
fi
Course materials may not be reproduced in whole or in part
without the prior written permission of IBM.

© Copyright IBM Corp. 2007 Unit 4. Flow Control 4-3

Student Notebook
Figure 4-3. The Full if - then - else Construct AL321.0

Notes:

You do not always need an else part, but there can be only one. Any number of elif ... then
segments may be included.

As soon as a true expression is found, the corresponding block of commands is executed.
Then the flow of the program will continue after the closing fi statement. The return value of
the construct is that of the last command block executed, or true if none was executed.

© Copyright IBM Corporation 2007

The Full if - then - else Construct

if [["$1" = "-a"]]
then

author=y ; control=n
version=n

elif "$1" = "-c"
then

author=n ; control=y
version=n

elif "$1" = "-v"
then

author=n ; control=n
version=y

else
author=n ; control=n
version=n

fi < /usr/local/defaults
Course materials may not be reproduced in whole or in part
without the prior written permission of IBM.

4-4 Korn and Bash Shell Programming © Copyright IBM Corp. 2007

Student Notebook
V4.1

Uempty
Figure 4-4. if Example AL321.0

Notes:

We have used the shell [[]] syntax for the expressions above, but it could just as easily
have been the older [] or test command. In fact any command, or even group of
commands, could be used as an expression. Metacharacters are expanded and variable
references are allowed. It is the return value of the expression that is used to decide true or
false: zero = true.

© Copyright IBM Corporation 2007

if Example
Here is a simple if construct:
#!/usr/bin/ksh
Usage: goodbye username
#
if [[$# -ne 1]]
then

print "Usage is: goodbye username"
print "Please try again."
exit 1

fi
rmuser $1
print "O.K., $1 is removed."

When we run "goodbye", this is what we get ...
$ goodbye
Usage is: goodbye username
Please try again.
$ goodbye pete
O.K., pete is removed.
$ _
Course materials may not be reproduced in whole or in part
without the prior written permission of IBM.

© Copyright IBM Corp. 2007 Unit 4. Flow Control 4-5

Student Notebook
Figure 4-5. Conditional Loop Syntax AL321.0

Notes:

The expression after the until can be any command. The return code of the command will
be checked to decide if the loop should continue.

The while loop will be executed only if the expression evaluates true. An until loop follows
the reverse logic — executing only if the expression is false.

Both until and while return the value of the last loop command executed, or true if no loops
were executed. The program continues after the done statement.

If the “open file” instruction (< file) were inside the do-done loop, it would be opened and
closed six times. If the ‘open’ is listed after the loop, as the referenced “./statfile” file is, the
file is opened once when the while loops starts and closed once when the while loop
closes. This is what is meant by redirected output for the whole of the loop.

© Copyright IBM Corporation 2007

Conditional Loop Syntax

until cc prog.c
do

vi prog.c
done

while ["$x" -lt 3]
do

lsps -a >> ./statfile
df >> ./statfile
let x=x+1

done # should be "< ./statfile" here
Course materials may not be reproduced in whole or in part
without the prior written permission of IBM.

4-6 Korn and Bash Shell Programming © Copyright IBM Corp. 2007

Student Notebook
V4.1

Uempty
Figure 4-6. while true Example AL321.0

Notes:

The true and false are shell built-ins that are available for use as expressions.

This script traps normal keyboard kill sequences, so that you must kill it from another
terminal.

© Copyright IBM Corporation 2007

while true Example
The Script "forever" is a tough cookie!

#!/usr/bin/ksh
An endless loop with a trap for INT QUIT TSTP
trap 'print "hasta la vista - baby!"' 2 3 18
while true
do

print "I'll be back."
sleep 10

done

$ forever
I'll be back. every ten seconds
I'll be back. the script speaks!
I'll be back.

<Ctrl-c> an attempt to stop it...

hasta la vista - baby! invokes the trap, and
I'll be back. it carries on.
I'll be back.
Course materials may not be reproduced in whole or in part
without the prior written permission of IBM.

© Copyright IBM Corp. 2007 Unit 4. Flow Control 4-7

Student Notebook
Figure 4-7. for Loop Syntax AL321.0

Notes:

Perhaps a better description of the for loop is a specific value iteration command. It iterates
over a parameter list (the set of values).

The for command sets the identifier variable to each of the values from the word or
positional parameter list in turn, and executes the command block. Execution ends when
the word or positional parameter list is exhausted. The return value is that of the last block
command executed, or true if none were.

The word list in the first form of the for command can contain metacharacters for file name
expansion. It can also contain command substitution, which we will learn later. The words
in the word list are separated out by IFS - the input field separator. The IFS variable can be
changed to a different delimiter if the words are separated by something other than a
space.

You can apply redirection to the whole of the loop.

© Copyright IBM Corporation 2007

for Loop Syntax

for identifier in word1 word2 ...
do

commands using $identifier
more commands

done

for identifier # equivalent to: for identifier in "$@"
do

commands using $identifier which takes values from the
positional parameters

done # optional < filename
Course materials may not be reproduced in whole or in part
without the prior written permission of IBM.

4-8 Korn and Bash Shell Programming © Copyright IBM Corp. 2007

Student Notebook
V4.1

Uempty
Figure 4-8. for - in Loop Example AL321.0

Notes:

The word list in the for command has been formed by metacharacter expansion into the file
names from the current directory that end in .tmp.

© Copyright IBM Corporation 2007

for - in Loop Example
Here we have a quick tidy-up to delete files:

$ for varfile in *.tmp
> do
> rm -f $varfile
> done
$ _

Why use the option -f ?
What else could be tested?
Course materials may not be reproduced in whole or in part
without the prior written permission of IBM.

© Copyright IBM Corp. 2007 Unit 4. Flow Control 4-9

Student Notebook
Figure 4-9. for Loop Example AL321.0

Notes:

By omitting the in word1 word2 ... part of the for command syntax, the command takes its
list from the positional parameters — as if you had specified in ”$@”.

© Copyright IBM Corporation 2007

for Loop Example
The sample Script "getprice.ksh" will look up the price list:

#!/usr/bin/ksh
getprice.ksh - select price from "pricelist" file
for each item entered on the command line
Usage: getprice item1 item2 ...
#
for item
do

grep -i "$item" /home/cashier/pricelist
done

$ getprice.ksh "Shock Absorbers" "Air Filter"
Front Shock Absorbers 49.99
Rear Shock Absorbers 59.99
Air Filter 10.99
$ _
Course materials may not be reproduced in whole or in part
without the prior written permission of IBM.

4-10 Korn and Bash Shell Programming © Copyright IBM Corp. 2007

Student Notebook
V4.1

Uempty
Figure 4-10. Arithmetic for loop AL321.0

Notes:

The above example renames file0 to file0.bkup, file1 to file1.bkup, and so forth.

This syntax is not available in bsh.

The incrementing is done after the iteration, and every iteration after that. The initialization
and test are done before the first iteration.

© Copyright IBM Corporation 2007

Arithmetic for Loop
The arithmetic for loop is available in ksh93 and bash.

for ((initialize; test; increment))
do
commands

done

Example:

for ((num=0; num <5; num++))
do
mv file${num} file${num}.bkup

done
Course materials may not be reproduced in whole or in part
without the prior written permission of IBM.

© Copyright IBM Corp. 2007 Unit 4. Flow Control 4-11

Student Notebook
Figure 4-11. The case Statement AL321.0

Notes:

The case statement compares the word with each pattern in turn. If a match is found, the
corresponding action is performed. The double semi-colon syntax marks the end of an
action. Null actions are allowed. Multiple patterns can be associated with an action — each
separated by a pipe character. Patterns can contain metacharacters. Spaces around a
pattern are ignored.

There must be at least one pattern block and it is a good idea to include a final “catch-all”
pattern the metacharacter “*”. Once a match is found, or after all patterns have been
checked, the program continues after the case statement.

The Korn and Bash shells allow an optional open bracket “(“ at the start of each pattern
group, so that you can use the command grouping () syntax around a case construct. The
Bourne shell does not allow this.

© Copyright IBM Corporation 2007

The case Statement

case word in
(pattern1 | pattern2 | ...)

action ;;
(*) default ;;
esac

case $identifier in
(pattern1) command1

more_commands ;;
(pattern2 | pattern3) commands ;;
(*) commands ;;
esac
Course materials may not be reproduced in whole or in part
without the prior written permission of IBM.

4-12 Korn and Bash Shell Programming © Copyright IBM Corp. 2007

Student Notebook
V4.1

Uempty
Figure 4-12. case Code Example AL321.0

Notes:

You can use combinations of variable references and fixed text to form a word to be
matched if you like.

Note where you specify the catch-all pattern. Note the use of the “|” with the ten “or” 10.

In the above example, we are trying to match the value of a variable to the pattern choices.
We can also try to match the output of a command to the pattern choices using command
substitution. We will learn command substitution later, this example is listed here for
reference later.

case $(command) in
pattern|pattern) action;;
pattern) action;;
*) action;;

esac

.. where any shell or system command can be put inside the $().

© Copyright IBM Corporation 2007

case Code Example
A guessing game of sorts:

#!/usr/bin/ksh
Usage: match string
To see how lucky you are feeling today

case "$1" in
Ace) print "You are really close." ;;
King) print "Missed it by that much." ;;
Queen) print "Finally!" ;;
Jack) print "Maybe next time." ;;
Ten|10) print "Getting closer." ;;
*) print "Guess again." ;;

esac
Course materials may not be reproduced in whole or in part
without the prior written permission of IBM.

© Copyright IBM Corp. 2007 Unit 4. Flow Control 4-13

Student Notebook
Figure 4-13. case Code Output AL321.0

Notes:

© Copyright IBM Corporation 2007

case Code Output
A casino dealer in the making?

$ match Three
Guess again.

$ match Jack
Maybe next time.

$ match Ace
You are really close.

$ match King
Missed it by that much.

$ match Queen
Finally!
Course materials may not be reproduced in whole or in part
without the prior written permission of IBM.

4-14 Korn and Bash Shell Programming © Copyright IBM Corp. 2007

Student Notebook
V4.1

Uempty
Figure 4-14. Mini Quiz AL321.0

Notes:

© Copyright IBM Corporation 2007

Mini Quiz

1. True or False. There can be any number of elif statements
in an if – then – else construct.

2. How does one redirect for the whole of an until or while
loop?

3. True or False. The statement: "for identifier" takes its
input from positional parameters.
Course materials may not be reproduced in whole or in part
without the prior written permission of IBM.

© Copyright IBM Corp. 2007 Unit 4. Flow Control 4-15

Student Notebook
Figure 4-15. The Shell select Syntax AL321.0

Notes:

The shell select command displays the word or positional parameter list as items in a
numbered menu, output is to standard error. The environment variables LINES and
COLUMNS control output size.

The PS3 prompt is displayed as a prompt for you to enter the number of your choice. The
variable REPLY is set to the character string that you enter. The variable identifier is set to
the word or positional parameter value corresponding to your selection. If you choose an
unlisted item, or enter any other unidentified text, identifier is set to null.

The command block is executed for each selection. A null selection re-displays the menu
and PS3 prompt without executing the command block.

The select command only terminates if it encounters an end-of-file (<Ctrl-d>) input, exit,
break or return. The program continues after the done statement. The return value is that of
the last block command, or true if no commands were executed.

The select command does not exist in the Bourne shell. The select syntax has serious
bugs before bash version 1.14.3.

© Copyright IBM Corporation 2007

The Shell select Syntax

select identifier in word1 word2 ...
do

commands using $identifier usually containing a case
statement

done

select identifier # equivalent to: select identifier in "$@"
do

commands using $identifier from positional parameters
usually containing a case statement

done
Course materials may not be reproduced in whole or in part
without the prior written permission of IBM.

4-16 Korn and Bash Shell Programming © Copyright IBM Corp. 2007

Student Notebook
V4.1

Uempty
Figure 4-16. select Code Example AL321.0

Notes:

The environment variable LINES defaults to 24, while COLUMNS is 80 by default. This is
fine for the screen we are using, so they were left at their default values. The PS3 prompt
default is “#? “.

The case catch-all is executed when the select command doesn't recognize your selection,
and the animal variable is set to null.

© Copyright IBM Corporation 2007

select Code Example
To help identify animals we have a "barn.ksh" Shell Script:

#!/usr/bin/ksh
usage: barn.ksh
PS3="Pick an animal: "
select animal in cow pig dog quit
do

case $animal in
(cow) print "Moo"

;;
(pig) print "Oink"

;;
(dog) print "Woof"

;;
(quit) exit

;;
('') print "Not in the barn"

;;
esac

done
Course materials may not be reproduced in whole or in part
without the prior written permission of IBM.

© Copyright IBM Corp. 2007 Unit 4. Flow Control 4-17

Student Notebook
Figure 4-17. select Output Example AL321.0

Notes:

The menu would be redisplayed if we just press return without making a selection. As we
make more and more selections, the menu is of course disappearing as the screen scrolls
upward.

© Copyright IBM Corporation 2007

select Output Example
Running "barn.ksh" we can choose an animal to examine ...

$ barn.ksh
1) cow
2) pig
3) dog
4) quit
Pick an animal: 1
Moo
Pick an animal: 2
Oink
Pick an animal: 3
Woof
Pick an animal: 8
Not in the barn
Pick an animal: 4
$

Do you think setting PS3 to "Pick an animal" was a good choice?
Course materials may not be reproduced in whole or in part
without the prior written permission of IBM.

4-18 Korn and Bash Shell Programming © Copyright IBM Corp. 2007

Student Notebook
V4.1

Uempty
Figure 4-18. More on Select AL321.0

Notes:

© Copyright IBM Corporation 2007

More on Select

In the previous example, the selected choice (for example
cow) was stored in $animal, however, the input from the user
was stored in $REPLY

Using the $REPLY variable makes the select syntax a bit more
flexible as seen on the next page

In ksh93, the TMOUT variable can be set to a number of
seconds. The select loop will timeout if no input is received
within the TMOUT seconds set.
Course materials may not be reproduced in whole or in part
without the prior written permission of IBM.

© Copyright IBM Corp. 2007 Unit 4. Flow Control 4-19

Student Notebook
Figure 4-19. Select Example Using $REPLY AL321.0

Notes:

By doing a case on $REPLY instead of $animal, the case will try to match up with whatever
input the user typed in, whether it was a number or animal name. This allows for slightly
more flexibility.

© Copyright IBM Corporation 2007

#!/usr/bin/ksh

usage: barn.ksh

PS3 = "Pick an animal:"

Select animal in cow pig dog quit

do

case $REPLY in
cow|COW) print "Moo" ;;
pig|PIG) print "Oink" ;;
dog|DOG) print "Woof" ;;
quit|QUIT) exit ;;
*) print "Not in the barn" ;;
esac

done

Select Example Using $REPLY
Course materials may not be reproduced in whole or in part
without the prior written permission of IBM.

4-20 Korn and Bash Shell Programming © Copyright IBM Corp. 2007

Student Notebook
V4.1

Uempty
Figure 4-20. exit The Loop AL321.0

Notes:

The exit causes the script to end. A status number can be attached to the exit to inform a
calling script of its success, failure, or otherwise.

© Copyright IBM Corporation 2007

exit the Loop
In the Korn shell script /usr/sbin/snap
...
if ["$badargs" = n]
then
if ["$found" = y]
then
if [-r "$destdir/$component/$component.snap"]
then
more $destdir/$component/$component.snap
else
echo "^Gsnap: $destdir/$component/$component.snap not found"
exit 25
fi

fi
else

usage
exit 26

fi ...
Course materials may not be reproduced in whole or in part
without the prior written permission of IBM.

© Copyright IBM Corp. 2007 Unit 4. Flow Control 4-21

Student Notebook
Figure 4-21. break the Loop AL321.0

Notes:

Following a break the program continues after the done statement just as if the command
was complete.

This is applicable to until, while, for, and select constructs.

© Copyright IBM Corporation 2007

The break command jumps out of do . . . done loops:

Exits from the smallest enclosing loop
Jumps out a specified number of layers/loops

break number

select choice in Backup Restore Quit
do

case $choice in
(Backup) find . -print|backup -iqf /dev/rfd0
;;
(Restore) restore -xqf /dev/rfd0
;;
(Quit) break
;;
('') print "What ?" 2>&1
;;
esac

done

break the Loop
Course materials may not be reproduced in whole or in part
without the prior written permission of IBM.

4-22 Korn and Bash Shell Programming © Copyright IBM Corp. 2007

Student Notebook
V4.1

Uempty
Figure 4-22. continue the Loop AL321.0

Notes:

Following a continue the command block is aborted, the next value is selected, and the
next iteration of the command block is begun — just as if it had completed the command
block in full. So in the above example, when a directory file is found in the current directory,
it is ignored: all other files are classified using the file command.

continue is applicable to until, while, for and select constructs.

In the example above, the commands are entered against the dollar prompt, rather than in
a script.

If the number provided to the continue command is greater than the current block nesting
depth, the shell prints a warning and execution continues at the outermost block.

© Copyright IBM Corporation 2007

continue the Loop
The continue command begins the next iteration of a do . . . done

loop:

Starts at the top of the smallest enclosing loop
Begins again a specified number of layers/loops out

continue number

$ for File in *
> do
> if [[-d $File]]
> then
> continue
> fi
> file $File
> done
$ _
Course materials may not be reproduced in whole or in part
without the prior written permission of IBM.

© Copyright IBM Corp. 2007 Unit 4. Flow Control 4-23

Student Notebook
Figure 4-23. null Logic AL321.0

Notes:

Constructs like if, until, while, for and select require at least one command block. When
you're debugging a program, null command slots can be handy — you can easily put in
another print command without needing to change the logic of the enclosing construct.

You can have arguments to the null command, which will be expanded, and thus may affect
the current environment. The return value is zero (true), so you can use the null command
in place of the true keyword.

© Copyright IBM Corporation 2007

{

null Logic
Sometimes you require a command, but you don't actually want

to do anything – a NULL command

: # a COLON character

For example:

sys_call parameter1 parameter2
if [[$? -eq 0]]
then

Debug slot without the null command ":"
: this would be illegal syntax

else
print $0: Error: command failed
exit $ERRNO

fi
Course materials may not be reproduced in whole or in part
without the prior written permission of IBM.

4-24 Korn and Bash Shell Programming © Copyright IBM Corp. 2007

Student Notebook
V4.1

Uempty
Figure 4-24. Program Logic Constructs Example AL321.0

Notes:

Here's delfile in action...

$ delfile /dev/null /tmp/jesse file1 file2 $PWD
/dev/null is a special file
/tmp/jesse deleted
file1 deleted
file2 not deleted
/home/jesse is a directory
$ _

A file can be deleted without write permission to it; write permission on its directory is all
that is required. An attempt to delete a file will fail if its directory has no write access. The
above example attempts to delete empty files and will report successful deletions.

No allowance is made for the non-existence of the named file; a special file is assumed.

© Copyright IBM Corporation 2007

Program Logic Constructs Example
Here's a Script to delete empty files:

#!/usr/bin/ksh
Usage: delfile file1 file2 ...
while [[$# -gt 0]]
do

if [[-f "$1"]]
then

if [[! -s "$1"]]
then

rm "$1" && print "$1" deleted
else

print "$1" not deleted 2>&1
fi

elif [[-d "$1"]]
then

print "$1" is a directory
else

print "$1" is a special file
fi
shift

done
Course materials may not be reproduced in whole or in part
without the prior written permission of IBM.

© Copyright IBM Corp. 2007 Unit 4. Flow Control 4-25

Student Notebook
Figure 4-25. Checkpoint (1 of 2) AL321.0

Notes:

Write down your answers here:

1.

2.

3.

4.

5.

© Copyright IBM Corporation 2007

Checkpoint (1 of 2)

1. What is wrong with this fragment of shell script?

if ["$x" -eq 5]
then

echo $x
elif ["$x" -eq 3]
else

echo "x is only 3"
exit

fi

2. What is the fundamental difference between a while and an
until construct?

3. How could we write an endless loop?
4. What syntax would we use to perform a loop a finite number

of times, resetting an identifier (variable) each time the loop
goes through?
Course materials may not be reproduced in whole or in part
without the prior written permission of IBM.

4-26 Korn and Bash Shell Programming © Copyright IBM Corp. 2007

Student Notebook
V4.1

Uempty
Figure 4-26. Checkpoint (2 of 2) AL321.0

Notes:

6.

7.

8.

9.

© Copyright IBM Corporation 2007

Checkpoint (2 of 2)

5. Which construct is best suited to allow conditional
processing, based on pattern matching?

6. What would the following lines produce?

select word in To be or not to be
do

:
done

7. Which construct is best used within the previous do-done?
block?

8. How can we terminate one iteration of a loop and commence
the next?

9. How can we abruptly terminate all iterations of a loop but
continue further processing in a shell script?
Course materials may not be reproduced in whole or in part
without the prior written permission of IBM.

© Copyright IBM Corp. 2007 Unit 4. Flow Control 4-27

Student Notebook
Figure 4-27. Unit Summary AL321.0

Notes:

© Copyright IBM Corporation 2007

Unit Summary

The if – then – else construct

Conditional loops with until and while

Specific value iteration with for

Multiple choice pattern matching with case

The select command for menus

Leaving loops – exit and break

Beginning again – continue

Doing nothing — the null command – :
Course materials may not be reproduced in whole or in part
without the prior written permission of IBM.

4-28 Korn and Bash Shell Programming © Copyright IBM Corp. 2007

Student Notebook
V4.1

Uempty
 Unit 5. Shell Commands

What this unit is about

Creating an interactive script is a common activity for Korn shell
programming. This unit focuses on the print and read interactive
commands as well as the set command.

What you should be able to do

After completing this unit, you should be able to:

 • Use the print, echo, and read commands
 • Understand and use getopts
 • Control the programming environment using the fc and set

commands
 • Use additional shell commands

How you will check your progress

Accountability:

 • Checkpoint questions
 • Hands on exercises
Course materials may not be reproduced in whole or in part
without the prior written permission of IBM.

© Copyright IBM Corp. 2007 Unit 5. Shell Commands 5-1

Student Notebook
Figure 5-1. Unit Objectives AL321.0

Notes:

© Copyright IBM Corporation 2007

Unit Objectives

After completing this unit, you should be able to:

Use the print and echo command
Use special printing characters
Use the read command
Understand option and argument processing with getopts
Use history manipulations with fc
Use the set command
Use shell options with set
Use shell invocation
Use built-in commands
Use shell commands provided by AIX
Course materials may not be reproduced in whole or in part
without the prior written permission of IBM.

5-2 Korn and Bash Shell Programming © Copyright IBM Corp. 2007

Student Notebook
V4.1

Uempty
Figure 5-2. The Print Command (ksh 88 and ksh 93) AL321.0

Notes:

The Bourne shell and Bash shell provide the echo command as an equivalent for print. The
Korn shell provides echo as a built-in command for backward compatibility, however, it has
no options,

Arguments are optional; if you omit them, a blank line is printed, except with -n.

Redirecting output with the -u option can be more efficient than using individual redirection.

Options may be mixed in the usual way, except: no option can follow -r, only -n can follow
-R.

The -n option provides for no trailing newline after output -- see “\c” on next page.

There is another print option: print -p argument ... to output to a co-process. We
shall not be looking further at this.

© Copyright IBM Corporation 2007

The print command is the Korn shell output mechanism:

print argument ... prints arguments to standard output separated
by spaces

print - argument ... to print arguments that look like options

print -r argument ... RAW mode – do not interpret print's special
characters (listed on next page)

print -R argument ... equivalent to "-" and "-r"

print -uN argument ... output sent to file descriptor N

print -s argument ... output to the shell history file only

The print Command (ksh 88 and ksh93)
Course materials may not be reproduced in whole or in part
without the prior written permission of IBM.

© Copyright IBM Corp. 2007 Unit 5. Shell Commands 5-3

Student Notebook
Figure 5-3. Special print Characters AL321.0

Notes:

The backslash character is used to escape the special meaning of the following character.
The shell removes it when an unquoted command line is processed, so that you need two
successive backslashes to pass a single backslash to the print command. The print
command interprets the shell processed line following the conventions listed above.

If you surround print arguments with quotes (single or double), the shell does not strip away
backslashes.

All of the above special characters work with the Bourne shell echo command. However, \a
was not provided with echo prior to AIX Version 4.

When you use \c, it must be the last option specified, that is \r\c not \c\r.

© Copyright IBM Corporation 2007

\a Alarm - ring the terminal bell

\b Backspace

\c Print without trailing newline (same as print -n)

\f Form feed

\n Newline

\r Return

\t Tab

\v Vertical tab

\\ Backslash

\0xxx Character with octal code xxx (up to three octal digits)

Backslash character sequences have special meaning (except in raw
mode)

Special print Characters
Course materials may not be reproduced in whole or in part
without the prior written permission of IBM.

5-4 Korn and Bash Shell Programming © Copyright IBM Corp. 2007

Student Notebook
V4.1

Uempty
Figure 5-4. The echo Command (bash) AL321.0

Notes:

The Bash shell does not have the print command builtin. Instead, it has the echo command
builtin. The differences between echo and print are listed above.

For octal codes of characters, use \xxx where xxx is the octal code.

echo does not support the -s or -u option.

© Copyright IBM Corporation 2007

The echo Command (Bash)

The echo command is the Bash shell output mechanism:

The echo special characters in bash are the same as the
print special characters in ksh (\a, \b, \c, and so forth)

To use the echo special characters, you must use the -e
option

On some systems, -e is the default. In this case -E turns off
the interpretation of special characters (similar to -r in print)

echo also has -n option to omit trailing newline after input
Course materials may not be reproduced in whole or in part
without the prior written permission of IBM.

© Copyright IBM Corp. 2007 Unit 5. Shell Commands 5-5

Student Notebook
Figure 5-5. print Examples AL321.0

Notes:

In the 'hi\\\\there 1' example, raw mode and single quotes prevent backslash
interpretations by both the shell and the print command. For the second example, there are
no quotes used so the shell processes the line and removes two backslashes. print
processes the resulting line but as raw mode was specified the output is two backslashes.

For the third ('hi\\\\there 3') example, the shell passes the input without processing to
the print command. The command interprets the four backslashes passed to it from the
shell and prints two, since two backslashes input result in a single backslash output from
print. Finally, the fourth example has both the shell and then the print command interpreting
the entered line; the shell removes two backslashes and, without raw mode, two
backslashes result in a single backslash output.

These examples are trying to point out that with metacharacters, there are often several
“entities” that want to expand the metacharacters. In these examples, both the shell and
the print command have a backslash as a metacharacter. Be sure to use quoting correctly
so the correct entity expands the metacharacter.

In bash, use \274 and \134.

© Copyright IBM Corporation 2007

print Examples
When you use the print command, here's what you get.

$ print "Line 1\n\tLine2"
Line1

Line 2
$ print 'One quarter = \0274'
One quarter = ¼
$ print 'Backslash = \0134'
Backslash = \
$ print -r 'hi\\\\there 1' with -r and quotes
hi\\\\there 1
$ print -r hi\\\\there 2 with -r and no quotes
hi\\there 2
$ print 'hi\\\\there 3' with no -r and quotes
hi\\there 3
$ print hi\\\\there 4 with no -r and no quotes
hi\there 4
$ _
Course materials may not be reproduced in whole or in part
without the prior written permission of IBM.

5-6 Korn and Bash Shell Programming © Copyright IBM Corp. 2007

Student Notebook
V4.1

Uempty
Figure 5-6. The printf Command - An Advanced Print AL321.0

Notes:

Examples of format specifiers:

%s string
%d decimal integer
%f, %e floating point format ([-] add, precision, [-d]d. precision [+ - dd])
%o unsigned octal value

printf can be used to display a simple string like print, however printf does not automatically
supply a newline. You must use \n.

© Copyright IBM Corporation 2007

The printf Command - An Advanced Print
The printf command allows for more powerful formatting.

The printf commands comes built-in with ksh93. However, AIX also
has a version of printf (/usr/bin/printf) that can be used from bash and
ksh88.

Syntax:

– printf format-string [arguments ...]

Examples: Results:

printf "#%10s#\n" title # Title#
printf "#%-10s#\n" title #Title #
printf "%.5f" 123456.789 123456.78900
Course materials may not be reproduced in whole or in part
without the prior written permission of IBM.

© Copyright IBM Corp. 2007 Unit 5. Shell Commands 5-7

Student Notebook
Figure 5-7. The read Command AL321.0

Notes:

Standard input for the read command is normally the keyboard.

Words are delimited by a character from the IFS environment variable: space, tab or
newline.

Apart from not using the REPLY variable, the Bourne shell read command works in the
same way.

© Copyright IBM Corporation 2007

The read Command
To get input while a shell script is running, use read:

read variable ...

The read command reads a line from its standard input

Assigns input words to the variables
Set remaining variables to null if too few words
Set last variable to the remainder of the words if too few variables

For the Korn and bash shells, if no variables are specified, the REPLY
variable is set to the whole input line
Course materials may not be reproduced in whole or in part
without the prior written permission of IBM.

5-8 Korn and Bash Shell Programming © Copyright IBM Corp. 2007

Student Notebook
V4.1

Uempty
Figure 5-8. read Examples AL321.0

Notes:

Remember that you cannot change the value of a readonly variable.

The AIX Operating System provides the “line” command as an equivalent to the shell
commands:

 (read ; print -R "$REPLY")

If you require input to be taken from a terminal one character at a time, without the need to
press return at each input, the dd command can be applied:

 dd if=/dev/tty bs=1 count=$charcount > inputread

Here /dev/tty is a link to the current terminal you are using, and $charcount has the number
of characters you wish to take as input. In Unit 7 we will learn how to store the output of a
command in a variable.

© Copyright IBM Corporation 2007

read Examples
We can use the read from the shell prompt as well:

$ read var1 var2
123 456 789
$ print "var1 = $var1 \tvar2 = $var2"
var1 = 123 var2 = 456 789
$ read var1 var2
abc
$ print "var1 = $var1 \tvar2 = $var2"
var1 = abc var2 =
$ read
hi there
$ print $REPLY
hi there
$ _
Course materials may not be reproduced in whole or in part
without the prior written permission of IBM.

© Copyright IBM Corp. 2007 Unit 5. Shell Commands 5-9

Student Notebook
Figure 5-9. read Command Options AL321.0

Notes:

Options above may be mixed in the usual way.

Before AIX Version 4, read -r did not require a variable; the REPLY variable would be used
by default.

It may be more efficient to use the -u option, rather than normal command input redirection.

In the read variable? prompt variable example, beware, your prompt is sent to standard
error. This is to prevent losing your prompt in a pipeline, however, it can cause your prompt
to go somewhere else (for example /dev/null) if the user redirected standard error.

There is another option where you can read from a co-process instead of standard input
which we do not discuss further:

read -p variable ...

© Copyright IBM Corporation 2007

read Command Options
The Korn shell read command has some options:

read -r variable ... raw mode – \ is not taken as
a line continuation character

read -uN variable ... read from file descriptor N

You can specify a prompt for the command to display on standard error,
add a "?prompt" to the first variable
read variable?prompt variable ...

For example, to request a user for a text string:
read string?'Please enter a text string'
Course materials may not be reproduced in whole or in part
without the prior written permission of IBM.

5-10 Korn and Bash Shell Programming © Copyright IBM Corp. 2007

Student Notebook
V4.1

Uempty
Figure 5-10. read Options for ksh93 AL321.0

Notes:

We will look at arrays later. This example is listed for future reference:

$ read -A name
Lee Lynn Llewellyn

This will unset the name array first, then set name[0] to Lee, name[1] to Lynn, name[2] to
Llewellyn.

© Copyright IBM Corporation 2007

read -A variable reads words into an indexed array
named variable, starting at index 0

read -d delimiter use "delimiter" instead of newline

read -n number read, at most, "number" bytes

read -t seconds wait "seconds" for input, else exit

read Options for ksh93
Course materials may not be reproduced in whole or in part
without the prior written permission of IBM.

© Copyright IBM Corp. 2007 Unit 5. Shell Commands 5-11

Student Notebook
Figure 5-11. read Options for bash AL321.0

Notes:

We will look at arrays later. This example is listed for future reference:

$read -a name
Lee Lynn Llewellyn

This will unset the name array first, then set name[0] to Lee, name[1] to Lynn, name[2] to
Llewellyn.

The -p option can be used in the following manner:

read -p “Enter your name” var1 var2

Again, the prompt will be sent to standard error (see notes for Korn shell “read var?prompt”
for more information).

© Copyright IBM Corporation 2007

read -a variable reads words into an indexed array
named variable, starting at index 0

read -p prompt variable similar to read var?prompt in ksh

read -s silient mode (no echo)

read Options for bash
Course materials may not be reproduced in whole or in part
without the prior written permission of IBM.

5-12 Korn and Bash Shell Programming © Copyright IBM Corp. 2007

Student Notebook
V4.1

Uempty
Figure 5-12. read Options Examples (1 of 2) AL321.0

Notes:

The read command cannot control how many words a user types in. But, as a programmer,
we can immediately check to see if they typed in enough information. Consider the
following:

read first?“Enter your name:” last junk

 • First we test if anything got stored in $junk with the -n or -z test option. If there is
something in $junk, they typed in too much.

 • Next we test to see if anything got stored in $first and $last with the -n or -z test option.
If they are empty, they did not type in enough.

Also notice that you cannot use print command special characters in the read command
prompt string. Instead you would have to split it into two lines as shown:

print -n “Enter your name:\a”
read first last junk

Also, notice in the read command prompt string, the cursor stays on the same line as the
prompt string.

© Copyright IBM Corporation 2007

#!/usr/bin/ksh
usage: readrun
prompt the user for their name
read first?"Enter your name: " last
print "firstname = $first\tlastname=$last"

What would the result be for the following?

readrun
Enter your name: Lee
firstname = __________ lastname = ___________

Enter your name: Lee Lynn Llewellyn
firstname = __________ lastname = ___________

read Options Examples (1 of 2)
Course materials may not be reproduced in whole or in part
without the prior written permission of IBM.

© Copyright IBM Corp. 2007 Unit 5. Shell Commands 5-13

Student Notebook
Figure 5-13. read Options Examples (2 of 2) AL321.0

Notes:

This example shows how input terminates. End of file (EOF) for terminal input is normally
<Ctrl-d>. When the read command gets EOF, it returns false. The example also shows that
you can change the IFS to whatever you need in order for the input to be correct.

© Copyright IBM Corporation 2007

#!/usr/bin/ksh
Usage: readpwd
Read & print parts of /etc/passwd.
IFS=:
while read name pwd uid guid gecos home shell
do

print "$name" "$uid" "$guid" "$shell"
done < /etc/passwd

Here's what happens:
$ readpwd
root 0 0 /bin/bash
bin 1 1 /sbin/nologin
daemon 2 2 /sbin/nologin
adm 3 4 /sbin/nologin
...
$ _

read Options Examples (2 of 2)
Course materials may not be reproduced in whole or in part
without the prior written permission of IBM.

5-14 Korn and Bash Shell Programming © Copyright IBM Corp. 2007

Student Notebook
V4.1

Uempty
Figure 5-14. Processing Options AL321.0

Notes:

There is a general convention that options are prefaced by a "-"(sometimes a "+").
Arguments are the remainder of the parameters supplied to the program or script.

Processing arguments passed to programs and scripts is not too difficult provided you have
to parse only a small number of cases. The examples indicate two of the possible
combinations of permitted options for myscript. Creating code for the two examples given is
relatively easy but what happens if a new option is added?

© Copyright IBM Corporation 2007

Processing Options
Parameters on a script command line are of two types:

Arguments – used in script

Options – used to tell the script what to process

General parameter/argument processing is difficult

Consider
$ myscript -a -f optionfile argfile
$ myscript -foptionfile -va argfile

Shell provides getopts as a solution
Course materials may not be reproduced in whole or in part
without the prior written permission of IBM.

© Copyright IBM Corp. 2007 Unit 5. Shell Commands 5-15

Student Notebook
Figure 5-15. The getopts Command AL321.0

Notes:

Usually no parameters are specified on the getopts command line, so that the positional
parameters are processed. A “--” option can be used to mark the end of your option list.

The getopts command uses your chosen variable variable and OPTARG and OPTIND to
store the results of each processing operation on the parameters. variable contains the
current option being processed or a “?” if it is not recognized as a valid option. OPTARG
contains the string for an associated argument where a “:” has been added to an option
identifier in optionstring.

The index variable OPTIND is not normally examined until the end of processing.
Whenever a shell script is invoked, the value of OPTIND is set to 1. When getopts
recognizes the end of the options or reads a “--” option, processing of the parameters
stops. At this point OPTIND indexes the first non-option parameter. By convention (see
previous notes) this is the first proper argument.

Option parameters begin with a “+” or “-” and may contain several option identifiers, that is,
-abc. By convention, identifiers with a minus are used to set options: a plus means unset
that option.

© Copyright IBM Corporation 2007

The getopts Command
The getopts command processes options and associated arguments
from a parameter list

getopts optionstring variable parameter...

Each invocation of getopts processes the next option in the
parameter list (parameter list usually comes from the command line,
but can come from within a script)

– Usually called within a loop

The optionstring lists expected option identifiers

– If an option identifier requires an associated argument, add a colon (:)

A leading colon in the list suppresses "invalid option" messages by
getopts
Course materials may not be reproduced in whole or in part
without the prior written permission of IBM.

5-16 Korn and Bash Shell Programming © Copyright IBM Corp. 2007

Student Notebook
V4.1

Uempty
Figure 5-16. getopts Syntax Example AL321.0

Notes:

The second example is tricky. At first glance it looks OK but there is a problem; what is it?

getopts is often used within a while loop. As we know, a while loop ends when the return
code of the command (in this case -getopts) returns a non-zero exit code. It is important to
note that getopts returns a non-zero exit code when there are no more options on the
command line to process.

In the above example, a, b, and c are the valid options. The colon behind the b indicates
that option b must have an associated argument. The colon at the beginning of the list of
valid options means getopts will suppress the system error message when the user gives
an invalid option; this allows the programmer more control of error messaging.

In the above example, flag is the name of the variable that will hold each option as it is
stripped off of the command line. Upon encountering an error, the flag variable will be set to
a “?”. If an option takes an argument, the argument is stored in the variable OPTARG. The
OPTIND variable is used to keep track of the next command line argument to be
processed.

© Copyright IBM Corporation 2007

getopts Syntax Example
How are options processed when passed to a script?
Assumptions:

The possible options are a, b and c

Option b is to have an associated argument
Suppress normal OpSys error messages

Inside the script getopts will be used early on:
while getopts ':ab:c' flag
do

identify the values set by getopts
done

A correct command line to the script might be
$ prog.ksh +c -ab barg -- arg1 arg2

What about?
$ prog.ksh -c -b -a -- arg1 arg2
Course materials may not be reproduced in whole or in part
without the prior written permission of IBM.

© Copyright IBM Corp. 2007 Unit 5. Shell Commands 5-17

Student Notebook
Figure 5-17. getopts Example AL321.0

Notes:

The problem on the previous example was that it is not clear whether the "-a" is the
associated argument to "-b" or not.

Notice how using a leading ':' in the getopts optionstring means doing your own error
processing. You do not have to exit with an invalid option but it's usually the best or safest
course of action.

In this example, each option will be taken from the command line and stored in a variable
called varflag. We then do a “case” on varflag. Notice the “+” is stored with the option but
the “-” is not.

How do we get to the actual or proper arguments? Recall that OPTIND contains an index to
the parameters processed. In particular, after all options have been processed it is
“pointing” to the first non-option argument. The usual practice is then to use shift to shift
over the option parameters by using the index.

shift ((OPTIND - 1)) This works for Korn shell.
shift `expr $OPTIND - 1` Use this for Bourne shell..

© Copyright IBM Corporation 2007

#!/usr/bin/ksh
Example of getopts
USAGE="usage: example.getopts.ksh [+-c] [+-v] [-a argument]"

while getopts :a:cv varflag
do
case $varflag in

a) argument=$OPTARG ;;
c) compile=on ;;

+c) compile=off ;;
v) verbose=on ;;

+v) verbose=off ;;
:) print "You forgot an argument for the switch called a.";

exit ;;
\?) print "$OPTARG is not a valid switch" ; print "$USAGE" ;

exit ;;
esac

done
print -c "compile is $compile; verbose is $verbose;
print "argument is $argument "
#END

getopts Example
Course materials may not be reproduced in whole or in part
without the prior written permission of IBM.

5-18 Korn and Bash Shell Programming © Copyright IBM Corp. 2007

Student Notebook
V4.1

Uempty
Figure 5-18. getopts Notes AL321.0

Notes:

© Copyright IBM Corporation 2007

getopts Notes
getopts does not support options that start with a "+" in bash

getopts supports putting a "#" after an option letter (in the valid option
list) instead of a ":" to specify the option's argument must be a number
in ksh93

– Example:
:ab#c b takes an argument, which must be a number
Course materials may not be reproduced in whole or in part
without the prior written permission of IBM.

© Copyright IBM Corp. 2007 Unit 5. Shell Commands 5-19

Student Notebook
Figure 5-19. The fc Command AL321.0

Notes:

The HISTSIZE environment variable sets the maximum start finish range size you can
specify — 128 commands by default.

The fc command returns the value of the last command executed.

The r command is equivalent to fc -e -. Beginning with AIX Version 4, fc -s is also
equivalent to fc -e -.

The fc command is less often used now but some of the inline command editing may be of
interest.

© Copyright IBM Corporation 2007

The fc Command

The Shell fc command interactively edits and then re-executes
portions of your command history file:

fc start end edits and executes a command range
-- start defaults to the last command
-- end defaults to the value of start

-e editor to specify an editor other than $FCEDIT
-- WARNING! The shell default is /bin/ed

To re-execute a single command with automatic editing:

fc -e - old=new command

old=new to swap string old with string new
command to specify a command

-- default command is the last command
Course materials may not be reproduced in whole or in part
without the prior written permission of IBM.

5-20 Korn and Bash Shell Programming © Copyright IBM Corp. 2007

Student Notebook
V4.1

Uempty
Figure 5-20. fc Examples - Edit and Execute, List AL321.0

Notes:

The $FCEDiT variable defaults to /bin/ed. When you execute an fc “edit” command and you
see just a number, you are probably in ed. The safest way to exit ed is to press <Ctrl-d> at
the “?” prompt.

when you bring the command list into “your favorite editor”, you can then make any
changes you want, but be aware -- what ever commands you leave in the editor -- whether
you “save and exit” or save w/no exit” -- the commands will be sent to the shell. If you truly
do NOT want to execute any of the commands, empty the screen, then exit the editor.

The fc command always returns true when commands are listed. It is equivalent to the
history command. Indeed, you will see in Unit 7 that it is an alias.

© Copyright IBM Corporation 2007

fc Examples - Edit and Execute, List
Ranges may be strings, absolute or relative numbers...

$ fc edit the last command with the
$FCEDIT editor, and then re-execute

$ fc cc edit the previous command beginning with cc
$ fc -e vi 10 20 use vi to edit history lines 10 to 20

Automatic editing can specify a command in a similar way

$ fc -e - re-execute last command as it was
$ fc -e - 2=3 10 swap 3 for 2 in command number 10

The ksh fc command lists portions of your command history file:

$ fc -l start end list the specified command range
-- the default is the last 16 commands

For example...
$ fc -l pg grep lists commands from the last pg to a grep
$ fc -l 15 20 lists commands 15 to 20
$ fc -l -5 -1 lists the last 5 commands
Course materials may not be reproduced in whole or in part
without the prior written permission of IBM.

© Copyright IBM Corp. 2007 Unit 5. Shell Commands 5-21

Student Notebook
Figure 5-21. The set Command AL321.0

Notes:

The Bourne shell also has some of the same options as the Korn shell. The Bourne shell
set command does not have a “-o” option syntax; it uses the single letter option identifiers.
Most of the option identifiers explained in the following pages are provided by the Bourne
shell, those that are not are noted in the text below.

© Copyright IBM Corporation 2007

set lists set variables with their values

set value ... resets the positional parameters

set -o vi enables line recall and editing

The set Command
We have seen three functions performed by the set command:

This last form sets a shell option. There are several more options to set:

Shell options and settings are listed by set –o

Turn option on using set -o option or set -L
(where L is an option identifier)

Turn option off using set +o option or set +L
Course materials may not be reproduced in whole or in part
without the prior written permission of IBM.

5-22 Korn and Bash Shell Programming © Copyright IBM Corp. 2007

Student Notebook
V4.1

Uempty
Figure 5-22. Korn Shell Options with Set (1 of 2) AL321.0

Notes:

The -C option was introduced with AIX Version 4 — for earlier systems noclobber has no
option letter equivalent. The notify or -b option is also new with AIX Version 4; other
systems have no equivalent.

The Korn shell also provides a privileged or -p option. However, this is not supported by
AIX, as AIX does not allow SUID (set user id) shell scripts. The privileged option is very
similar to the protected option that was only available with the 6/3/86 version of the Korn
shell (the same option by a different name for that version only).

On systems that do operate SUID shell scripts, the privileged or -p option is on if the
effective user or group ids differ from the real ones. It disables the processing of
$HOME/.profile and $ENV — using /etc/suid_profile instead. Turning the option off resets
the effective ids to the real ones.

© Copyright IBM Corporation 2007

Korn Shell Options with Set (1 of 2)
Option: L Description:

allexport a automatically export each variable set

bgnice run all background jobs at a lower priority
– this is on by default for interactive shells

ignoreeof stops an interactive shell exiting on <Ctrl-d>
– you must use the exit command

errexit e exits if any command returns a non-zero return code

noclobber C stops the shell overwriting existing files with
> redirection (>| works instead)

noexec n for a non-interactive shell to check syntax without
executing commands
Course materials may not be reproduced in whole or in part
without the prior written permission of IBM.

© Copyright IBM Corp. 2007 Unit 5. Shell Commands 5-23

Student Notebook
Figure 5-23. Korn Shell Options with Set (2 of 2) AL321.0

Notes:

Unit 7 deals with command aliases and the use of the trackall or h option. The Bourne shell
provides command hashing instead of aliases, which is where the h originates.

There is a keyword or k option, that allows “keyword parameters” to be used. These are
variable assignments placed in front of a shell Script invocation, that are passed to the
script:, e.g. $ variable=value ... shell_prog argument ...

The use of “keyword parameters” is strongly discouraged; it is provided only for Bourne
shell compatibility, and may be withdrawn from future versions of the Korn shell.

One important use for the set command is to assign values to shell arrays, using the +A
and -A options. Arrays are covered in Unit 7, so we will leave this for later.

The interactive option is listed by a set command. However, this option is a shell invocation
option, and cannot be altered with the set +o option or set -o option syntax.

© Copyright IBM Corporation 2007

Option L Description

noglob f to disable metacharacter expansion

notify b to notify asynchronously of background job
completions

nounset u displays an error message when an unset variable is
used

s to sort positional parameters -- ksh only

trackall h set-up a tracked alias for each new command
-– on for non-interactive shells

verbose v to display input on standard error as it is read

vi turns on history line recall and vi editing

xtrace x the debug option – the shell displays PS4 with each
processed command line

Korn Shell Options with Set (2 of 2)
Course materials may not be reproduced in whole or in part
without the prior written permission of IBM.

5-24 Korn and Bash Shell Programming © Copyright IBM Corp. 2007

Student Notebook
V4.1

Uempty
Figure 5-24. Additional ksh93 Shell Options AL321.0

Notes:

Although set -o pipefail does not tell you which command failed, it at least tells you
something went wrong in your pipeline.

The viraw does not work in all versions of ksh93.

© Copyright IBM Corporation 2007

Additional ksh93 Shell Options
set -o pipefail

Usually the exit status is of the last command in a pipeline.

set -o pipefail changes this behavior.
The exit status of a pipeline is changed to that of the last command to fail

set -o viraw
Allows for set -o vi plus allows <Tab> for file name completion
Course materials may not be reproduced in whole or in part
without the prior written permission of IBM.

© Copyright IBM Corp. 2007 Unit 5. Shell Commands 5-25

Student Notebook
Figure 5-25. Bash Shell Options with Set AL321.0

Notes:

The Bash shell also provides the “shopt” command to set shell options.

The Bash shell also provides set -o posix to change the behavior of the shell to match
POSIX 1003.2

© Copyright IBM Corporation 2007

Bash Shell Options with Set
The bash shell options are the same as the Korn shell unless noted:

– The set -h (set -o hashall) disables hashing of commands
– There is no set -o bgnice or set -o trackall
– Bash users traditionally use set -o emacs

Use "set -o" to list all of bash's options
Course materials may not be reproduced in whole or in part
without the prior written permission of IBM.

5-26 Korn and Bash Shell Programming © Copyright IBM Corp. 2007

Student Notebook
V4.1

Uempty
Figure 5-26. Set Quiz AL321.0

Notes:

© Copyright IBM Corporation 2007

Set Quiz

1. What command would you use to re-set the positional
parameters to "one" "two" "three"?

2. What lists the shell options with settings?

3. Which set option ensures that each variable assignment will
be inherited by a subshell?

4. What would stop <Ctrl-d> from logging me out?

5. How can I use set to protect my files from being overwritten
by output redirection?
Course materials may not be reproduced in whole or in part
without the prior written permission of IBM.

© Copyright IBM Corp. 2007 Unit 5. Shell Commands 5-27

Student Notebook
Figure 5-27. Shell Built-in Commands AL321.0

Notes:

Variable assignments made with the underlined special built-in commands remain effective
after the commands complete; that would not be the case for regular built-in commands.
Command redirections are processed after parameter assignments with special built-in
commands only. The “.” and “:” special built-in commands won't terminate the current shell
when in error; other special builtin commands will. Italicized commands above are not
available in the Bourne shell. The command command was introduced with Korn shell for
AIX Version 4.

Bourne shell has built-in commands for its special features too (these are beyond the
scope of this course): hash, login, setxvers, type. The wait command is a special built-in for
the Bourne shell.

The Korn and Bourne shells also provide the following commands (explained in AU14):

umask to set and display default file creation permissions
newgrp to change the effective group id, so that created files are associated with

that group.

© Copyright IBM Corporation 2007

We have seen the following built-in shell commands:

In the later units we will see:

All built-in commands can run in the current environment

Special built-in commands may terminate the shell if an error occurs

. : bg break

cd continue echo eval
exec exit export fc

fg getopts jobs kill
print pwd read readonly

set shift test []
trap typeset unset wait

alias command let or (()) return

times ulimit unalias whence

Shell Built-in Commands
Course materials may not be reproduced in whole or in part
without the prior written permission of IBM.

5-28 Korn and Bash Shell Programming © Copyright IBM Corp. 2007

Student Notebook
V4.1

Uempty
Figure 5-28. AIX Shell Commands AL321.0

Notes:

By default, the Korn shell will use its own built-in commands instead of AIX built-ins of the
same name. To specify the AIX built-ins, you could use a full pathname, for example,
/usr/bin/jobs.

Before AIX Version 4, the following commands were not normally implemented by the
operating system: alias, bg, cd, command, fc, fg, getopts, jobs, read, umask, unalias and
wait. It should however, be an easy matter to write missing mini-shell-scripts for a system.

As we shall see in Unit 7, true and false are not shell built-in commands as such.

The operating system also provides a getopt command (note spelling) that performs a
similar function to the Korn shell getopts built-in command. Because it is provided by the
operating system, it is accessible in all shells.

© Copyright IBM Corporation 2007

Some built-in Korn shell commands are also provided as AIX
commands, accessible from all shells:

AIX commands are also provided for the logical words:

Most of these commands are shell scripts in /usr/bin – they are provided
for POSIX compliance

command

getopt

read

alias

echo

jobs

umask

bg

fc

kill

unalias

cd

fg

newgrp

wait

false true

AIX Shell Commands
Course materials may not be reproduced in whole or in part
without the prior written permission of IBM.

© Copyright IBM Corp. 2007 Unit 5. Shell Commands 5-29

Student Notebook
Figure 5-29. Checkpoint AL321.0

Notes:

Write down your answers here:

1.

2.

3.

4.

5.

6.

© Copyright IBM Corporation 2007

Checkpoint

1. Without using redirection, how could we print information to
file descriptor 2?

2. What is wrong with the following command?
read speed?"mph" distance?"miles"

3. What getopts statement would allow you to process
options p, and a, with option t expecting an associated
value?

4. In the bash shell, print is not built-in. What is the built-in
command in Bash that performs similarly to Korn's print?

5. Which set option disables metacharacter pathname
expansion?

6. Which set options would be most useful in helping to debug
a shell script?
Course materials may not be reproduced in whole or in part
without the prior written permission of IBM.

5-30 Korn and Bash Shell Programming © Copyright IBM Corp. 2007

Student Notebook
V4.1

Uempty
Figure 5-30. Unit Summary AL321.0

Notes:

© Copyright IBM Corporation 2007

Unit Summary

The Korn shell print command
The Bash shell echo command
Special printing characters
The read command
Option and argument processing with getopts
History manipulations with fc
The set command
Shell options with set
Shell invocation
Built-in commands
Shell commands provided by AIX
Course materials may not be reproduced in whole or in part
without the prior written permission of IBM.

© Copyright IBM Corp. 2007 Unit 5. Shell Commands 5-31

Student Notebook
Course materials may not be reproduced in whole or in part
without the prior written permission of IBM.

5-32 Korn and Bash Shell Programming © Copyright IBM Corp. 2007

Student Notebook
V4.1

Uempty
 Unit 6. Arithmetic

What this unit is about

This unit presents the three ways of doing arithmetic operations in
shell, expr, let, and bc.

What you should be able to do

After completing this unit, you should be able to calculate using expr,
let or (()) and bc.

How you will check your progress

Accountability:

 • Checkpoint questions
 • Hands on exercises
Course materials may not be reproduced in whole or in part
without the prior written permission of IBM.

© Copyright IBM Corp. 2007 Unit 6. Arithmetic 6-1

Student Notebook
Figure 6-1. Unit Objectives AL321.0

Notes:

© Copyright IBM Corporation 2007

Unit Objectives
After completing this unit, you should be able to:

Use the expr utility

Understand expr arithmetic and logical operators

Use shell let or (())

Use number bases

Use let logical operators

Use integer variables

Use implicit let

Understand the bc utility
Course materials may not be reproduced in whole or in part
without the prior written permission of IBM.

6-2 Korn and Bash Shell Programming © Copyright IBM Corp. 2007

Student Notebook
V4.1

Uempty
Figure 6-2. expr Arithmetic AL321.0

Notes:

As the expr utility is provided by the operating system, it is available from all shells.

In AIX Version 4 error conditions result in an exit code greater than 2, while AIX Version 3
gives 2.

Internally numbers are treated as 32-bit two's complement integers, but are held and output
as character strings.

Remember that there are two results; that on standard output and the command exit status.
Expr also performs pattern matching and string manipulations. We will not be covering
these aspects. See the man page if you are interested.

© Copyright IBM Corporation 2007

AIX provides the expr utility to perform integer arithmetic

expr argument1 operator argument2 …

expr features

Runs as an external executable

Writes results to standard output

Exit code is 0 for non-zero evaluations

Exit code is 1 for zero or null evaluations

Exit code is > 2 if an expression is invalid

Mostly used for control flow in shell scripts – loop counters

expr Arithmetic
Course materials may not be reproduced in whole or in part
without the prior written permission of IBM.

© Copyright IBM Corp. 2007 Unit 6. Arithmetic 6-3

Student Notebook
Figure 6-3. expr Arithmetic Operators AL321.0

Notes:

Expr only does integer arithmetic.

You must use a backslash or quotes to protect special characters from the shell, for
example, *.

Spaces are required between operators and expressions — except for the unary minus
with a literal value, for example, -3.

Operators are shown here in order of precedence: highest to lowest.

For the logical operators, if both expressions are integers, numerical evaluation is
performed. If character strings are present, ASCII character order is used. Notice the odd
standard output values — opposite to the true=0, false=non-zero command exit codes.

© Copyright IBM Corporation 2007

expr Arithmetic Operators
To group expressions use:

() fixes evaluation order - otherwise
normal rules of precedence apply

The integer operators result in mathematical evaluations:
= equal
!= not equal
< less than
<= less than or equal
> greater than
>= greater than or equal
Course materials may not be reproduced in whole or in part
without the prior written permission of IBM.

6-4 Korn and Bash Shell Programming © Copyright IBM Corp. 2007

Student Notebook
V4.1

Uempty
Figure 6-4. expr Examples AL321.0

Notes:

Notice that everything is an argument to expr. Make sure you have whitespace around
parameters -- except where you need to quote.

© Copyright IBM Corporation 2007

$ var1=6; var2=3

$ expr $var1 / $var2

2

$ expr $var1 - $var2

3

$ expr \($var1 + $var2 \) * 5

45

$ _

What is the result of the following?
$ expr 10 % 3

$ expr 10 / 3

Here is some simple integer arithmetic...

expr Examples
Course materials may not be reproduced in whole or in part
without the prior written permission of IBM.

© Copyright IBM Corp. 2007 Unit 6. Arithmetic 6-5

Student Notebook
Figure 6-5. The let Command AL321.0

Notes:

As multiple arguments are space or tab separated for the ordinary let form, you must quote
such characters if they appear in an expression.

The ((...)) form of the command may have only one argument.

((...)) is not available in versions of bash prior to 2.0.

© Copyright IBM Corporation 2007

let argument ..

-or-

((argument))

The let Command

The let built-in shell command performs long integer arithmetic
approximately 10 times faster than expr
Evaluates each argument as an arithmetic expression
No quotes for special characters, or arguments with spaces or tabs in
them, within ((...))
Variables need no $
The exit code is 0 (true) for non-zero, and 1 (false) for zero evaluations
In ksh93, let will use decimal numbers, if you give the arguments in
decimal notation
In bash and ksh88, integer only
Course materials may not be reproduced in whole or in part
without the prior written permission of IBM.

6-6 Korn and Bash Shell Programming © Copyright IBM Corp. 2007

Student Notebook
V4.1

Uempty
Figure 6-6. let Arithmetic Operators AL321.0

Notes:

A null variable equates to zero. shell variables do not need the $. When using the ((...))
form, there is no standard output. To keep the result you must save it in a variable.

Operators are listed in order of precedence. The unary minus is evaluated after () and both
are evaluated before the other simple operators above. The assignment operator has the
lowest precedence of all.

© Copyright IBM Corporation 2007

() overrides normal precedence rules
* multiplication
/ division
% remainder
+ addition
- subtraction (or unary minus)
= assignment

let Arithmetic Operators
For simple arithmetic:

var op= exp means var = var op exp

Up to nine levels of nested processing will be evaluated:

$ z=2 ; y="z + 1"
$ ((x=3*y))
$ print $x
9
$ _
Course materials may not be reproduced in whole or in part
without the prior written permission of IBM.

© Copyright IBM Corp. 2007 Unit 6. Arithmetic 6-7

Student Notebook
Figure 6-7. let Arithmetic Examples AL321.0

Notes:

The print $((...)) combination will print the answer to standard output. the ((...)) will
require you to echo $z for you to see the value.

Nesting is possible and (maybe) easier to read and write than expr.

w=$(($x + ($y * $z))) ; print $w

© Copyright IBM Corporation 2007

let Arithmetic Examples
Some simple arithmetic...

$ a=1 b=2
$ ((z = 2#10 + -b)) unary minus needs a space

before it, not after
$ let c=a+b d=b*b no spaces, but \ needed for

* multiple arguments
$ ((e = 9 / b)) integer division
$ ((e += a)) assignment: addition
$ print $z $a $b $c $d $e

What do you think we get?

What is the difference between these?
$((...)) and ((...))?
Course materials may not be reproduced in whole or in part
without the prior written permission of IBM.

6-8 Korn and Bash Shell Programming © Copyright IBM Corp. 2007

Student Notebook
V4.1

Uempty
Figure 6-8. let Logical Operators AL321.0

Notes:

let 0 (zero) returns 1 (false) — which is equivalent to the Korn shell false.

Operators are listed in order of precedence. The logical negation operator has the highest
order of precedence after () and the unary minus. Other operators above have a lower
order of precedence than the simple arithmetic operators. Notice that these operators have
correct logic semantics.

© Copyright IBM Corporation 2007

Logical expressions evaluate to 1 if true, 0 if false
(the exit code is 0 for non-zero, 1 for zero – as expected):

! logical negation

< less than
<= less than or equal to
> greater than
>= greater than or equal to
== equal to
!= not equal to

&& logical "and" = 1 if both LHS and RHS are true
(RHS not evaluated if LHS is false)

|| logical "or" = 1 if either LHS or RHS are true (if
LHS is true, RHS not used)

let Logical Operator
Course materials may not be reproduced in whole or in part
without the prior written permission of IBM.

© Copyright IBM Corp. 2007 Unit 6. Arithmetic 6-9

Student Notebook
Figure 6-9. let Logical Examples AL321.0

Notes:

Follow the flow of the variables.

In the first two examples, the variable is assigned to a value. Numeric expressions are
tested in the other examples, using “both true” and “either - or” operators. Finally, an if
statement precedes the let command used for conditional testing.

© Copyright IBM Corporation 2007

$ ((p = 9))

$ ((p = p * 6))
$ print $p
54

$ ((p > 0 && p <= 10))
$ print $?
1

$ q=100
$ ((p < q || p == 5))
$ print $?
0

$ if ((p < q && p == 54))
> then
> print TRUE
> fi
TRUE

$ _

let Logical Examples
Course materials may not be reproduced in whole or in part
without the prior written permission of IBM.

6-10 Korn and Bash Shell Programming © Copyright IBM Corp. 2007

Student Notebook
V4.1

Uempty
Figure 6-10. base#number Syntax AL321.0

Notes:

Ways to do your octal or hexadecimal arithmetic perhaps?

© Copyright IBM Corporation 2007

With let you are not limited to just decimal (base ten) integers:

let constants are of the form base#number

base is an integer in the range 2 to 36 (10 default)

number may include upper or lowercase letters for bases greater than 10

2#100 in binary = 4 (in base 10)

8#33 in octal = 27

16#b in hexadecimal = 11

16#2A in base16 = 42

base#number Syntax
Course materials may not be reproduced in whole or in part
without the prior written permission of IBM.

© Copyright IBM Corp. 2007 Unit 6. Arithmetic 6-11

Student Notebook
Figure 6-11. Shell integer Variables AL321.0

Notes:

We shall see more of the typeset command in the next Units. Both typeset and integer are
shell commands.

© Copyright IBM Corporation 2007

Shell variables are stored as character strings unless defined with the
integer command

Sets the integer attribute for each variable

typeset can define a base N, variables then print in the specified base (2
to 36)

Assignment to an integer variable causes expression evaluation – an
implicit let command

let does not have to convert integer variables from character strings to
numerical values

integer variable=value ...

typeset -iN variable=value ...
-or-

Shell integer Variables
Course materials may not be reproduced in whole or in part
without the prior written permission of IBM.

6-12 Korn and Bash Shell Programming © Copyright IBM Corp. 2007

Student Notebook
V4.1

Uempty
Figure 6-12. integer Examples AL321.0

Notes:

An ordinary integer variable assumes the base of its first value assignment — base 10 for x
in above example.

The above example:

nums0=8#5 equates to nums0=5

nums1=8#10 equates to nums1=8

nums2=8#3*num0 equates to nums2=3 * 5 == 8#17

x=nums2 equates to 15

© Copyright IBM Corporation 2007

integer Examples
Some examples of integer and typeset -i ...

$ integer x x can hold only integers
$ x=string
ksh: string: 0403-009 The specified number is
not valid for this command.
$ x=5+10 implicit let command
$ print $x
15
$ ((x = 5 + 100))
$ print $x
105
$ typeset -i8 nums0 nums1 nums2
$ nums0=8#5 define an octal integer variable
$ nums1=8#10
$ ((nums2=8#3*nums0)) assign value
$ print ${nums2}
8#17
$ x=${nums2}
$ print $x print gives answer in base 10
15
$ _
Course materials may not be reproduced in whole or in part
without the prior written permission of IBM.

© Copyright IBM Corp. 2007 Unit 6. Arithmetic 6-13

Student Notebook
Figure 6-13. Implicit let Command AL321.0

Notes:

The ulimit command is a shell built-in command: ulimit -a displays current settings. Other
options are:

You have already seen the implicit let usage with OPTIND. There is one other use in
connection with arrays which we cover in the next unit.

-c N core dump size limit (512 byte blocks),

-f N file size limit for all child processes (512 byte blocks),

-d N data area size limit (kilobytes),

-s N stack area size limit (kilobytes),

-m M physical memory limit (kilobytes),

-t N time limit in seconds.

© Copyright IBM Corporation 2007

integer variable assignments are an implicit let command
Other implicit let commands are:

Values for the shift command

shift OPTIND-1

Resource limits with ulimit

ulimit -t TMOUT+60

Implicit let Command
Course materials may not be reproduced in whole or in part
without the prior written permission of IBM.

6-14 Korn and Bash Shell Programming © Copyright IBM Corp. 2007

Student Notebook
V4.1

Uempty
Figure 6-14. bc - Mathematics AL321.0

Notes:

The bc command works in decimal, octal or hexadecimal. Set the variables ibase and
obase to specify the input and output number bases respectively.

Caution: Base conversion will not work for hexadecimal to decimal, or octal to either of the
other bases.

Another caution: bc is not good for financial figures.

© Copyright IBM Corporation 2007

bc - Mathematics
The AIX system provides the bc utility

bc [file]

Performs floating point arithmetic

Acts as a filter command or interactively

Reads arithmetic expression strings from standard input or
from a specified file

Semicolons or new lines separate expressions

Sets the scale variable inside bc to define the required
number of decimal places

Prints results to standard output
Course materials may not be reproduced in whole or in part
without the prior written permission of IBM.

© Copyright IBM Corp. 2007 Unit 6. Arithmetic 6-15

Student Notebook
Figure 6-15. bc Operators AL321.0

Notes:

To use the complex mathematical functions, you may need to specify the -l option to bc on
the command line.

It is also possible to define complex functions of your own, in a C-language like syntax.

Logical flow control is also provided in bc — again in C-language structures.

Comments may be included in complicated files using the /*comment */ C notation.

Again Caution:

The multiply routine may yield incorrect results if a number has more than
LONG_MAX / 90 total digits. For 32 bit longs, this number is 23,860,929 digits.

© Copyright IBM Corporation 2007

For simple arithmetic and logical evaluations, use:

A library provides complex mathematical functions:

(,), +, -, *, /, %, = as for let arithmetic operators
==, !=, <, <=, >, >= as for let logical operators
x^y raise x to the power y
sqrt(x) square root
x++ ++x post and pre increment x
x-- --x post and pre decrement x
x op= y x = x op y for +=, -=, *=, /=, %=, ^=

s(x) sine of x
c(x) cosine of x
e(x) natural exponential of x
l(x) natural log of x
a(x) arctangent of x
j(n,x) Bessel function

Precision functions:
length(n) number of significant digits for example, 123.456 has n=6
scale(n) number of digits after decimal point for example, 123.456 has n=3

bc Operators
Course materials may not be reproduced in whole or in part
without the prior written permission of IBM.

6-16 Korn and Bash Shell Programming © Copyright IBM Corp. 2007

Student Notebook
V4.1

Uempty
Figure 6-16. Checkpoint AL321.0

Notes:

Write down your answers here:

1.

2.

3.

4.

5.

6.

7.

8.

© Copyright IBM Corporation 2007

Checkpoint
1. Multiply together variables a and b, using expr.

2. Use expr to multiply variable a by the sum of b and c.

3. Set variable hex to contain the hexadecimal value 7c.

4. Write a let statement to test whether variable a is smaller
than variable b.

5. Define a variable num as numeric only.

6. Increment a numeric variable numvar, by three.

7. How would you calculate 6/7 to 6 decimal places?

8. How would you calculate the square root of 8541976320?
Course materials may not be reproduced in whole or in part
without the prior written permission of IBM.

© Copyright IBM Corp. 2007 Unit 6. Arithmetic 6-17

Student Notebook
Figure 6-17. Unit Summary AL321.0

Notes:

© Copyright IBM Corporation 2007

Unit Summary

The expr utility

expr arithmetic and logical operators

Shell let or (())

Number bases

let logical operators

Integer variables

Implicit let

The bc utility
Course materials may not be reproduced in whole or in part
without the prior written permission of IBM.

6-18 Korn and Bash Shell Programming © Copyright IBM Corp. 2007

Student Notebook
V4.1

Uempty
 Unit 7. Shell Types, Commands, and Functions

What this unit is about

This unit describes shell arrays, command substitutions, functions and
variables, and aliases.

What you should be able to do

After completing this unit, you should be able to:

 • Use array variables
 • Use command substitution
 • Define and call functions
 • Use typeset variables
 • Process aliases
 • Understand shell command line processing

How you will check your progress

Accountability:

 • Checkpoint questions
 • Hands on exercises
Course materials may not be reproduced in whole or in part
without the prior written permission of IBM.

© Copyright IBM Corp. 2007 Unit 7. Shell Types, Commands, and Functions 7-1

Student Notebook
Figure 7-1. Unit Objectives AL321.0

Notes:

© Copyright IBM Corporation 2007

Unit Objectives

After completing this unit, you should be able to:

Use shell arrays
Define and call functions
Use typeset command
Use autoload functions
Process command aliases
Use preset aliases
Use tracked aliases
Use the whence command
Understand command line processing
Understand command line re-evaluation with eval
Course materials may not be reproduced in whole or in part
without the prior written permission of IBM.

7-2 Korn and Bash Shell Programming © Copyright IBM Corp. 2007

Student Notebook
V4.1

Uempty
Figure 7-2. Defining Arrays AL321.0

Notes:

All variables are arrays in Korn and Bash shell but because the default is element zero then

VAR1 == VAR1[0]

© Copyright IBM Corporation 2007

Defining Arrays

The Korn and Bash shells supports one-dimensional arrays:

Arrays need not be "declared"
Access an element of an array by a subscript to a variable
name
Any variable with a valid subscript becomes an array
A subscript is an expression enclosed within []
Subscripts should lie in the range 0 to 4095 -- (ksh only)
Variable attributes (for example, readonly) apply to all
elements of the array

Caution: An entire array cannot be exported, only the 0th
element
Course materials may not be reproduced in whole or in part
without the prior written permission of IBM.

© Copyright IBM Corp. 2007 Unit 7. Shell Types, Commands, and Functions 7-3

Student Notebook
Figure 7-3. Assigning Array Elements AL321.0

Notes:

Korn shell variable names and contents are not limited in length; this applies to array
elements also.

You can unset an array by: unset array — specifying the array name is enough.

The set -A syntax does not work in the Bash shell.

In ksh93 and bash, arrays can also be set up in the following manner:

array=(arg1 arg2 arg3)

In addition, the Bash shell supports the following syntax:

array=([2]=value [0]=diffvalue [3]=anothervalue)

The read -a (bash) or read -A (ksh93) allows the read command to set up arrays. (Refer to
Unit 5)

© Copyright IBM Corporation 2007

Assigning Array Elements
Just like ordinary variables, values can be assigned, and later referred to:

Assign contents to an array element using
array[N]=argument

To unset an array and assign new values sequentially, use
set -A array argument ...

To simply replace existing array values with new ones, use
set +A array argument ...
Course materials may not be reproduced in whole or in part
without the prior written permission of IBM.

7-4 Korn and Bash Shell Programming © Copyright IBM Corp. 2007

Student Notebook
V4.1

Uempty
Figure 7-4. Associative Arrays in ksh93 AL321.0

Notes:

Associative arrays are allowed in ksh93.

© Copyright IBM Corporation 2007

Associative Arrays in ksh93

ksh93 allows associative arrays

Associative arrays are indexed by string values

Indicate an associate array with typeset -A

– Examples:

$ typeset -A tax
$ tax[NJ]=6
$ tax[NM]=5
$ tax[NY]=4
Course materials may not be reproduced in whole or in part
without the prior written permission of IBM.

© Copyright IBM Corp. 2007 Unit 7. Shell Types, Commands, and Functions 7-5

Student Notebook
Figure 7-5. Referencing Array Elements AL321.0

Notes:

Just as for positional parameters, where:

with array elements:

"$@" = "$1" "$2" ...

and "$*" = "$1 $2 ..."

"${array[@]}" = "${array[0]}" "${array[1]}" ...

and "${array[*]}" = "${array[0]} ${array[1]} ..."

© Copyright IBM Corporation 2007

Referencing Array Elements
The $ notation is used to refer to the value in a variable:

When referencing an array element use ${ } notation
print ${array[N]}

To refer to all the elements of an array use an * or @ subscript (to
give a space separated list)
${array[*]} or ${array[@]}

If you omit a subscript, it means the zeroth element
${array[0]} == $array

To show how many elements exist within an array
${#array[@]}
Course materials may not be reproduced in whole or in part
without the prior written permission of IBM.

7-6 Korn and Bash Shell Programming © Copyright IBM Corp. 2007

Student Notebook
V4.1

Uempty
Figure 7-6. Array Examples AL321.0

Notes:

© Copyright IBM Corporation 2007

Array Examples
$ list[0]="Line 0" fill the array list.
$ list[1]="Line 1"
$ list[3]="Line 3"
$ print $list print the zeroth element.
Line 0
$ print ${list[*]} print all elements.
Line 0 Line 1 Line 3
$ print ${list[0]} print elements individually.
Line 0
$ print ${list[1]}
Line 1
$ print ${list[2]} element [2] is null.

$ print ${list[3]}
Line 3
$ print $list[1] without { } notation, we
Line 0[1] get "$list" + "[1]".
$ _
Course materials may not be reproduced in whole or in part
without the prior written permission of IBM.

© Copyright IBM Corp. 2007 Unit 7. Shell Types, Commands, and Functions 7-7

Student Notebook
Figure 7-7. Another Array Example AL321.0

Notes:

The lines picked out in italic or bold italic have implicit lets which were covered in the Unit 6.
With an implicit let you don't need the dollar to reference shell variables.

© Copyright IBM Corporation 2007

Another Array Example
Here we have the beginnings of a card game.

#!/usr/bin/ksh
Usage: pickacard.ksh
To choose a random card from a new deck
integer number=0
for suit in CLUBS DIAMONDS HEARTS SPADES
do
for n in ACE 2 3 4 5 6 7 8 9 10 JACK QUEEN KING
do
card[number]="$n of $suit"
number=number+1
done

done
print ${card[RANDOM%52]}

$ pickacard.ksh
QUEEN of DIAMONDS
$ _
Course materials may not be reproduced in whole or in part
without the prior written permission of IBM.

7-8 Korn and Bash Shell Programming © Copyright IBM Corp. 2007

Student Notebook
V4.1

Uempty
Figure 7-8. Defining Functions AL321.0

Notes:

Functions are helpful in scripts for several reasons. It allows you to reuse code, allows the
script to be readable, and is stored in memory for faster access.

A function must be defined before it is used, that is, put the definitions at the top of a Shell
script.

In the Korn shell, functions may have the same name as that of a script variable: in the
Bourne shell, this is not possible.

Don't use reserved words in a function name: !, {, }, case, do, done, elif, else, esac, fi, for,
function, if, in, select, then, time, until, while, [[,]]. You cannot create a function with the
same name as a special shell builtin command. If you give a function the same name as a
regular builtin command, and use that command within the function definition, recursion
occurs.

The Korn shell command command (introduced with AIX Version 4) suppresses function
lookup — this allows you to avoid recursion within a function.

© Copyright IBM Corporation 2007

Bourne, Korn, and Bash Korn and Bash

identifier() function identifier
{ {

commands commands
} }

Defining Functions

Commands can be group together and named.
The set of commands form the function body.
function definitions look like:

Functions:
– Provide a means of breaking down programs into discrete units
– Stored in memory for fast access
– Executed, like new commands, in the current environment
Course materials may not be reproduced in whole or in part
without the prior written permission of IBM.

© Copyright IBM Corp. 2007 Unit 7. Shell Types, Commands, and Functions 7-9

Student Notebook
Figure 7-9. Functions and Variables AL321.0

Notes:

Inside a function $* and $@ refer to the arguments to the function.

Local variables do not exist in the Bourne shell. More on the typeset command later in this
unit.

Normally all variables in a shell script are global, that is, accessible anywhere in the script.

In ksh88, $0 will be the function name while inside the function and $0 will reflect the
scriptname when it leaves the function, IF the function was set up with the “function
identifier” syntax.

If set up with “identifier()” syntax, $0 will reflect the scriptname while both inside and
outside the function.

© Copyright IBM Corporation 2007

Functions and Variables

Functions have different variables to the main script:

Arguments
– Taken as positional parameters to the function
– Calling script $1-${n} parameters are reset on leaving the called

function

Variables
– Declared with the typeset or integer commands (inside a Korn

shell function) are "local" variables to the function
– All other variables are "global" in the Script
– The "scope" of a "local" variable includes all functions called from the

current function
Course materials may not be reproduced in whole or in part
without the prior written permission of IBM.

7-10 Korn and Bash Shell Programming © Copyright IBM Corp. 2007

Student Notebook
V4.1

Uempty
Figure 7-10. function Example AL321.0

Notes:

© Copyright IBM Corporation 2007

function Example
A useful function...

Handy for usage errors in Shell Scripts
Invoke function usage with arguments: script
followed by arglist. Note exit status!
function usage
{
prog="$1"; shift
print -u2 "$prog: usage: $prog $@"
exit 1

}

Course materials may not be reproduced in whole or in part
without the prior written permission of IBM.

© Copyright IBM Corp. 2007 Unit 7. Shell Types, Commands, and Functions 7-11

Student Notebook
Figure 7-11. Ending Functions AL321.0

Notes:

In the Bourne shell function errors abort the script, like an exit command.

© Copyright IBM Corporation 2007

Ending Functions
A function completes after executing the last command:

The exit code is normally that of the last command

return can be used to specify an exit code N, or just end the function at
that point

return N

exit will terminate the current function and current shell
exit N

Errors within a Korn shell function cause it to return control and the error
exit code to the calling Script

Functions may be deleted from memory using...
unset -f functionname
Course materials may not be reproduced in whole or in part
without the prior written permission of IBM.

7-12 Korn and Bash Shell Programming © Copyright IBM Corp. 2007

Student Notebook
V4.1

Uempty
Figure 7-12. Functions and Traps AL321.0

Notes:

Before AIX Version 4, only main program ERR and EXIT traps were not shared with
functions. Where a signal was neither caught nor ignored, the condition would be passed
back to the calling program.

A signal that is ignored by the main shell cannot be trapped by any subshell; it is always
ignored.

© Copyright IBM Corporation 2007

The behavior of trap with functions is determined by the shell type:

Bourne: a trap is "global" – the same in and out of
a function

Korn:88 a trap is "local" to a function and is reset on
completion

a main program trap is shared with functions,
but can be overriden inside function

a signal that is not caught or ignored, may cause
the script to terminate

a signal that is ignored by the shell, is also
ignored by functions called from it

Functions and Traps
Course materials may not be reproduced in whole or in part
without the prior written permission of IBM.

© Copyright IBM Corp. 2007 Unit 7. Shell Types, Commands, and Functions 7-13

Student Notebook
Figure 7-13. Functions in ksh93 AL321.0

Notes:

The identifier() form is for compatibility with the Bourne shell and for POSIX compliance.
The functions identifier form is a more powerful Korn shell form.

© Copyright IBM Corporation 2007

identifier () function identifier
{ ... { ...
} }
- All variables are global - Variables are made local with

"typeset"
- $0 always scriptname - $0 reflects function name while

inside the function
- A main program trap is shared - A main program trap is shared
with functions with functions
- A trap inside a function - A trap inside a function
overrides a main program trap, overrides a main program trap, but
and is passed out only while inside the function

Functions in ksh93
Function's characteristics change in ksh93 depending on which syntax
was used to set up the function
Course materials may not be reproduced in whole or in part
without the prior written permission of IBM.

7-14 Korn and Bash Shell Programming © Copyright IBM Corp. 2007

Student Notebook
V4.1

Uempty
Figure 7-14. Functions in bash AL321.0

Notes:

Typeset is available for compatibility.

© Copyright IBM Corporation 2007

Functions in bash
$0 will always be the scriptname, whether inside or outside function

Prefers "declare" or "local" over typeset

A main program trap is shared with function

A trap within a function overrides the main program trap while
inside the function, and is passed out to the main program
Course materials may not be reproduced in whole or in part
without the prior written permission of IBM.

© Copyright IBM Corp. 2007 Unit 7. Shell Types, Commands, and Functions 7-15

Student Notebook
Figure 7-15. The typeset/declare Commands AL321.0

Notes:

Attributes are set, or unset, after assigning optional values to specified variables.

“-H” sets the pathname mapping attribute; on non-UNIX systems pathnames are converted
into host system names.

We saw the “-i” option used in the last unit.

bash provides the typeset command for compatibility but preferred usage is declare.

© Copyright IBM Corporation 2007

The typeset/declare Commands
The Korn shell typeset and Bash shell declare commands define or list variables

and their attributes:

typeset ±LN variable1=value1 variable2=value2 ...

Omitting variables lists variables with specified attributes
- sets attributes, or lists names and values
+ unsets attributes, or lists just names

Where L is any of ...

r the readonly attribute – no modification of variables' value
i sets the integer attribute – use with N to set number base
x the export attribute – the variable will be exported

The preferred method in bash is the "declare" command
Course materials may not be reproduced in whole or in part
without the prior written permission of IBM.

7-16 Korn and Bash Shell Programming © Copyright IBM Corp. 2007

Student Notebook
V4.1

Uempty
Figure 7-16. typeset Examples AL321.0

Notes:

If you create a “local” variable with the same name as a “global” one, the two variables are
distinct.

To list variables with the readonly attribute...

$ typeset +r
LOGNAME
$

© Copyright IBM Corporation 2007

typeset Examples
Declare arrays to specify size and/or attributes:

$ typeset -xi8 a2[1] exported & octal integer
$ a2=52
$ a2[1]=25
$ ksh
$ print $a2 ${a2[1]}
8#64 only element 0 was exported
$ _

Inside a Korn Shell function, typeset creates a "local"
variable...

Function to convert numbers into binary
function binary_convert
{

typeset -i2 binary=$1
print "$1 = $binary"

}

Course materials may not be reproduced in whole or in part
without the prior written permission of IBM.

© Copyright IBM Corp. 2007 Unit 7. Shell Types, Commands, and Functions 7-17

Student Notebook
Figure 7-17. typeset with Functions AL321.0

Notes:

You must be using your history file for the listing options to work: the shell nolog option
must be off when function definitions are read.

Functions that are to be defined across explicit invocations of a shell should be defined in
the $ENV file, with the export attribute so that they are available to subsequent shells
(implicit or explicit).

The -t option is not available in bash.

The -x option does not work in ksh93.

© Copyright IBM Corporation 2007

typeset with Functions
Other uses of typeset are:

Display functions

Set function attributes

Unset function attributes

typeset ±fL function1 function2 ...

To list functions with specified attributes, omit function list
-f sets attributes, or displays function names and definitions

+f unsets attributes, or displays only function names

Where L is any of...
x the export attribute – the function will be available to implicit

shells invoked from the current one
t the shell xtrace option for a function
Course materials may not be reproduced in whole or in part
without the prior written permission of IBM.

7-18 Korn and Bash Shell Programming © Copyright IBM Corp. 2007

Student Notebook
V4.1

Uempty
Figure 7-18. typeset with Functions Examples AL321.0

Notes:

In the next unit we will see even more uses for typeset.

© Copyright IBM Corporation 2007

typeset with Functions Examples
$ typeset -f shows functions in full
function list
{

while [["$1" != "X"]]
do

print $1
shift 1

done
}
$ typeset -fx list export the list function
$ typeset +f or typeset -F (bash)lists function names
list
$ unset -f list
$ typeset -f list doesn't exist anymore
$ _
Course materials may not be reproduced in whole or in part
without the prior written permission of IBM.

© Copyright IBM Corp. 2007 Unit 7. Shell Types, Commands, and Functions 7-19

Student Notebook
Figure 7-19. autoload Functions AL321.0

Notes:

By putting several related function definitions in a file, and using the operating system ln
command to create multiple names for the file, you can autoload libraries of functions. The
multiple names are those of the functions in the file of function definitions.

There is another way. Follow these steps:

Place functions into a separate directory.

Set $FPATH equal to the full pathname of that directory.

Make sure the function name and file name is the same.

Autoload is not necessary now.

© Copyright IBM Corporation 2007

autoload Functions
A shell function that is defined only when it is first called, is an
autoload function:

Using autoload functions improves performance
The shell searches directories listed in the FPATH variable for a file
with the name of the called function
Call the autoload from within your .profile (or .bash_profile)
The contents of that file then defines the function
Existing function definitions are not unset

Another way is to:
Place functions into a separate directory
Set $FPATH equal to the full pathname of that directory
Make sure the function name and file name is the same
Course materials may not be reproduced in whole or in part
without the prior written permission of IBM.

7-20 Korn and Bash Shell Programming © Copyright IBM Corp. 2007

Student Notebook
V4.1

Uempty
Figure 7-20. Aliases AL321.0

Notes:

Like functions, aliases must be defined before they are used, so put definitions at the top of
shell Scripts.

You may redefine shell built-in commands using aliases, but don't use aliases for reserved
words.

Reserved words are: ! {, }, case, do, done, elif, else, esac, fi, for, function, if, in, select, then,
time, until, while, [[,]].

Since AIX Version 4, all aliases can be removed with a single command: unalias -a.

© Copyright IBM Corporation 2007

Creation: alias name=definition

Deletion: unalias name

Aliases

The Korn shell alias facility provides:

A way of creating new commands

A means of renaming existing commands

An alias definition may contain any valid shell script or
metacharacters
Course materials may not be reproduced in whole or in part
without the prior written permission of IBM.

© Copyright IBM Corp. 2007 Unit 7. Shell Types, Commands, and Functions 7-21

Student Notebook
Figure 7-21. Processing Aliases AL321.0

Notes:

Definitions must be quoted to include spaces or tabs.

© Copyright IBM Corporation 2007

Processing Aliases

Command lines are split into words by the shell:

Check the first word of each command line for a defined
alias

A backslash in front of a command name prevents alias
expansion if the alias exists

If the definition ends in a space or tab, the next command
word will also be processed for alias expansion

Resolve alias names within a function when function
definitions are read, not at execution
Course materials may not be reproduced in whole or in part
without the prior written permission of IBM.

7-22 Korn and Bash Shell Programming © Copyright IBM Corp. 2007

Student Notebook
V4.1

Uempty
Figure 7-22. Preset Aliases AL321.0

Notes:

It is not a good practice to alter the above aliases; it will confuse other programmers if
nothing else.

In ksh93, these are the preset aliases:

command=’command ’
fc=hist
float=’typeset -E’
nameref=’typeset -n ’
redirect=’command exec ’
times=’{ { times; } 2>&1; }’

We shall see what hash and whence do in a moment.

© Copyright IBM Corporation 2007

alias functions='typeset -f'

alias hash='alias -t'

alias history='fc -l'

alias integer='typeset -i'

alias nohup='nohup ' with trailing space

alias r='fc -e -'

alias stop='kill -STOP'

alias suspend='kill -STOP $$'

alias type='whence -v'

Preset Aliases

Korn shell uses the following exported aliases
– May be unaliased or redefined
Course materials may not be reproduced in whole or in part
without the prior written permission of IBM.

© Copyright IBM Corp. 2007 Unit 7. Shell Types, Commands, and Functions 7-23

Student Notebook
Figure 7-23. The alias Command AL321.0

Notes:

A backslash can be used inside a “definition” to prevent recursion for a command. Single
quotes around the whole definition have the same effect.

Tracked aliases are covered in a moment.

An exported alias is passed to shells invoked from the current one. However, to export an
alias across different explicit shells, you must define and export it from the $ENV file.
Explicit means wherever you can see “ksh” in the invocation — for example, ksh, ksh -c
“commands”, ksh prog. Also, running a script that has the special “#!/usr/bin/ksh”
comment as its first line will invoke a new explicit shell.

Notice what happens when you use single or double quotes. In most cases you will want
single quotes so that any interpretation occurs when the alias expands later.

There are no -x or -t options in bash.

The -x option is only available in ksh88, and then only to implicit Korn shells.

© Copyright IBM Corporation 2007

The alias Command

The alias command has some options:

alias -L name=definition

Where L is any mix of...

x to set, or display exported aliases

t to set, or list tracked aliases

If definition is quoted...

"definition" doubles are interpreted when entered

'definition' singles are interpreted when executed
Course materials may not be reproduced in whole or in part
without the prior written permission of IBM.

7-24 Korn and Bash Shell Programming © Copyright IBM Corp. 2007

Student Notebook
V4.1

Uempty
Figure 7-24. alias Examples AL321.0

Notes:

© Copyright IBM Corporation 2007

$ x=10
$ alias px="print $x" rx='print $x'
$ x=100
$ px prints $x as it was
10
$ rx prints the current $x
100

$ alias -x ls='ls -a' ls is set and exported

$ rm /tmp/* you want to remove all /tmp
rm: remove '/tmp/atestfile'? _
<Ctrl-c> you realize the list is too long
$ \rm /tmp/* you escape the alias for rm
... you cross your fingers
$ ls /tmp you hope you did it correctly

alias Examples
Course materials may not be reproduced in whole or in part
without the prior written permission of IBM.

© Copyright IBM Corp. 2007 Unit 7. Shell Types, Commands, and Functions 7-25

Student Notebook
Figure 7-25. Tracked Aliases AL321.0

Notes:

Once created, a tracked alias will obscure a new command of the same name if it is placed
in the command search PATH, in a directory that is before that of the original command.

Some tracked aliases are predefined for the Korn shell. What these are varies from system
to system.

The Bourne shell provides command hashing instead of tracked aliases, which is where
the -h originates.

© Copyright IBM Corporation 2007

Tracked Aliases
A tracked alias reduces the search time for a future use of a

command

set -o trackall or set -h

Turns on Shell trackall option

First use of a command creates tracked alias

Force creation with
alias -t name

List all tracked aliases
alias -t

NOTE: The value of a tracked alias becomes undefined when the PATH
variable is reset
Course materials may not be reproduced in whole or in part
without the prior written permission of IBM.

7-26 Korn and Bash Shell Programming © Copyright IBM Corp. 2007

Student Notebook
V4.1

Uempty
Figure 7-26. Hashing in bash AL321.0

Notes:

Once created, a hash will obscure a new command of the same name if it is placed in the
command search PATH, in a directory that is before that of the original command.
However, only commands that are searched for in PATH are remembered.

© Copyright IBM Corporation 2007

Hashing in bash
A hash reduces the search time for a future use of a command.

All commands are remembered in a hash table by bash. Disable
this facility by:

set -d or set -o nohash

The built-in hash lists the table

Add an explicit entry by

hash command (must be in PATH)

To delete the hash table:

hash -r
Course materials may not be reproduced in whole or in part
without the prior written permission of IBM.

© Copyright IBM Corp. 2007 Unit 7. Shell Types, Commands, and Functions 7-27

Student Notebook
Figure 7-27. The whence Command AL321.0

Notes:

The whence command reports: aliases, exported aliases, keywords (shell reserved words),
built ins, functions, undefined functions (autoload functions), tracked aliases and programs.

Since AIX Version 4, the command command is provided as both a Korn shell built in and
as an AIX command accessible from all shells. command -v and command -V perform
similar functions to whence and whence -v. When used as an AIX command, command
operates in a subshell, and thus will not report functions or aliases unless they were
defined and exported by the $ENV file. command -p is similar to whence -p, but the former
uses a default PATH for its search, and thus will only find the standard AIX commands.

When in bash use type instead of whence. type [-a|-p -t].

-a print all places name is found
-p returns pathname if name is a file only
-t output actual type only

© Copyright IBM Corporation 2007

The whence Command
whence reports how a command will be carried out by the shell

whence -pv command

-v for a verbose report
-p to force a PATH search even if the command is

an alias or function (AIX only option)

$ whence vi
/usr/bin/vi
$ whence -v vi executable program
vi is a tracked alias for /usr/bin/vi
$ whence -v print
print is a shell builtin
$ whence type so type is an alias
whence -v
$ type for
for is a reserved word
$ _

* when in bash, use type instead of whence (type is built-in in bash)
Course materials may not be reproduced in whole or in part
without the prior written permission of IBM.

7-28 Korn and Bash Shell Programming © Copyright IBM Corp. 2007

Student Notebook
V4.1

Uempty
Figure 7-28. The eval Command AL321.0

Notes:

The eval command works in the Bourne, Bash, and Korn shells in the same way.

eval is a very powerful feature. It has been known for programmers to emulate their favorite
command interpreters with a script based on using argument processing and eval.

© Copyright IBM Corporation 2007

The eval Command

The shell processes each command line read before invoking
the relevant commands.

If you want to reread and process a command line, use eval:

eval processes its arguments as normal

The arguments are formed into a space separated string

The shell then executes that string as a command line

The return value is that of the executed command line
Course materials may not be reproduced in whole or in part
without the prior written permission of IBM.

© Copyright IBM Corp. 2007 Unit 7. Shell Types, Commands, and Functions 7-29

Student Notebook
Figure 7-29. eval Examples AL321.0

Notes:

From a shell script, you can use eval with the positional parameters.

#!/usr/bin/ksh
Usage: put [options] filename
Test that the last argument is a filename.
if eval [[! -f \${$#}]]
then
 print -u2 "File not found:"
 exit 1

fi

© Copyright IBM Corporation 2007

eval Examples
Here are some eval command lines...

$ eval print '*sh'
getopts.example.ksh eval.ksh try.sh

$ message10=Hello

$ variable=message10 print the message
$ eval print '$'$variable named by $variable
Hello

$ cmd='ps -ef | grep marty' run a string command
$ eval $cmd to list marty's processes
...
$ _
Course materials may not be reproduced in whole or in part
without the prior written permission of IBM.

7-30 Korn and Bash Shell Programming © Copyright IBM Corp. 2007

Student Notebook
V4.1

Uempty
Figure 7-30. Command Line Processing AL321.0

Notes:

In the next unit we will see what tilde expansion does. Other shells process lines in a
different way.

Before AIX Version 4, shell regular built-in commands were handled along with special
built-in commands. Special built-in commands are: “.”, “:”, break, continue, eval, exec, exit,
export, newgrp, readonly, return, shift, times, trap and typeset.

© Copyright IBM Corporation 2007

Each command line is processed in the following way by the shell:

Alias Expansions

Tilde Expansions

Removal of
Unquoted Quotes

Word Separation

AIX Commands

Shell Commands

Shell Commands

Expand Tracked
Aliases

Command
Substitutions?

Variable & Parameter
Expansions

Pathname Expansion
of Metacharacters

Shell Commands

Regular
Builtins?

Special
Builtins?

Functions?
Yes

Yes

Yes

Yes

I/O Redirection

Command Line Processing
Course materials may not be reproduced in whole or in part
without the prior written permission of IBM.

© Copyright IBM Corp. 2007 Unit 7. Shell Types, Commands, and Functions 7-31

Student Notebook
Figure 7-31. Checkpoint AL321.0

Notes:

Write down your answers here:

1.

2.

3.

4.

5.

6.

7.

8.

9.

© Copyright IBM Corporation 2007

Checkpoint

1. How is an array defined?
2. How do we refer to array elements?
3. How could we set a variable users, to contain the number of

users logged onto the system?
4. How would we write a function to check the readability of a

file?
5. How do we print out the first and last positional parameter?
6. How do we define local variables within a function?
7. How can we list which functions are defined?
8. Which command would allow you to load a library of

functions?
9. How could we create an alias to show how many minutes

have elapsed since the current shell began?
Course materials may not be reproduced in whole or in part
without the prior written permission of IBM.

7-32 Korn and Bash Shell Programming © Copyright IBM Corp. 2007

Student Notebook
V4.1

Uempty
Figure 7-32. Unit Summary AL321.0

Notes:

© Copyright IBM Corporation 2007

Unit Summary
Shell arrays – defining and referencing

Functions

typeset command

autoload functions

Command aliases

Preset aliases

Tracked aliases

The whence command

Command line processing

Command line re-evaluation with eval
Course materials may not be reproduced in whole or in part
without the prior written permission of IBM.

© Copyright IBM Corp. 2007 Unit 7. Shell Types, Commands, and Functions 7-33

Student Notebook
Course materials may not be reproduced in whole or in part
without the prior written permission of IBM.

7-34 Korn and Bash Shell Programming © Copyright IBM Corp. 2007

Student Notebook
V4.1

Uempty
 Unit 8. More on Shell Variables

What this unit is about

This unit describes more uses for variables; replacement, changing
substrings, length operator, and typeset options.

What you should be able to do

After completing this unit, you should be able to:

 • Evaluate substrings
 • Provide default or alternate values for variables
 • Format strings using typeset options

How you will check your progress

Accountability:

 • Checkpoint questions
 • Hands on exercises
Course materials may not be reproduced in whole or in part
without the prior written permission of IBM.

© Copyright IBM Corp. 2007 Unit 8. More on Shell Variables 8-1

Student Notebook
Figure 8-1. Unit Objectives AL321.0

Notes:

© Copyright IBM Corporation 2007

Unit Objectives

After completing this unit, you should be able to:

Use variable replacements

Evaluate variable substrings

Evaluate variable lengths

Understand further typeset options

Use compound variables

Use indirect variables

Use tilde expansions
Course materials may not be reproduced in whole or in part
without the prior written permission of IBM.

8-2 Korn and Bash Shell Programming © Copyright IBM Corp. 2007

Student Notebook
V4.1

Uempty
Figure 8-2. Variable Replacements AL321.0

Notes:

These ${ } forms work in Bourne, Bash, and Korn shells. There are no spaces between
curly braces, variable, special characters or word.

The :- provides a temporary replacement, where := is permanent.

If you omit word from the ${variable:?word} form the Korn shell displays the message
ksh: variable: 0403-040 Parameter null or not set. by default, otherwise ksh: variable: word
results.

The behavior of the ${variable:?word} syntax in functions varies across AIX versions.
In Version 3, a function terminates and returns control to the calling program. Since version
4, the shell Script terminates completely.

The Korn shell allows extended parameter lists, which enable the generated line to exceed
the traditional Bourne shell line length limit of 5120 characters. Variable can be a
number — a positional parameter.

The use of the “:” allows you to decide whether a NULL variable is itself valid or not. A
NULL variable has the value of the null string (usually written “” or '').

© Copyright IBM Corporation 2007

Variable Replacements
Value of variables can be replaced with alternate values

${variable:-WORD} value is WORD if variable is unset (use as a
temporary value)

${variable:=WORD} value is WORD if variable is unset and assigns
word to variable if it is unset (use as a
permanent value)

${variable:+WORD} value is null if variable is unset, else value is
WORD (use as alternate value)

${variable:?WORD} if variable is unset, WORD is displayed on
standard error and the shell script or function
terminates with a non-zero exit code (exit 1)
Course materials may not be reproduced in whole or in part
without the prior written permission of IBM.

© Copyright IBM Corp. 2007 Unit 8. More on Shell Variables 8-3

Student Notebook
Figure 8-3. Variable Replacement Examples AL321.0

Notes:

Remember that the use of a : (colon) means the value of variable may be null. So the
second example only allows a string with characters in the variable date (but maybe not a
valid date string!). In the extra example below, you allow positional parameter 3 to have a
null string value.

Extra example:

To exit the script if positional parameter was not given (it can not be null)

${3?’No third paramter!’}

© Copyright IBM Corporation 2007

Variable Replacement Examples
Some simple examples...

Print date and time using command substitution, or use what was set earlier
(do not allow null date):
print ${date:-$(date)}

To assign the value of TERM_DEF to TERM if it is unset or null:
TERM_DEF=ibm3162
...
print "TERM set as ${TERM:=$TERM_DEF}"

Using the alternate value "1" if variable has a value:
var_flag=${var:+1}

To exit the script if var1 is unset or null
${flag:?"flag is unset"}
Course materials may not be reproduced in whole or in part
without the prior written permission of IBM.

8-4 Korn and Bash Shell Programming © Copyright IBM Corp. 2007

Student Notebook
V4.1

Uempty
Figure 8-4. Shell Substrings AL321.0

Notes:

Patterns can be composed using shell metacharacters.

© Copyright IBM Corporation 2007

In the shell the ${ } syntax also works with patterns:

variable="string match and match again"

##

#
*match

match* %
%%

${variable#pattern} removes smallest matching left
pattern from variable

${variable##pattern} removes the largest matching left
pattern

${variable%pattern} removes the smallest right matching
pattern

${variable%%pattern} removes the largest matching right
pattern

Shell Substrings
Course materials may not be reproduced in whole or in part
without the prior written permission of IBM.

© Copyright IBM Corp. 2007 Unit 8. More on Shell Variables 8-5

Student Notebook
Figure 8-5. Shell Substring Examples AL321.0

Notes:

The function base says take the first parameter to the function and then applies a leftmost
match from the start of the string value. The */ pattern matches up to the last / in the string
or none. The result is to remove any such match leaving the last component of the
pathname.

For those that are curious and have come across old scripts, the utility expr that was seen
earlier can do similar work but it is slower and has a trickier syntax.

© Copyright IBM Corporation 2007

Shell Substring Examples
A bit of chopping...

$ variable="Now is the time"
$ print ${variable#N*i} shortest left
s the time
$ print ${variable##N*i} longest left
me
$ print ${variable%time} shortest right
Now is the
$ print ${variable%%t*e} longest right
Now is
$ _

Here's a function to strip out the file name from its path and print it...
function base
{

print ${1##*/} # match what?
}

Course materials may not be reproduced in whole or in part
without the prior written permission of IBM.

8-6 Korn and Bash Shell Programming © Copyright IBM Corp. 2007

Student Notebook
V4.1

Uempty
Figure 8-6. Shell Substring Quiz AL321.0

Notes:

© Copyright IBM Corporation 2007

print ${name%.c}

function path

{ print ${1%/*} }

Shell Substring Quiz
Now it's your turn...

1. How can I strip the ".c" extension from a C program file name
held in variable "name", and print it?

2. Write a function "path" to print the pathname part of a file name.
-- /usr/local/bin/program
Course materials may not be reproduced in whole or in part
without the prior written permission of IBM.

© Copyright IBM Corp. 2007 Unit 8. More on Shell Variables 8-7

Student Notebook
Figure 8-7. Variable Lengths AL321.0

Notes:

You can regard the # character here as a (sort of) length operator when it appears inside a
variable reference.

© Copyright IBM Corporation 2007

Variable Lengths
A special variant of the ${}syntax can be used to find the length

of a variable:

To find the number of characters in a variable...

${#variable}

The number of positional parameters is...

${#*} or ${#@}

For the number of elements set in an array (not the highest
element subscript)...

${#array[*]} or ${#array[@]}
Course materials may not be reproduced in whole or in part
without the prior written permission of IBM.

8-8 Korn and Bash Shell Programming © Copyright IBM Corp. 2007

Student Notebook
V4.1

Uempty
Figure 8-8. typeset Options Review AL321.0

Notes:

In the last unit we saw the typeset command used to set attributes of variables and
functions and create local variables in function definitions. There are several more options
that allow variables to be formatted upon expansion by the Korn shell. The typeset
command is a Korn shell built-in.

Bash users should use declare instead of typeset, which is obsolete.

© Copyright IBM Corporation 2007

typeset Options Review
typeset command is used to:

– Set attributes for variables or functions
– Create local variables in functions

typeset ±LN variable=value...
where L is... i integer, N is a fixed base

r to set readonly
x to export the variable

typeset ±fL function...
where L is... x to export the function

u for an autoload function
t to set xtrace in the function

- To set attributes, display names and values
+ To unset attributes or display just names
Course materials may not be reproduced in whole or in part
without the prior written permission of IBM.

© Copyright IBM Corp. 2007 Unit 8. More on Shell Variables 8-9

Student Notebook
Figure 8-9. Further typeset Options AL321.0

Notes:

For some systems there are multibyte versions of the Korn shell (using national language
support). There the width refers to the number of columns rather than the number of
characters. The default width is the width of first assignment.

Option Z is identical to RZ.

© Copyright IBM Corporation 2007

*The bash shell does not support these options

Further typeset Options
Options below allow variables to be formatted upon expansion by the

Korn shell:
typeset ±LN variable=value...

where L is...
u convert value to uppercase when expanded

l convert value to lowercase

L left-justify, pad with trailing blanks to width N – if value is too big, truncate
from the right

R right-justify, adding leading blanks to width N– if wider than N, truncate from
the left

LZ left-justify to width N and strip leading zeros

RZ right-justify to width N, adding lead zeros if the first character is a digit
Course materials may not be reproduced in whole or in part
without the prior written permission of IBM.

8-10 Korn and Bash Shell Programming © Copyright IBM Corp. 2007

Student Notebook
V4.1

Uempty
Figure 8-10. typeset Examples AL321.0

Notes:

Extra examples:

$ typeset -L6 text=SIDEWAYS
$ print “${text}=”
SIDEWA=
$ typeset -R6 text=SIDEWAYS
$ print “=$text”
=DEWAYS

© Copyright IBM Corporation 2007

typeset Examples
Here are the different types in action...

$ typeset -u var=upper
$ print $var
UPPER
$ typeset -l var=LOWER # lower case "ell"
$ print $var
lower
$ typeset -L6 text=SIDE
$ print "${text}="
SIDE =
$ typeset -R6 text
$ print "=$text"
= SIDE
$ typeset -LZ4 num=000.1234567
$ print ${num}
.123
$ typeset -RZ5 num=123
$ print $num
00123
Course materials may not be reproduced in whole or in part
without the prior written permission of IBM.

© Copyright IBM Corp. 2007 Unit 8. More on Shell Variables 8-11

Student Notebook
Figure 8-11. Compound Variables in ksh93 AL321.0

Notes:

With compound variables there is a requirement that the parent variable exist (in our
example $time) before individual elements can be set.

The { } are mandatory when printing out an element.

You can also reference variables indirectly using the nameref:

$ var1="Terry Terrell"
$ nameref doctor=var1
$ print $doctor
Terry Terrell
$ print $var1
Terry Terrell

© Copyright IBM Corporation 2007

Compound Variables in ksh93
ksh93 has an additional feature called compound variables, for example:

$ time="10:47:24 EST"
$ time.hour=10; time.minute=47
$ time.seconds=24; time.zone=EST
$ print $time
10:47:24 EST
$ print ${time.hour}
10

- or -
$ time=(hour=10 minute=47 seconds=24 zone=EST)
$ print $time
(hour=10 minute=47 seconds=24 zone=EST)
$ print ${time.zone}
EST
Course materials may not be reproduced in whole or in part
without the prior written permission of IBM.

8-12 Korn and Bash Shell Programming © Copyright IBM Corp. 2007

Student Notebook
V4.1

Uempty
Figure 8-12. Variable Pattern Substitution in bash and ksh93 AL321.0

Notes:

Example 1:

$ print ${PATH/\//\\}
\usr/kerberos/bin:/usr/local/bin:/bin:/usr/bin:$HOME/bin

Example 2:

$ print ${PATH//\//\\}
\usr\kerberos\bin:\usr\local\bin:\bin:\usr\bin:$HOME\bin

Example 3:

$ print ${PATH:47:13}
/home/pat/bin

© Copyright IBM Corporation 2007

Variable Pattern Substitution in bash and ksh93
The bash and ksh93 shells allow for on the fly variable pattern
substitution.

Syntax:

${variable/pattern/newpattern}
If variable contains pattern the first match the of pattern is
replaced with newpattern

${variable//pattern/newpattern}
Same as above syntax, except every match of pattern is replaced

Also:

${variable:offset:length}
Show the substring beginning at offset for length number of
characters
Course materials may not be reproduced in whole or in part
without the prior written permission of IBM.

© Copyright IBM Corp. 2007 Unit 8. More on Shell Variables 8-13

Student Notebook
Figure 8-13. Tilde Expansions AL321.0

Notes:

The use of tilde is not often seen now, though you may see ~userid.

© Copyright IBM Corporation 2007

Tilde Expansions
Following alias expansion the Korn shell checks for a leading unquoted

~ character to see if it is:
~ tilde by itself is replaced by $HOME

~user_name is expanded into the $HOME value for the
user_name given

~other_text will be left alone

Examples...

cd ~ = cd $HOME
lastdir=~- = lastdir=$OLDPWD
johns=~john = johns=/home/john
Course materials may not be reproduced in whole or in part
without the prior written permission of IBM.

8-14 Korn and Bash Shell Programming © Copyright IBM Corp. 2007

Student Notebook
V4.1

Uempty
Figure 8-14. Checkpoint AL321.0

Notes:

Write down your answers here:

1.

2.

3.

© Copyright IBM Corporation 2007

Checkpoint

1. What happens when the variable TMOUT is set and you enter
the following? TMOUT=${TMOUT:-60}

2. What would your prompt say if you were in your bin directory
and you entered this: PS1='${PWD#$HOME/} $'.

3. How could you find out the number of characters in the
variable HOME?
Course materials may not be reproduced in whole or in part
without the prior written permission of IBM.

© Copyright IBM Corp. 2007 Unit 8. More on Shell Variables 8-15

Student Notebook
Figure 8-15. Unit Summary AL321.0

Notes:

© Copyright IBM Corporation 2007

Unit Summary

Variable replacements
– For unassigned/null strings
Variable substrings
– Simple pattern matches
Variable lengths
– The # operator
Further typeset options
– Justification and padding
Tilde expansions
– Shortcuts
Compound variables
– ksh93
Indirect variables
– ksh93
Course materials may not be reproduced in whole or in part
without the prior written permission of IBM.

8-16 Korn and Bash Shell Programming © Copyright IBM Corp. 2007

Student Notebook
V4.1

Uempty
 Unit 9. Regular Expressions and Text Selection
Utilities

What this unit is about

This unit describes regular expressions, and some UNIX text selection
utilities.

What you should be able to do

After completing this unit, you should be able to:

 • Understand and use regular expressions
 • Use grep, cut, and other text selection and manipulation tools

How you will check your progress

Accountability:

 • Checkpoint questions
 • Hands on exercises
Course materials may not be reproduced in whole or in part
without the prior written permission of IBM.

© Copyright IBM Corp. 2007 Unit 9. Regular Expressions and Text Selection Utilities 9-1

Student Notebook
Figure 9-1. Unit Objectives AL321.0

Notes:

© Copyright IBM Corporation 2007

Unit Objectives

After completing this unit, you should be able to:

Use regular expressions

Use the grep command

Use the tr command

Use the cut command

Use the paste command
Course materials may not be reproduced in whole or in part
without the prior written permission of IBM.

9-2 Korn and Bash Shell Programming © Copyright IBM Corp. 2007

Student Notebook
V4.1

Uempty
Figure 9-2. Sample Data File AL321.0

Notes:

The phone.list file will be used in examples on following pages. There is a single space
character after the comma following the Lastname.

Can you tell what separates the firstname from the phone number? Is it a tab? Is it spaces?
Use “cat -vet phone.list” to find out.

© Copyright IBM Corporation 2007

To manipulate data, we need to know its format.
The data file we will use in this unit has the following structure:

Lastname,<Space>Firstname<Tab>nnn-mmmm

$ cat phone.list
Terrell, Terry 617-7989
Franklin, Francis 704-3876
Patterson, Pat 614-6122
Robinson, Robin 411-3745
Christopher, Chris 305-5981
Martin, Marty 814-5587
Llewellyn, Lynn 316-6221
Jansen, Jan 903-3333
Llewellyn, Lee 817-8823
$ _

Sample Data File
Course materials may not be reproduced in whole or in part
without the prior written permission of IBM.

© Copyright IBM Corp. 2007 Unit 9. Regular Expressions and Text Selection Utilities 9-3

Student Notebook
Figure 9-3. Regular Expressions AL321.0

Notes:

You will find the regular expression feature is part of many programs such as in editors and
in pattern matching utilities (we see later in this unit). The principles and uses of regular
expressions (often abbreviated to RE) appear in many places in AIX and UNIX systems.
Once you have grasped the essential techniques you will find that they can be used over
and over again.

An RE is just that — an expression that represents a pattern of text. Such an expression
can contain simple sequences of characters or more complex sequences that use special
characters (metacharacters) to describe more complex patterns of text.

© Copyright IBM Corporation 2007

Regular Expressions

Powerful feature available in many programs

Used to select text in:
– vi, ex, emacs, grep/egrep, sed, awk, perl

What are RegExes?
– An expression representing a pattern of characters

– Contain a sequence of characters/metacharacters
Course materials may not be reproduced in whole or in part
without the prior written permission of IBM.

9-4 Korn and Bash Shell Programming © Copyright IBM Corp. 2007

Student Notebook
V4.1

Uempty
Figure 9-4. Regular Expression Metacharacters AL321.0

Notes:

The shell interprets metacharacters differently from AIX operating system commands.

You may also use the [:class:] named classes from POSIX and the shell. For example, for
any digit you can use [[:alpha:]], [[:blank:]], [[:cntrl:]], [[:digit:]], [[:lower:]], [[:upper:]],
[[:punct:]], [[:space:]], and [[:alnum:]]

You may also use [A-Za-z] to mean choose ONE character: either an uppercase or
lowercase letter.

© Copyright IBM Corporation 2007

Pattern Matches

alphanumeric
character

The character itself (not really
a metacharacter)

. (period) Any single character

[AZ] One of A or Z

[^AZ] Any character not A or Z

[A-Z] Any character in range A to Z

[-AZ] One of -, A or Z

[0-9] Any digit 0 to 9

Regular Expression Metacharacters
Course materials may not be reproduced in whole or in part
without the prior written permission of IBM.

© Copyright IBM Corp. 2007 Unit 9. Regular Expressions and Text Selection Utilities 9-5

Student Notebook
Figure 9-5. Extending the Pattern AL321.0

Notes:

Two other metacharacters used within regular expressions specify position in the line of the
character(s). The caret “^”specifies the beginning of the line; “^t” says any line starting with
a t. The $ specifies the end of the line; 7$ says match any lines that end with a 7.

You can also get wildcard effects by extending the pattern with multipliers. The most
common are the use of * and quoted braces. The next page deals with braces.

You find the other multipliers in programs that have an extended RE syntax such as egrep,
awk and perl.

The * in the shell expands differently than the * for grep. Here is an example of grep’s *:

grep ‘bugs*’ file1

This would match: bug, bugs, bugsss, bugssss, and so forth. The * means 0 or more “s” in
this example.

When used in a regular expression, the "*" says match zero or more of the previous
character. A dot (.) means any single character so to match one or more occurrences of
any character use ".*" as the regular expression.

© Copyright IBM Corporation 2007

Extending the Pattern
Two ways:

Anchors
Multipliers

Anchors are
^ Matches beginning of line
$ Matches end of line

Multipliers apply to patterns. They are:
* zero or more occurrences of previous pattern
? zero or one occurrence of previous pattern
+ one or more occurrences of previous pattern
{m,n} at least m and no more than n occurrences of

previous pattern ("quoted braces")
Course materials may not be reproduced in whole or in part
without the prior written permission of IBM.

9-6 Korn and Bash Shell Programming © Copyright IBM Corp. 2007

Student Notebook
V4.1

Uempty
Figure 9-6. Simple Regular Expression Examples AL321.0

Notes:

Notice the last example. This is looking for lines that have 0 or more n’s on the line. This
matches every line in the phone.list. Notice how the “*” is expanded differently by grep then
by the shell.

© Copyright IBM Corporation 2007

Simple Regular Expression Example
What would the following match?

grep '^[M-Z]' phone.list

grep '^[^M-Z]' phone.list

grep '^L.*3$' phone.list

grep '^P.tt' phone.list

grep 'n*' phone.list
Course materials may not be reproduced in whole or in part
without the prior written permission of IBM.

© Copyright IBM Corp. 2007 Unit 9. Regular Expressions and Text Selection Utilities 9-7

Student Notebook
Figure 9-7. Quoted Braces AL321.0

Notes:

We shall see more on the grep command later in this unit. Quoted braces offer a more
specific wild-card than the asterisk.

\{min,max\}
This will search for lines which contain between the minimum and maximum number of the
previous RE in a sequence.

\{min\}
Here an exact number of repeats are specified, as the maximum number is omitted.

\{min,\}
Here the minimum number is set, there is no maximum number, it is equivalent to looking
for at least "min" repeats.

The single regular expression preceding quoted braces can be regular characters or a
pattern of metacharacters. Further characters or patterns will be matched in the usual way:

© Copyright IBM Corporation 2007

Quoted Braces
To specify the number of consecutive occurrences

Syntax 1: regular_expression\{min, max\}

To look for two, three or four occurrences of any combination of the characters 3, 4
and 5 consecutively
grep '[345]\{2,4\}' phone.list

Syntax 2: regular_expression\{exact\}

To look for any lines which have two consecutive "r" characters
grep 'r\{2\}' phone.list

Syntax 3: regular_expression\{min,\}

To look for any lines with at least two consecutive "r" characters preceded by an "e"
grep 'er\{2,\}' phone.list
Course materials may not be reproduced in whole or in part
without the prior written permission of IBM.

9-8 Korn and Bash Shell Programming © Copyright IBM Corp. 2007

Student Notebook
V4.1

Uempty
Figure 9-8. Quoted Parentheses AL321.0

Notes:

Quoted parentheses store characters from the input line to use as patterns to match
against other characters from the input line. If you want to know whether the first two
characters on the line are the same, but you don't know what the first character is, quoted
parentheses allow the first character to be read into a buffer (or register) and then the
second character to be compared with the buffer's contents.

"\(.\)"matches any single character and puts it into register "\1". So the pattern
"\(.\)\1" identifies a two-character sequence where both characters are the same.

© Copyright IBM Corporation 2007

Quoted Parentheses
To capture the result of a pattern:

Syntax: \(regular expression\)

Stores the character(s) that match the regular expression (within parentheses) in a
register.

Nine registers are available; characters which match the first quoted parentheses
are stored in register one, those that match the second quoted parentheses in
register two, and so forth.

To reference a register use a backslash followed by a register number:

\1 to \9

For example, to list any lines in "phone.list" where there are two identical characters
together...

grep '\(.\)\1' phone.list
Course materials may not be reproduced in whole or in part
without the prior written permission of IBM.

© Copyright IBM Corp. 2007 Unit 9. Regular Expressions and Text Selection Utilities 9-9

Student Notebook
Figure 9-9. Regular Expressions — Quiz AL321.0

Notes:

Regular expressions may be quoted so that the shell does not interpret the
metacharacters.

© Copyright IBM Corporation 2007

'^[A-z]\{6\}, '

'^[ABC]'

', [A-z]\{4,\}'

'\([0-9]\)-\1'

Regular Expressions – Quiz
Using the "phone.list" file, what RE gives:

1. People with six-letter surnames?

2. People with first names of at least four characters?

3. All entries where the number before the dash is the same as that
after the dash for example 3-3456?

4. People whose surnames begin with A, B or C?
Course materials may not be reproduced in whole or in part
without the prior written permission of IBM.

9-10 Korn and Bash Shell Programming © Copyright IBM Corp. 2007

Student Notebook
V4.1

Uempty
Figure 9-10. grep command AL321.0

Notes:

The grep command (g/re/p) searches for the specified pattern from STDIN and displays to
STDOUT. The search can be for simple strings or regular expressions.

There are other greps in the family:

fgrep only fixed string allowed

egrep allows multiple (either | or) patterns (can also use grep -E)

Historically, early greps did not allow quoted “\” parentheses or braces. Only egrep
understood the extended syntax.

The -q option is also helpful in grep. It works quietly. It will not display any matching lines,
but does retain a 0 return code if it finds a matching line.

© Copyright IBM Corporation 2007

grep Command
Search files or standard input for lines containing a match for a specific
pattern

grep [options] pattern [filel file2 . . .]

Valid options:

-c print only a count of matching lines
-i ignore the case of letters when making comparisons
-l list only the names of the files with matching lines
-n number the matching lines
-s works silently, does not display error messages
-v print lines that do NOT match
-w do a whole word search
Course materials may not be reproduced in whole or in part
without the prior written permission of IBM.

© Copyright IBM Corp. 2007 Unit 9. Regular Expressions and Text Selection Utilities 9-11

Student Notebook
Figure 9-11. grep Examples AL321.0

Notes:

1. In a file called phone.list in the current directory, search for the string 'tech support' and
display to STDOUT. The -i will allow grep to find the string whether the letters are
uppercase or lowercase. This command will not find technical support or support line.

2. This will search the /etc/passwd file and find bob and display that line.

3. Find any processes that were started by the user named chris — but will also find any
command with the same string, that is, mail chris < letter.

4. Display only directories in the current directory.

5. Creates a new file that includes all the /etc/passwd information and numbers the lines.

6. Find a line that includes either gene or jean and display to STDOUT.

© Copyright IBM Corporation 2007

$ grep -i "tech support" phone.list

$ grep bob /etc/passwd

$ ps -ef | grep chris

$ ls -l | grep '^d'

$ grep -n '.*' /etc/passwd > \

> passwd.file.numbered.lines

$ egrep 'gene|jean' /etc/passwd

grep Examples
Course materials may not be reproduced in whole or in part
without the prior written permission of IBM.

9-12 Korn and Bash Shell Programming © Copyright IBM Corp. 2007

Student Notebook
V4.1

Uempty
Figure 9-12. tr For Translations AL321.0

Notes:

There are two versions of the tr command supplied by AIX: the AIX version /usr/bin/tr
(explained above), and a BSD version /usr/ucb/tr which uses slightly different syntax. The
AIX flavor /usr/bin/tr, will be the one obtained by a default PATH. The BSD version pads a
short LISTOUT to the same length as LISTIN using the last character of LISTOUT.

Note that tr does not allow filename arguments.

tr does not require the brackets in [a-z], and does recognize most \<char> sequences.

© Copyright IBM Corporation 2007

The tr command translates one set of characters into another:

tr LISTIN LISTOUT < in_file > out_file

– or -

tr -d LISTIN < in_file > out_file

Characters in LISTIN are replaced by the corresponding ones in LISTOUT

If LISTOUT contains fewer characters than LISTIN ignores extra ones from
LISTIN

If LISTOUT contains more characters than LISTIN ignores extra ones from
LISTOUT

With -d, characters in LISTIN are deleted

Only works with STDIN and STDOUT
The -s option squeezes multiple characters in a row into one character

tr For Translations
Course materials may not be reproduced in whole or in part
without the prior written permission of IBM.

© Copyright IBM Corp. 2007 Unit 9. Regular Expressions and Text Selection Utilities 9-13

Student Notebook
Figure 9-13. tr Examples AL321.0

Notes:

Translate does a character by character translation. For example, print “dad and mom” | tr
‘dad’ ‘mom’ does not say translate dad to mom, it says to translate d to m, a to o, and d to
m. The result to the screen would be “mom onm mom”. The -s option, in the above
example, squeezes multiple “r”s in a row into 1 r.

© Copyright IBM Corporation 2007

tr Examples
Some simple translations...

$ print $HOME | tr "/" "-"
-home-team01
$ print "{ { [...] } }" | tr "{}" "()"
(([...]))
$ print "Lower to upper" | tr "[a-z]" "[A-Z]"
LOWER TO UPPER
$ print "TOP DOWN" | tr '[:upper:]' '[:lower:]'
top down
$ print "vowels and consonants" | tr -d 'aeiou'
vwls nd cnsnnts
$ tr -d '\015' < dos_txt_file > aix_txt_file
$ print 'Lynn Llewellynn' | tr -s "ln"
Lyn Lewelyn
$ _
Course materials may not be reproduced in whole or in part
without the prior written permission of IBM.

9-14 Korn and Bash Shell Programming © Copyright IBM Corp. 2007

Student Notebook
V4.1

Uempty
Figure 9-14. The cut Command AL321.0

Notes:

The cut command is provided by the AIX operating system. Standard input can be used in
place of a named file. The default delimiter is TAB.

© Copyright IBM Corporation 2007

cut extracts fields or columns from text input

cut -dS -s -flist [file]

or

cut -cLIST [file]

-dS where S is the character to take as a delimiter
(<Tab> is default)

-s with -d s suppresses lines that do not contain delimiters
-fLIST specifies a LIST of fields to cut out and keep
-cLIST is a LIST of columns to cut (character positions)
LIST - specifies field or column numbers

- may contain comma separated values
(m,n) or a range (m-n)

The cut Command
Course materials may not be reproduced in whole or in part
without the prior written permission of IBM.

© Copyright IBM Corp. 2007 Unit 9. Regular Expressions and Text Selection Utilities 9-15

Student Notebook
Figure 9-15. cut Examples AL321.0

Notes:

A "-" by itself at the start of a range means from the first column or field; at the end of a
range it means to the end of the line.

© Copyright IBM Corporation 2007

cut Examples
Field numbering starts at 1

$ cut -d: -f1,3,4 /etc/passwd | head -3
root:0:0
daemon:1:1
bin:2:2
...
robin:0:0 What could this mean?
$ _
$ df | cut -c-12,35-41 | sort
/dev/hd1 4%
/dev/hd10opt 55%
/dev/hd2 95%
/dev/hd3 6%
/dev/hd4 39%
...
$ _
Course materials may not be reproduced in whole or in part
without the prior written permission of IBM.

9-16 Korn and Bash Shell Programming © Copyright IBM Corp. 2007

Student Notebook
V4.1

Uempty
Figure 9-16. What If There Is No Common Delimiter? AL321.0

Notes:

Hint: First, do a regular df to become familiar with the output. Notice there is not a common
delimiter. Use tr -s to squeeze spaces down to one space, and then use cut and declare
your delimiter between fields to be one space.

© Copyright IBM Corporation 2007

1. df | tr -s " " | cut -d " " -f4,7

2. df | cut -c35-40,56-

What If There Is No Common Delimiter?
Using tr -s and cut -d, have the output from the df command only
show %used and mount point

Using only cut -c, have the output from the df command only show
%used and mount point

We will do this again later using awk
Course materials may not be reproduced in whole or in part
without the prior written permission of IBM.

© Copyright IBM Corp. 2007 Unit 9. Regular Expressions and Text Selection Utilities 9-17

Student Notebook
Figure 9-17. The paste Command AL321.0

Notes:

The paste command is complementary to the cut command. It assembles files into a single
multicolumn file — each column formed from a named file. The dlist characters are inserted
as delimiting characters — either one character that is used to separate all columns, or a
list that will be used sequentially — one character for each column join. You may use the
print special characters to represent a newline, <Tab>, and so forth:

paste -dS file1 file2 ... > joined_file

Print a three column listing of .ksh files:

ls *.ksh | paste - - -

Format a listing in three columns using <Tab> <Tab> <Newline> as delimiters

ls *.ksh | paste -d"\t\t\n" -s -

Paste cars1 and cars4 together paste cars1 cars4

In order to paste 1 file on top of another file, use the “cat” command.

cat file1 file2 > joined-file

© Copyright IBM Corporation 2007

The paste Command
As name suggests, paste sticks or merges things together

Commonly used to create or format a data stream

Default output is
line from file1 <Tab> line from file2

Separators may be changed on command line

Options:
-d [dlist] the delimiter between files (may be a list)
-s make the output a single line in each file
Course materials may not be reproduced in whole or in part
without the prior written permission of IBM.

9-18 Korn and Bash Shell Programming © Copyright IBM Corp. 2007

Student Notebook
V4.1

Uempty
Figure 9-18. Checkpoint AL321.0

Notes:

Write down your answers here:

1.

2.

3.

4.

5.

6.

7.

© Copyright IBM Corporation 2007

Checkpoint

1. What Reg Ex can you use to select surnames?
2. What regular expression can you use to select text with

repeated characters in the surname?
3. What command can you use to select lines in phone.list with

four character first names?
4. How could you count the number of processes whose PIDs

are in the range 1000-9999?
5. How would you convert spaces to a tab in phone.list?
6. What would this next command accomplish?

cut -d: -f1,3,4 /etc/passwd
7. Using the paste command, output the /etc/passwd file so

that each line of information is separated by a tab and so that
the fifth, sixth and seventh fields are on a separate line from
the others. (Hint: make each field a line.)
Course materials may not be reproduced in whole or in part
without the prior written permission of IBM.

© Copyright IBM Corp. 2007 Unit 9. Regular Expressions and Text Selection Utilities 9-19

Student Notebook
Figure 9-19. Unit Summary AL321.0

Notes:

Answers to quizzes in Unit:
“Simple regular expressions”

1. Matches all lines that start with a capital M through capital Z.

2. Matches all lines that Don’t start with a capital M through capital Z.

3. Matches lines that start with a capital L, followed by 0 or more characters, and ends with
a 3. (Lee Llewellyn)

4. Matches lines that start with a capital T, followed by one character, followed by 2 r’s.
(Terry Terrell)

5. Matches lines that have 0 or more n’s in a row. (all lines in phone.list)

“Regular Expressions quiz”

1. grep '^[A-z]\{6\}, ' phone.list

2. grep', [A-z]\{4,\}' phone.list

© Copyright IBM Corporation 2007

Unit Summary

Understanding regular expressions

Using the grep command to select text

Using the tr command to translate characters

Using the cut command to select text fields

Using the paste command to merge data streams
Course materials may not be reproduced in whole or in part
without the prior written permission of IBM.

9-20 Korn and Bash Shell Programming © Copyright IBM Corp. 2007

Student Notebook
V4.1

Uempty
“What if there is no common delimiter?”

1. df | tr -s “ “ | cut -d “ “ -f4,7

2. df | cut -c35-40,56-

3. grep '\([0-9]\)-\1' phone.list

4. grep '^[ABC]' phone.list
Course materials may not be reproduced in whole or in part
without the prior written permission of IBM.

© Copyright IBM Corp. 2007 Unit 9. Regular Expressions and Text Selection Utilities 9-21

Student Notebook
Course materials may not be reproduced in whole or in part
without the prior written permission of IBM.

9-22 Korn and Bash Shell Programming © Copyright IBM Corp. 2007

Student Notebook
V4.1

Uempty
 Unit 10.The sed Utility

What this unit is about

This unit describes how the sed utility manipulates data.

What you should be able to do

After completing this unit, you should be able to:

 • Use sed to edit file contents
 • Understand sed advanced features

How you will check your progress

Accountability:

 • Checkpoint questions
 • Hands-on exercises
Course materials may not be reproduced in whole or in part
without the prior written permission of IBM.

© Copyright IBM Corp. 2007 Unit 10. The sed Utility 10-1

Student Notebook
Figure 10-1. Unit Objectives AL321.0

Notes:

© Copyright IBM Corporation 2007

Unit Objectives

After completing this unit, you should be able to:

Use the stream edit utility – sed

– Line selection

– Substitution

– Delete

– Print

– Append, insert, and change

– Multiple editing

– And more
Course materials may not be reproduced in whole or in part
without the prior written permission of IBM.

10-2 Korn and Bash Shell Programming © Copyright IBM Corp. 2007

Student Notebook
V4.1

Uempty
Figure 10-2. sed AL321.0

Notes:

The sed command can be invoked in a number of ways. The sed command takes its input
from standard input unless a filename is specified on the command line; it writes its output
to standard output. Thus sed is a filter and can be used within a pipe.

The output of sed can be redirected to a file; a word of warning, never try to redirect the
output of sed back to the original input file as this is not supported by the shell and due to
the order in which the shell processes the command line, you will end up losing the original
contents of the input file.

The edit instructions can be provided on the command line, or in an ASCII file if sed is
invoked with the -f option.

© Copyright IBM Corporation 2007

There are several ways of running sed:

sed 'edit-instructions' filename

command | sed 'edit-instructions'

sed -f command.file filename

Note: The input file is not changed or overwritten by sed!

stream editor

requested
editsstandard input standard output

0 1

sed
Course materials may not be reproduced in whole or in part
without the prior written permission of IBM.

© Copyright IBM Corp. 2007 Unit 10. The sed Utility 10-3

Student Notebook
Figure 10-3. Line Selection AL321.0

Notes:

Regular expressions used for line selection must be delimited by the '/' character.

© Copyright IBM Corporation 2007

Line Selection
The sed instructions operate on all lines of the input, unless you specify a SELECTION of

lines:
sed 'SELECTION edit-instructions'

SELECTION can be
A single line number
1 = line 1 of the input
$ = the last line of the input

A range of line numbers
5,$ = from line 5 to the end of the input

A regular expression to select lines matching a pattern
/string/ = selects all lines containing "string"

A range using regular expressions
/^on/,/off$/ = from the first line beginning with "on" to the first ending in

"off"
Course materials may not be reproduced in whole or in part
without the prior written permission of IBM.

10-4 Korn and Bash Shell Programming © Copyright IBM Corp. 2007

Student Notebook
V4.1

Uempty
Figure 10-4. The Substitute Instruction AL321.0

Notes:

The data file phone.list is same as that in Unit 9.

A “\” can be used to escape any special meanings of characters in your strings or
addresses, that is, “\.” is a dot, and “\&” a literal ampersand.

In addition to the “g”, you can specify that the nth occurrence is to be replaced by putting a
number “n” in place of the “g”.

To precede each phone number with "Tel:"

 sed '/[0-9]\{3\}-[0-9]\{4\}/s//Tel: &/g' phone.list

The “&” is used to redisplay what was previously matched in the SELECTION.

© Copyright IBM Corporation 2007

The Substitute Instruction
This instruction changes data:

Syntax: s/old string/new string/

Some examples

1. To replace the first occurrence of "Smith" on each line with "Smythe"
sed 's/Smith/Smythe/' phone.list

2. To replace the same as above using a different delimiter
sed 's!Smith!Smythe!g' phone.list

3. To replace every match in a line, add the "global"
print xxx | sd 's/x/y/' # responds with yxx
print xxx | sd 's/x/y/g' # responds with yyy
print xxx | sd 's/x/y/2' # responds with xyx
Course materials may not be reproduced in whole or in part
without the prior written permission of IBM.

© Copyright IBM Corp. 2007 Unit 10. The sed Utility 10-5

Student Notebook
Figure 10-5. Substitutions - Quiz AL321.0

Notes:

© Copyright IBM Corporation 2007

[0-9]+-[0-9]+

^.*,<Space>

Substitutions - Quiz
1. Convert the "phone.list" into just a name list, that is, get rid of the phone

numbers

Desired output:
Terrell, Terry
Franklin, Francis
Patterson, Pat
..., ...

sed 's/___________________//' phone.list

2. Convert the "phone.list" file to a first-name and number list

Desired output:
Terry 617-7989
Francis 704-3876
Pat 614-6122
... ...

sed 's/___________________//' phone.list
Course materials may not be reproduced in whole or in part
without the prior written permission of IBM.

10-6 Korn and Bash Shell Programming © Copyright IBM Corp. 2007

Student Notebook
V4.1

Uempty
Figure 10-6. sed with Quoted Parentheses AL321.0

Notes:

© Copyright IBM Corporation 2007

Now it's your turn...
Working on the "phone.list" file, abbreviate everyone's first name to an
initial and a period (use register 1 to store each initial)

sed 's/______________/__________/' phone.list

any single
character to
register 1

register 1 is
repeated

character to
register 1 character to

register 2

registers
1 and 2

, \(.\).*<Tab> , \1.<Tab>

's/\(.*\), \(.\).*<Tab>/\2. \1 / '

sed with Quoted Parentheses

Repeating the first character
$ print "1234" | sed 's/^\(.\)/\1\1/' 11234
$ _

Stripping out all but the first and last characters
$ print "1234"|sed 's/^\(.\).*\(.\)$/\1\2/' 14
$ _
Course materials may not be reproduced in whole or in part
without the prior written permission of IBM.

© Copyright IBM Corp. 2007 Unit 10. The sed Utility 10-7

Student Notebook
Figure 10-7. Delete and Print AL321.0

Notes:

 • Delete the last line of output

$ sed '$d' phone.list'

 • To remove any blank lines

$ sed '/^$/d' phone.list

Print is of more use with the -n option — to suppress normal printing of input lines, and only
print a SELECTION

$ sed -n in.file #select all lines
line 1
line 2
$ sed -n '/2/p' in.file #select lines with a “2”
line 2
$ _

© Copyright IBM Corporation 2007

This command removes text:
Syntax: SELECTIONd

To delete all lines in the output stream:
$ sed d phone.list

Delete from line 5 to the end of the file:
$ sed '5,$d' phone.list

By default sed writes out every line it selects
–Makes print instruction "p" by itself redundant:

$ cat in.file
line 1
line 2
$ sed p in.file
line 1
line 1
line 2
line 2
$ _

Delete and Print
Course materials may not be reproduced in whole or in part
without the prior written permission of IBM.

10-8 Korn and Bash Shell Programming © Copyright IBM Corp. 2007

Student Notebook
V4.1

Uempty
Figure 10-8. Append, Insert, and Change AL321.0

Notes:

SELECTIONS can be:
 • line number
 • regular expression
 • range of lines

Example ...

$ sed '1a\
> Add after line 1 of the input' in.file

Line 1
Add after line 1 of the input
Line 2
$ _

© Copyright IBM Corporation 2007

Append, Insert, and Change
These instructions add or modify text

Syntax: SELECTIONx\
text

Where x is

i inserts text before a single selected line

a appends text after a matched line

c changes a range of matched lines into text
SELECTION can be a single line or a range
but only one copy of text is printed in its place
Course materials may not be reproduced in whole or in part
without the prior written permission of IBM.

© Copyright IBM Corp. 2007 Unit 10. The sed Utility 10-9

Student Notebook
Figure 10-9. Command Files AL321.0

Notes:

It is sometimes useful to add an extension to a script to denote the type of its contents. You
have seen the use of .ksh for script files; here we adhere to the same convention and use
.sed for our sed scripts.

© Copyright IBM Corporation 2007

Command Files
A sed command file consists of one or more sed instructions on separate
lines

Command files are useful in many situations:

– Storing multiple instructions
– Storing a long complex command
– For commands which may need to be modified and reused
Use the -f option to use a command file

Example...
$ cat sedscript.sed
s/ GA/, Georgia/
s/ FL/, Florida/
s/ IL/, Illinois/
s/ TX/, Texas/
s/ MD/, Maryland/
s/ DC/, District of Columbia/

$ sed -f sedscript.sed addrs.file > new.addrs.file
$ _
Course materials may not be reproduced in whole or in part
without the prior written permission of IBM.

10-10 Korn and Bash Shell Programming © Copyright IBM Corp. 2007

Student Notebook
V4.1

Uempty
Figure 10-10. A Practical Example AL321.0

Notes:

© Copyright IBM Corporation 2007

A Practical Example
Converting a "BookMaster" script to a "wysiwyg" file
:ul.
:li.An unordered list starts with ":ul.".
:li.Each list item is tagged with ":li." - it
appears as an indented bullet point.
:li.The end of the list is marked by ":eul."
:eul.

Strategy:
1 Remove lines which contain just ":ul." or ":eul."
2 For lines that start with ":li.", substitute the ":li." with a dash followed by five spaces
$ cat bkm.wysi.sed
/^:e*ul\.$/d
s/^:li\./- /
$ sed -f bkm.wysi.sed bookmaster.file > wysi.file
$ cat wysi.file
- An unordered list starts with ":ul.".
- Each list item is tagged with ":li," - it

appears as an indented bullet point.
- The end of the list is marked by ":eul."
Course materials may not be reproduced in whole or in part
without the prior written permission of IBM.

© Copyright IBM Corp. 2007 Unit 10. The sed Utility 10-11

Student Notebook
Figure 10-11. Multiple Editing Instructions AL321.0

Notes:

Why did Terry get Bldng2 and Francis get Bldng1?

Hint: Look at the number in front of the dash in the phone number.

© Copyright IBM Corporation 2007

Multiple Editing Instructions
Multiple instructions can be applied to each line

Each instruction must be on a separate line

Example:

$ sed '/[1-4]-/s/$/ (Bldng 1) /
> /[5-9]-/s/$/ (Bldng 2) /' phone.list

Terrell, Terry 617-7989 (Bldng 2)
Franklin, Francis 704-3876 (Bldng 1)
Course materials may not be reproduced in whole or in part
without the prior written permission of IBM.

10-12 Korn and Bash Shell Programming © Copyright IBM Corp. 2007

Student Notebook
V4.1

Uempty
Figure 10-12. Internal Operation AL321.0

Notes:

The command is:

$ print “The Unix System” | sed ‘s/Unix/UNIX/ \
> s/UNIX System/UNIX Operating System/’
The UNIX Operating system

© Copyright IBM Corporation 2007

sed applies all editing instructions to a line before it moves on to the
next line.
It holds each input line in a "pattern space" or temporary buffer while
editing instructions are applied in sequence.

Input
The UNIX System

Output
The UNIX Operating System

The pattern space

The UNIX System

The UNIX System

The UNIX Operating System

s/Unix/UNIX/

s/UNIX System/UNIX Operating System/

Internal Operation
Course materials may not be reproduced in whole or in part
without the prior written permission of IBM.

© Copyright IBM Corp. 2007 Unit 10. The sed Utility 10-13

Student Notebook
Figure 10-13. Grouping Instructions AL321.0

Notes:

Here is the contents of myfile:

philadephia 1
dc 2
start 3
dc 4
philly 5
dc 6
nyc 7
dc 8
end 9
dc 10

Suppose we ran the following command:

sed ‘/start/,/end/{ /philly/,/nyc/s/dc/district/g }’ myfile

Which “dc” or “dc”s would change to “district”? (Answer is on summary page)

© Copyright IBM Corporation 2007

/\.ul/,/\.eul/{
/^$/d
/:li\./- /
}

Braces "{" "}" are used for two purposes:

One SELECTION inside another (nest)

To apply multiple instructions to the same SELECTION range (group)

Example...

The instruction "/^$/d" (delete blank lines) will be applied to a range of
lines between one that contains an ".ul" and up to the first containing an
".eul", as will the "/:li\./- /"

The special meaning of the dot preceding "ul" and "eul" is escaped by the
use of a backslash

SELECTION
range

instructions for the
SELECTION range

Grouping Instructions
Course materials may not be reproduced in whole or in part
without the prior written permission of IBM.

10-14 Korn and Bash Shell Programming © Copyright IBM Corp. 2007

Student Notebook
V4.1

Uempty
Figure 10-14. Checkpoint AL321.0

Notes:

Write down your answers here:

1.

2.

3.

4.

© Copyright IBM Corporation 2007

Checkpoint

1. Write a command line script that displays a ps -ef with your
username as the owner of init.

2. How can I make phone.list appear double spaced?

3. Cat out the sulog (located in /var/adm/sulog) and change
all + to the word "successful" and all - to the word
"unsuccessful" using sed.

4. Using sed, insert #!/usr/bin/ksh as the first line of a
program called program1 and store in program2.
Course materials may not be reproduced in whole or in part
without the prior written permission of IBM.

© Copyright IBM Corp. 2007 Unit 10. The sed Utility 10-15

Student Notebook
Figure 10-15. Unit Summary AL321.0

Notes:

Answers to quizzes in unit:

“Substitutions quiz”

1. sed ‘s/[0-9]\{3\}-[0-9]\{4\}//’phonelist
2. sed ‘s/.*, //’phone.list

“sed with quoted parenthesis”

1. sed ‘s/, \(.\).* /, \1. /’phone.list

“Grouping instructions”

1. The ‘dc’s on line 6 would change to ‘district’

© Copyright IBM Corporation 2007

Unit Summary

Use of sed to automate repetitive editing tasks

– Line selection

– Substitution

– Delete

– Print

– Append, insert, and change

– Multiple editing

– And more
Course materials may not be reproduced in whole or in part
without the prior written permission of IBM.

10-16 Korn and Bash Shell Programming © Copyright IBM Corp. 2007

Student Notebook
V4.1

Uempty
 Unit 11.The awk Program

What this unit is about

This unit describes how to use and program in awk.

What you should be able to do

You should be able to:

 • Use awk to generate formatted output from input files
 • Create and use a simple awk script
 • Be aware of the more advanced and powerful features of awk

programming that are available

How you will check your progress

Accountability:

 • Checkpoint questions
 • Hands-on exercises
Course materials may not be reproduced in whole or in part
without the prior written permission of IBM.

© Copyright IBM Corp. 2007 Unit 11. The awk Program 11-1

Student Notebook
Figure 11-1. Unit Objectives AL321.0

Notes:

© Copyright IBM Corporation 2007

Unit 11 Objectives -- The awk Program

After completing this unit, you should be able to use the awk
utility by looking at:
Regular expressions in awk
Basic awk programming
BEGIN and END processing
Flow control – if, while and for
Leaving loops – continue, next and exit
awk arrays
Better printing
awk functions
Course materials may not be reproduced in whole or in part
without the prior written permission of IBM.

11-2 Korn and Bash Shell Programming © Copyright IBM Corp. 2007

Student Notebook
V4.1

Uempty
Figure 11-2. What Is Awk? AL321.0

Notes:

awk is sometimes called a report generator tool.

awk program text may be thought of as a data driven program.

There are at least three major implementations of awk in the field:

 • Original (Bell Labs) awk and its updated nawk

 • GNU awk - the Free Software Foundation Implementation

 • Vendor specific versions, usually based in POSIX

It is best to consult your documentation to discover which is in use. They have very slight
differences.

© Copyright IBM Corporation 2007

What Is Awk?
awk is a programming language used to manipulate text

awk sees data as words (fields) in a line (record)

An awk command consists of a pattern and an action comprising
one or more statements

awk '/pattern/ { action }' file ...

awk tests every record in the specified file(s) for a pattern match. If
a match is found, the specified action is performed

awk can act as a filter in a pipeline or take input from the keyboard
(standard input) if no file(s) are specified
Course materials may not be reproduced in whole or in part
without the prior written permission of IBM.

© Copyright IBM Corp. 2007 Unit 11. The awk Program 11-3

Student Notebook
Figure 11-3. Sample Data - awk AL321.0

Notes:

The phone.list file will be used again. There is a single space character after the comma
and a tab after the Firstname.

© Copyright IBM Corporation 2007

Lastname,<Space>Firstname<Tab>nnn-mmmm

$ cat phone.list
Terrell, Terry 617-7989
Franklin, Francis 704-3876
Patterson, Pat 614-6122
Robinson, Robin 411-3745
Christopher, Chris 305-5981
Martin, Marty 814-5587
Llewellyn, Lynn 316-6221
Jansen, Jan 903-3333
Llewellyn, Lee 817-8823
$ _

The same file is used in the RE and sed units

Sample Data – awk
Course materials may not be reproduced in whole or in part
without the prior written permission of IBM.

11-4 Korn and Bash Shell Programming © Copyright IBM Corp. 2007

Student Notebook
V4.1

Uempty
Figure 11-4. awk Regular Expressions AL321.0

Notes:

In this example, the “|” symbol is optional.

The programming language Perl has similar extensions.

© Copyright IBM Corporation 2007

awk Regular Expressions
Like sed, regular expressions are "/" delimited – "/x/"

All of the previous regular expression metacharacters can be used with
awk

awk has the following extensions

/x+/ for one or more occurrences of x
/x?/ zero or one occurrence of x
/x|y/ matches either "x" or "y"
(string) groups a string – for use with + or ?

Example:

/t[i|o]?n[iey]+/
matches: tiny, tony, toni, toney, tone, tny (and others...)
Course materials may not be reproduced in whole or in part
without the prior written permission of IBM.

© Copyright IBM Corp. 2007 Unit 11. The awk Program 11-5

Student Notebook
Figure 11-5. awk Command Syntax AL321.0

Notes:

The three basic syntax awk program lines work as follows:

 • If pattern is present, then do the actions.

 • If pattern is present but no actions are specified, this defaults to printing the complete
current line (record) to stdout.

 • If pattern is not present, then all lines (records) match and each line is processed by the
specified actions.

Multiple actions may be specified.

© Copyright IBM Corporation 2007

awk Command Syntax
Basic syntax

pattern { actions }
pattern

{
actions
}

Multiple statements in an action

– Use a line break or a semi-colon
$ awk '/Ll/ { print $1 ; print $3 }' phone.list

Comments start with a # until the end of a line

$ awk '/Ll/ { print $1 # prints field 1
> print $3 }' phone.list
Course materials may not be reproduced in whole or in part
without the prior written permission of IBM.

11-6 Korn and Bash Shell Programming © Copyright IBM Corp. 2007

Student Notebook
V4.1

Uempty
Figure 11-6. The print Statement AL321.0

Notes:

This is the default action.

© Copyright IBM Corporation 2007

The print Statement
One useful action is to print the data!

awk '/pattern/ { print }' ifile > ofile

awk tests each record of the input for the specified pattern

When a match is found the print statement sends the entire record
to standard output
Course materials may not be reproduced in whole or in part
without the prior written permission of IBM.

© Copyright IBM Corp. 2007 Unit 11. The awk Program 11-7

Student Notebook
Figure 11-7. awk Fields and Records AL321.0

Notes:

awk sees all input as a record which is made up of fields. By default, a record is delimited
by a newline ("\n"). An awk field is delimited by whitespace by default. You will see later that
these defaults may be changed.

Note that the RE metacharacters "^" and "$" refer to the beginning or end of a field
respectively.

© Copyright IBM Corporation 2007

awk Fields and Records
Referencing fields in a record

$0 = the entire record
$1 = the first field in the record
$2 = the second field in the record
...

To print Jansen's phone number from phone.list:

$ awk '/Jansen/ { print $3 }' phone.list
903-3333

To place that phone number into a variable:

$ JanNum=$(awk '/Jansen/ { print $3 }' phone.list)
Course materials may not be reproduced in whole or in part
without the prior written permission of IBM.

11-8 Korn and Bash Shell Programming © Copyright IBM Corp. 2007

Student Notebook
V4.1

Uempty
Figure 11-8. print Examples AL321.0

Notes:

print can take an expression following an I/O redirection to specify a pathname. The print
command always ends with an end of record character. Again, this is usually newline.
There is another output command, printf that you will see later (it allows better formatting).

© Copyright IBM Corporation 2007

print Examples
Special character sequences are available for use in print strings or
regular expressions

\n newline
\t tab
\r carriage return

$ awk '/^Ll/ { print "Name:\t", $1
> print "Number:\t", $3, "\n" }' phone.list
Name: Llewellyn,
Number: 316-6221

Name: Llewellyn,
Number: 817-8823

$ _
Course materials may not be reproduced in whole or in part
without the prior written permission of IBM.

© Copyright IBM Corp. 2007 Unit 11. The awk Program 11-9

Student Notebook
Figure 11-9. Comparison Operators and Examples AL321.0

Notes:

This example finds records with the first field (Lastname) starting with T or the phone
number starting with 4 or 6.

$ awk '$1 ~ /^T/ || $3 ~/^[46] / {
print }' phone.list

Terrell, Terry 617-7989
Patterson, Pat 614-6122
Robinson, Robin 411-3745
$ _

© Copyright IBM Corporation 2007

Comparison Operators and Examples
To compare regular expressions or strings with values:

== equal to != not equal to
< less than <= less than or equal to
> greater than >= greater than or equal to
~ matched by RE !~ not matched by RE
|| logical "or" && logical "and"

Examples:

$1 ~ /x/ field one matches regular expression x
$1 != "No" field one doesn't match string "No"

You can use comparison operators in the pattern to select records

$ awk '$1 == "Terrell," { print $2, "Smythe" }' phone.list
Terry Smythe
$ _
Course materials may not be reproduced in whole or in part
without the prior written permission of IBM.

11-10 Korn and Bash Shell Programming © Copyright IBM Corp. 2007

Student Notebook
V4.1

Uempty
Figure 11-10. Arithmetic Operators AL321.0

Notes:

count = count +2

Sets count to 2 the first time, because count will be automatically initialized to zero.

num *= 8

Sets num to 8 times its value. The first time this will make num zero.

val ^= 2

Raises val to the power of 2.

© Copyright IBM Corporation 2007

Arithmetic Operators
You can use the following operators to perform arithmetic:

+ addition
- subtraction
* multiplication
/ division
% remainder
^ exponential (x^y, raise x to the power y)
++x x++ pre and post increment
--x x-- pre and post decrement
= assignment (x = 4)

x op= y x = x op y
for: +=, -=, *=, /=, %=

Example
count = count + 2
count += 2
Course materials may not be reproduced in whole or in part
without the prior written permission of IBM.

© Copyright IBM Corp. 2007 Unit 11. The awk Program 11-11

Student Notebook
Figure 11-11. User Variables and Expressions AL321.0

Notes:

It is possible to pass parameters into an awk script.

awk -v var=val -f commands_file data_file
- or -
awk -f commands_file variable1=val1 var2=2 FS=\: data_file

You can use these methods to assign values to built-in variables or to define your own
variables.

© Copyright IBM Corporation 2007

User Variables and Expressions

You can define your own variables:
Names must:
– Start with a letter or underscore
– Be followed by letters, underscores, or digits

awk does not require variables to be defined before use

Variables are initialized as empty (numerically zero)
– The empty string is null ("")
Referenced by name only
Can be passed through from the command line
Course materials may not be reproduced in whole or in part
without the prior written permission of IBM.

11-12 Korn and Bash Shell Programming © Copyright IBM Corp. 2007

Student Notebook
V4.1

Uempty
Figure 11-12. BEGIN and END Processing AL321.0

Notes:

These special patterns can be very handy for explicit variable initialization or explicit EOF
processing.

© Copyright IBM Corporation 2007

BEGIN and END Processing
You have seen the pattern and action with awk syntax
You can also have actions at the beginning and end of input
You use the special patterns BEGIN and END

awk 'BEGIN { begin_action }
pattern { action }
pattern { action }
END { end_action }' file...

Where:

BEGIN means execute the begin_action before any input read

END means execute end_action once all input has been read
Course materials may not be reproduced in whole or in part
without the prior written permission of IBM.

© Copyright IBM Corp. 2007 Unit 11. The awk Program 11-13

Student Notebook
Figure 11-13. BEGIN without END Example AL321.0

Notes:

To determine the value of NF (total number of fields in the current record), an input line has
to be read.

© Copyright IBM Corporation 2007

BEGIN without END Example
You can use BEGIN to print a header to the output...

Here we have a BEGIN with no END

$ awk 'BEGIN { print "Words in phone.list"}
> { wcount = wcount + NF
> print wcount }' phone.list
Words in phone.list

3
6
9
...
24
27

$ _

The statements within the second set of braces were performed on every line of
"phone.list" as no pattern was specified
Course materials may not be reproduced in whole or in part
without the prior written permission of IBM.

11-14 Korn and Bash Shell Programming © Copyright IBM Corp. 2007

Student Notebook
V4.1

Uempty
Figure 11-14. END without BEGIN Example AL321.0

Notes:

The built-in variable NF refers to “Number of Fields”

© Copyright IBM Corporation 2007

END without BEGIN Example
You can use END to print a trailer or summary after the output:

$ awk '{ wcount = wcount + NF }
> END { print "Words in phone.list: ",

wcount }' phone.list
Words in phone.list: 27
$ _

The statement within the first set of braces refers to the main action
The main action is performed on every line of the file "phone.list", so
the final value of wcount holds the total number of fields (or words) in
the file
At the end of the input END actions are processed
This prints the heading with the total word count
Course materials may not be reproduced in whole or in part
without the prior written permission of IBM.

© Copyright IBM Corp. 2007 Unit 11. The awk Program 11-15

Student Notebook
Figure 11-15. Built-In Variables AL321.0

Notes:

If NR is placed inside an END action, it is the number of the last record processed.

FS can be set using a regular expression to define several possible field separators. A
single space is taken as any number of spaces and tabs. “[]” would be taken as a single
space, “\t” a tab and “\t+” as several (one or more) tabs.

If RS is set to the null string “”, awk will assume multiline records, that is, a single record
may be more than a single line.

© Copyright IBM Corporation 2007

Built-In Variables

awk provides a number of useful built-in variables:

FILENAME the name of the current file

NF total number of fields in the current record

NR number of records encountered

FS input field separator (default is space or tab)

RS input record separator (default is newline)

OFS output field separator (default is space)

ORS output record separator (default is newline)
Course materials may not be reproduced in whole or in part
without the prior written permission of IBM.

11-16 Korn and Bash Shell Programming © Copyright IBM Corp. 2007

Student Notebook
V4.1

Uempty
Figure 11-16. Built-In Variables Examples (1 of 2) AL321.0

Notes:

© Copyright IBM Corporation 2007

$ cat employee.list
Name, company, city, phone
Drew A. Chart, IBM, Wash. D.C., 202-555-3788
Wanda C. Results, IBM, Denver, 303-555-8068
Hyde N. Sikh, IBM, Atlanta, 404-555-3523
$ _

$ awk 'BEGIN { FS = "," ; OFS = ":" }
> { print $1, $4 }' employee.list
Name: phone
Drew A. Chart: 202-555-3788
Wanda C. Results: 303-555-8068
Hyde N. Sikh: 404-555-3523
$ _

Built-In Variables Examples (1 of 2)
Course materials may not be reproduced in whole or in part
without the prior written permission of IBM.

© Copyright IBM Corp. 2007 Unit 11. The awk Program 11-17

Student Notebook
Figure 11-17. Built-In Variables Examples (2 of 2) AL321.0

Notes:

And the answer is:

Drew A Chart
202-555-3788

Wanda C. Results
303-555-8068

Hyde N. Sikh
404-555-3523

© Copyright IBM Corporation 2007

$ cat authors
Drew A. Chart FIELD 1
Wash. D.C. FIELD 2
202-555-3788 FIELD 3

RECORD SEPARATOR
Wanda C. Results
Denver, CO
303-555-8068

Hyde N. Sikh
Atlanta, GA
404-555-3523

$ awk 'BEGIN { FS="\n" ; RS="\n\n" ; OFS="\n" ;
ORS="\n\n"}
> { print $1, $3
> } ' authors

Built-In Variable Examples (2 of 2)
Course materials may not be reproduced in whole or in part
without the prior written permission of IBM.

11-18 Korn and Bash Shell Programming © Copyright IBM Corp. 2007

Student Notebook
V4.1

Uempty
Figure 11-18. if - else if - else Statement AL321.0

Notes:

You can see that awk is a proper programming language. It has variables, input/output
facilities and program logic constructs.

The else if and else parts of the if statement are optional. Comparison operators (“>”, “<“,
“==”, and so forth.) must be used in the logical tests of the if statement to test for a value.
Don't use the assignment operator “=”, which assigns a value to a variable, if you are
testing for equality use “==”.

$ awk '{
 { if ($2 == "Terry")
 print $2 ", " $1 "--" $3
 }
}' phone.list

which gives

Terry, Terrell,--617-7989

© Copyright IBM Corporation 2007

if - else if - else Statement
Syntax:
awk '{

if (first logical test) {
action if test true

}
else if (second logical test) {

action if first test false and
second test true

}
else {

action if both tests false
}

}' file
Example:
$ awk '{

{ if ($2 == "Terry")
print $2 ", " $1 "--" $3

}
}' phone.list
Course materials may not be reproduced in whole or in part
without the prior written permission of IBM.

© Copyright IBM Corp. 2007 Unit 11. The awk Program 11-19

Student Notebook
Figure 11-19. The while Loop AL321.0

Notes:

© Copyright IBM Corporation 2007

The while Loop
Syntax:

awk ' {
while (condition) {

action
}
} ' file

Example:

awk ' {i = 1
while (i <= 4)
{ print $i ; ++i }
} ' file
Course materials may not be reproduced in whole or in part
without the prior written permission of IBM.

11-20 Korn and Bash Shell Programming © Copyright IBM Corp. 2007

Student Notebook
V4.1

Uempty
Figure 11-20. The for Loop AL321.0

Notes:

The for syntax can be rewritten as a while loop:

awk '{
 initialize; while (test) {
 action; increment
 }
 }' file

© Copyright IBM Corporation 2007

The for Loop
Syntax:
awk '{

for (initialize; test; increment)
{ action
}
}' file

Examples...

To read and print each field of the current input line
for (i=1; i<=NF; i++){

print $i
}

To print from the last field to the first of the current line
for (i=NF; i>=1; i--){

print $i
}

Course materials may not be reproduced in whole or in part
without the prior written permission of IBM.

© Copyright IBM Corp. 2007 Unit 11. The awk Program 11-21

Student Notebook
Figure 11-21. The break, continue and next Statements AL321.0

Notes:

In awk there is also a break statement. This functions similar to a break in shell and leaves
the processing of the current loop.

Unconditional control statements:

 break Break out of "while" or "for" loop.

 continue Perform next iteration of "while" or "for" loop.

 next Get and scan next line of input.

 exit Finish reading input and perform END statements.

© Copyright IBM Corporation 2007

The break, continue and next Statements
The continue statement stops the current innermost loop iteration and starts the next one:

awk '{
y = 42
for (x=1; x<=NF; x++) {

if (y!=$x)
{

continue # break
}
print x, $x
}

}' file
The next statement causes the next record to be read in, and the program to start from the

first pattern { action } block again:
awk 'BEGIN { action }

pattern {
action
action
next
action

}
END { action }' file
Course materials may not be reproduced in whole or in part
without the prior written permission of IBM.

11-22 Korn and Bash Shell Programming © Copyright IBM Corp. 2007

Student Notebook
V4.1

Uempty
Figure 11-22. The exit Statement AL321.0

Notes:

© Copyright IBM Corporation 2007

$ awk '{
> y = 42
> for (x=1; x<=NF; ++x) {
> if (y==$x) {
> print x, $x
> exit
> }
> }
> }
> END { exit 3 }' file
$ print $?
3
$ _

The exit statement jumps to any END processing – or out of the
program if already in the END section. An exit code can be passed
back to the shell:

The exit Statement
Course materials may not be reproduced in whole or in part
without the prior written permission of IBM.

© Copyright IBM Corp. 2007 Unit 11. The awk Program 11-23

Student Notebook
Figure 11-23. Arrays AL321.0

Notes:

To define an array element, you just use it. As with any awk variable no definition or
initialization is needed. You can iterate through an array by numeric index as in:

for (i=1; i < 6; i++)
 arr[i] = i

If you have a record with two text fields as fields 1 and 2, such as a database with a word
followed by a definition phrase, you can use the associative array concepts as in:

arr[$1] = $2

If you want to delete an array, it is not sufficient to null the value. Use the delete command:

delete arr[i]

© Copyright IBM Corporation 2007

Arrays
awk allows array variables

An array is a variable with an index

An index is an expression in brackets

– For example, array[10]
awk arrays are associative

– Index can be a string or number
– No implicit order
– To access all elements, use the in operator
for (var in array_name)

Be aware that all array indices are internally strings
Course materials may not be reproduced in whole or in part
without the prior written permission of IBM.

11-24 Korn and Bash Shell Programming © Copyright IBM Corp. 2007

Student Notebook
V4.1

Uempty
Figure 11-24. printf for Formatted Printing AL321.0

Notes:

printf allows better formatting of output than print. For those who are familiar with the
language C or C++, the format specifiers are very similar. For awk, remember that print will
terminate each occurrence with the ORS but printf does not — hence the “\n” usually found
at the end of format string.

Do not forget to make sure that you supply enough arguments to satisfy the number of
format specifiers. It is a common error to make at first.

© Copyright IBM Corporation 2007

printf for Formatted Printing
One use of awk is as a report generator

Better printing formats required

– Use printf
– printf syntax: printf (fmt [, args])
Parentheses are optional

fmt is usually a string constant with format specifications

Specifiers are like the C language printf

Format specification: %<char>

– %s string
– %d decimal integer
– %f,%e floating point (fixed or exponent notation)
– %o unsigned octal
– %% literal percent
Course materials may not be reproduced in whole or in part
without the prior written permission of IBM.

© Copyright IBM Corp. 2007 Unit 11. The awk Program 11-25

Student Notebook
Figure 11-25. printf Formats AL321.0

Notes:

You get more control of the output the more you specify but maybe at the cost of more
complexity.

© Copyright IBM Corporation 2007

printf Formats
Format specification strings can use modifiers

%-width.precision
– If width used, contents are right justified
– Use - (minus/hyphen) after % to left justify
– Precision controls

Number of digits to right of decimal point for numeric values
Maximum number of characters to print for string values

To print Hello within #'s right justified in 10 character field

printf ("#%10s#\n", "Hello")
To print a number left justified with minimum three characters

printf ("%-3d\n", $1)
Course materials may not be reproduced in whole or in part
without the prior written permission of IBM.

11-26 Korn and Bash Shell Programming © Copyright IBM Corp. 2007

Student Notebook
V4.1

Uempty
Figure 11-26. Functions in Awk AL321.0

Notes:

The general functions allow the explicit close() of a file so that it can be reopened or used
later in the awk script. It also has the benefit of avoiding running out of file descriptors etc.
system() takes a string argument which is the external command to use. getline reads the
input stream for the next record.

© Copyright IBM Corporation 2007

Functions in Awk

There are four types of functions

Three types are built-in to awk
– General
– Arithmetic
– String

The fourth type is a user defined function
– General functions include

• Close
• System
• Getline
Course materials may not be reproduced in whole or in part
without the prior written permission of IBM.

© Copyright IBM Corp. 2007 Unit 11. The awk Program 11-27

Student Notebook
Figure 11-27. Built-In Arithmetic Functions AL321.0

Notes:

The list of arithmetic functions includes all the usual facilities. One not shown but available
is srand that will set the random number seed. See the online documentation for details.

© Copyright IBM Corporation 2007

Functions available include:

atan2(y,x) arctangent of y/x in range - to +
cos(x) cosine of x (x in radians)
sin(x) sine of x
exp(x) e to the power x
log(x) natural log of x
sqrt(x) square root of x
int(x) truncated value of x

rand() pseudo-random number r, 0 < r >1

Built-In Arithmetic Functions
Course materials may not be reproduced in whole or in part
without the prior written permission of IBM.

11-28 Korn and Bash Shell Programming © Copyright IBM Corp. 2007

Student Notebook
V4.1

Uempty
Figure 11-28. Built-In String Functions AL321.0

Notes:

The sub and gsub syntax can also be written out as follows:
sub(regular.exp, replacement, target)

© Copyright IBM Corporation 2007

Functions available include:

length(s) length of string s or of $0 if s not supplied

index(s,t)
position of substring t in s or zero if not present

match(s,r) position in s of where RE r begins or zero

sub(r,s,t),
gsub(r,s,t) substitute s for r in t, returns 1 for OK

uses $0 if t not supplied (gsub does all
matches)

split(s,a,sep)
parses s into array a elements using field
separator sep (use RS if not supplied)

Set by match()
RSTART

start of the match (same as the return value)

RLENGTH length of the matching sub-string

Built-In String Functions
Course materials may not be reproduced in whole or in part
without the prior written permission of IBM.

© Copyright IBM Corp. 2007 Unit 11. The awk Program 11-29

Student Notebook
Figure 11-29. Built-In String Functions Examples AL321.0

Notes:

Examples:
1. prints out the length of the first field of each line of myfile (only use print if you want
the length to print to the screen)
2. prints out the position # where it found an “a” in the first field of each line in myfile
3. prints out the position # of the match of the pattern “i.a” (where . represents any
single character) in the first field of each line
4. match does not print anything, it just finds the match of pattern “i.a” in $1
RSTART and RLENGTH print out start of matched pattern, and length of pattern
5. prints the number of substitutions and prints the entire record (line) ($0) with
substitutions in place
6. does the substitution of “b” for “a” in $1 and then print $0 (the line) with the
substitutions in place, but does not print the number of substitutions it did.
7. splits the record (line) ($0) in an array named var - each element is deliminated by a :
(try this one yourself!)

© Copyright IBM Corporation 2007

Built-In String Functions Examples

1 awk ‘{print len($1)}’ myfile

2 awk ‘{print index($1, “a”)}’ myfile

3 awk ‘{print match($1, “i.a”)}’ myfile

4 awk ‘{match($1, “i.a”); print RSTART, RLENGTH]’
myfile

5 awk ‘{print gsub(/a/,”b”,$1), $0}’ myfile

6 awk ‘{gsub(/a/,”b”,$1)’ print $0}’ myfile

7 awk ‘{split ($0,var,”:”); print var[1], var[2],
var[6]]’ /etc/passwd
Course materials may not be reproduced in whole or in part
without the prior written permission of IBM.

11-30 Korn and Bash Shell Programming © Copyright IBM Corp. 2007

Student Notebook
V4.1

Uempty
Figure 11-30. Checkpoint AL321.0

Notes:

Write down your answers here:

1.

2.

3.

4.

5.

© Copyright IBM Corporation 2007

Checkpoint
1. With awk, what happens if I don't supply a pattern?

2. With awk, what happens if I don't supply the action?

3. awk causes the -f option to read instructions from a default line.

4. awk must have both the BEGIN and END statements. T or F

5. Using awk, have the output from the df command only show the %
used and mount point.
Course materials may not be reproduced in whole or in part
without the prior written permission of IBM.

© Copyright IBM Corp. 2007 Unit 11. The awk Program 11-31

Student Notebook
Figure 11-31. Unit Summary AL321.0

Notes:

© Copyright IBM Corporation 2007

Unit Summary
Regular expressions in awk

Basic awk programming

BEGIN and END processing

Flow control – if, while and for

Leaving loops – continue, next and exit

awk arrays

Better printing

awk functions
Course materials may not be reproduced in whole or in part
without the prior written permission of IBM.

11-32 Korn and Bash Shell Programming © Copyright IBM Corp. 2007

Student Notebook
V4.1

Uempty
 Unit 12.Good Practices and Review

What this unit is about

This unit discusses general design, overall layout, ease of
maintenance, and general performance of shell scripts. It also
provides a brief course summary.

What you should be able to do

After completing the unit, you should be able to:

 • Understand why “plan and design” comes before “write and test”
 • Use comments to your advantage
 • Debug your code
 • Understand some performance issues

How you will check your progress

Accountability:

 • Checkpoint questions
Course materials may not be reproduced in whole or in part
without the prior written permission of IBM.

© Copyright IBM Corp. 2007 Unit 12. Good Practices and Review 12-1

Student Notebook
Figure 12-1. Unit Objectives AL321.0

Notes:

© Copyright IBM Corporation 2007

Unit Objectives

After completing this unit, you should be able to:

Write any serious script you need to

Plan the activity

Produce good code

In this unit:
– Planning and design
– Documentation
– Debugging
– Performance issues
– Guidelines for scripting
– Course summary
Course materials may not be reproduced in whole or in part
without the prior written permission of IBM.

12-2 Korn and Bash Shell Programming © Copyright IBM Corp. 2007

Student Notebook
V4.1

Uempty
Figure 12-2. Planning and Design AL321.0

Notes:

Without a specification, how do you know when you have finished? The specification
should include a description of the required outputs and return codes, files that are to be
used or created, and any environment variables that are to be used.

Modular coding often means that you can reuse bits in other programs — sharing common
functions. It is also a lot easier to read, understand and maintain.

It might seem trivial, but a file naming convention will help you later on when you try to
interface different programs. This may be something that the specification has set-out for
you to follow.

If you don't plan to test your code from the start, you will find it much more time-consuming
later on. Testing should be with sample data, or whatever is typical of the final environment,
and with extreme cases — boundary testing. If you have a program that deals with
numbers, test the smallest and the largest values that you can have, plus and minus one.

By including debugging code, activated by setting some flag variable for example, you can
make it much easier to track down the source of a bug later on.

© Copyright IBM Corporation 2007

Planning and Design

As well as your favorite design methodology (Flow Charts,
Data-Flow, SSADM, and so forth) consider:
– Functionality – clearly defined specification
– Modular design – use of functions, separate programs
– Environment – variables, directories
– File naming convention – for temporary files, results
– Testing – individual units, integration tests, boundary conditions
– Debugging code – do not forget the next maintainer
Course materials may not be reproduced in whole or in part
without the prior written permission of IBM.

© Copyright IBM Corp. 2007 Unit 12. Good Practices and Review 12-3

Student Notebook
Figure 12-3. Use of Comments AL321.0

Notes:

Key points for your script might be function definitions and the start of the script. With
variables perhaps you should describe the expected values. If you have a complicated or
clever piece of script or syntax and you do not describe it in comments, then you may well
forget what, why, and how you did it.

When giving yourself the credit do not forget the versions and dates, even if you are using
one of the source code control tools. When you do the change, mark it at the top of the
script (in your version history perhaps) and where the code changed.

© Copyright IBM Corporation 2007

Use of Comments

A good programmer uses comments in a program to:
– Explain the purpose and function of the code at key points
– Describe the use of variables
– Explain complicated syntax
– Give yourself the credit (or the blame) for your work
– Mark corrections or additions

Remember to update the comments with the code
Course materials may not be reproduced in whole or in part
without the prior written permission of IBM.

12-4 Korn and Bash Shell Programming © Copyright IBM Corp. 2007

Student Notebook
V4.1

Uempty
Figure 12-4. Commenting Out AL321.0

Notes:

Watch out for the second syntax using the null (:) command. When you supply variables or
arguments they are evaluated and can cause unwanted side effects.

© Copyright IBM Corporation 2007

Commenting Out

Lines can be commented out using the # comment character:
• # command arg1 arg2

– No Shell interpretation is performed to the right of #
– Legal anywhere, except as the only statement in a flow-control

construction (if, while, until)

The "null" command can be used where commenting out would
not work:
• : command arg1 arg2

– Arguments are ignored, but processed as usual
– Always returns 0 (true)
Course materials may not be reproduced in whole or in part
without the prior written permission of IBM.

© Copyright IBM Corp. 2007 Unit 12. Good Practices and Review 12-5

Student Notebook
Figure 12-5. Script Layout AL321.0

Notes:

© Copyright IBM Corporation 2007

Script Layout
Some things must be done in a certain order other things can be
arranged for good code:

– Shell control line (first in script)
#!/usr/bin/ksh or #!/bin/bash

– Header comments
– Validation of options
– Testing of arguments
– Initialization of variables
– Function definitions
– Main code
Course materials may not be reproduced in whole or in part
without the prior written permission of IBM.

12-6 Korn and Bash Shell Programming © Copyright IBM Corp. 2007

Student Notebook
V4.1

Uempty
Figure 12-6. Debugging Code AL321.0

Notes:

The PS4 variable is expanded and displayed with each xtrace line — set it to $LINENO to
get Script line numbers.

Notice that you can debug a single function by appropriate use of typeset.

© Copyright IBM Corporation 2007

Debugging Code
Shell options can help with syntax checking:

To check the syntax of a script without running it

set -o noexec or set -n
For the shell to print its input as it reads it

set -o verbose or set -v
An execution trace displays each command before it is run and after
command line processing

set -o xtrace or set -x
For functions, use

typeset -ft function ...
Course materials may not be reproduced in whole or in part
without the prior written permission of IBM.

© Copyright IBM Corp. 2007 Unit 12. Good Practices and Review 12-7

Student Notebook
Figure 12-7. DEBUG Traps AL321.0

Notes:

DEBUG is technically a fake signal, that is, it is not raised by the operating system but the
Korn shell itself.

Main program traps are inherited by functions, and in the Korn shell, function traps are local
to functions.

The kill command syntax used above was introduced with AIX Version 4. You might use
"print $?" with earlier versions of AIX to see the return code for each error exit.

The bash shell supports DEBUG and EXIT.

© Copyright IBM Corporation 2007

DEBUG Traps
After each simple command the shell issues the fake signals

– DEBUG

– ERR

– EXIT

The order is DEBUG, ERR, then any other traps, and lastly EXIT

To display the environment after each command set this trap

trap "set" DEBUG

When a command has a non-zero exit status, the shell sends the ERR signal

For example, to see what signals are causing error exits set this trap
trap "kill -l $?" ERR
Course materials may not be reproduced in whole or in part
without the prior written permission of IBM.

12-8 Korn and Bash Shell Programming © Copyright IBM Corp. 2007

Student Notebook
V4.1

Uempty
Figure 12-8. Maintaining Code AL321.0

Notes:

Maintenance of code is at least as important as its creation. These are some issues that
you may like to consider to ensure that your script can be maintained by others.

© Copyright IBM Corporation 2007

Maintaining Code

Documentation: Design and comments

Clarity
– Code
– Documentation

Modularity
– Main script
– Use "good" functions or separate programs
Course materials may not be reproduced in whole or in part
without the prior written permission of IBM.

© Copyright IBM Corp. 2007 Unit 12. Good Practices and Review 12-9

Student Notebook
Figure 12-9. Good Functions AL321.0

Notes:

Remember that functions run in the same environment as the caller, so $$ is the same for
the function and its calling shell.

Setting traps inside a function will not work with early versions of the Korn shell, so think
about portability before using traps in a function.

The answer to the question is: because any changes to the current directory remain in
force once the function completes or returns.

© Copyright IBM Corporation 2007

Good Functions

To write functions that are reliable and easy to maintain:
– Avoid altering global variables inside a function
– Define and export functions only when necessary
– Do not change the working directory inside a function
– Tidy up local temporary files
Course materials may not be reproduced in whole or in part
without the prior written permission of IBM.

12-10 Korn and Bash Shell Programming © Copyright IBM Corp. 2007

Student Notebook
V4.1

Uempty
Figure 12-10. Performance Issues for Shell Scripts AL321.0

Notes:

If you suspect performance is an issue, then get some measurements.

When tuning a script, it is more usual to make it robust before worrying about whether it
needs to be faster.

© Copyright IBM Corporation 2007

Performance Issues for Shell Scripts

If performance is an issue
– Do not guess
– Measure

Performance of a script means two areas:
– That of the shell
– That of the script

Remember that you should work in this order
– Make it work
– Make it robust
– Make it more efficient/faster
Course materials may not be reproduced in whole or in part
without the prior written permission of IBM.

© Copyright IBM Corp. 2007 Unit 12. Good Practices and Review 12-11

Student Notebook
Figure 12-11. Timing Commands AL321.0

Notes:

The operating system also has a time command (/bin/time). It only reports in tenths of a
second, and cannot handle pipelines. There is also a timex operating system command
that uses the sar, vmstat, or iostat utilities to monitor a single command.

It would be a good idea to run the same command, with time, and take averages. Simply
running the test once may not give you a true reading of “how long” the command(s) take.

© Copyright IBM Corporation 2007

Timing Commands
To report the elapsed, user and system time for a command or pipeline,
use time in the Korn or Bash shells:
– A reserved word (not a command)
– Output is to standard error
– Input or output redirection applies to the commands under test only
– Return value is that of the commands under test

$ time find / -name 'unix*' -print|sort
/unix

/usr/lib/unixtomh output from find
real 0m25.51s wall clock time
user 0m1.56s
sys 0m11.01s
$ _
Course materials may not be reproduced in whole or in part
without the prior written permission of IBM.

12-12 Korn and Bash Shell Programming © Copyright IBM Corp. 2007

Student Notebook
V4.1

Uempty
Figure 12-12. Times for Shells AL321.0

Notes:

The times command returns 0 (true) always.

© Copyright IBM Corporation 2007

Times for Shells
The times command displays how much time your current shell and all
its subshells have consumed:

$ times
0m0.99s 0m15.37s
0m8.61s 0m33.21s

– User and system timings given in hundredths of a second
– First line for the current shell
– Second line for the subshells
Course materials may not be reproduced in whole or in part
without the prior written permission of IBM.

© Copyright IBM Corp. 2007 Unit 12. Good Practices and Review 12-13

Student Notebook
Figure 12-13. Shell Performance AL321.0

Notes:

Keeping the history small reduces the shell startup speed because it is read when the
script starts. The file pointed to by the ENV variable is read for each Korn shell invocation.

Setting MAILCHECK to 0 causes the shell to check for new mail at every new prompt!

Bash has an expansion type facility called brace expansion. As you can see, it can
generate any string. The example above would create two directories, release_src and
release_doc in the parent directory. For brace expansion to be performed, there must be at
least a matched pair of braces containing at least one comma.

© Copyright IBM Corporation 2007

Shell Performance
To increase the startup speed of a new shell:

– Keep your history file (.sh_history) small
– Minimize the size of any $ENV file
– Use autoload with your functions (ksh)
– Use FPATH with your functions
– Use set -o nolog to prevent function definitions being logged in

your history (ksh)
– Use tracked aliases or hashes
– Try to use an alias in place of a simple function
– Set MAILCHECK greater than the 600 second default
– In bash, use brace expansion, for example:
mkdir ../release_{src,doc}
Course materials may not be reproduced in whole or in part
without the prior written permission of IBM.

12-14 Korn and Bash Shell Programming © Copyright IBM Corp. 2007

Student Notebook
V4.1

Uempty
Figure 12-14. Shell Script Performance AL321.0

Notes:

Make sure that your PATH is correctly set to prevent long search times for AIX commands.
A tracked alias (see Unit 7) may also be helpful to reduce command search time. There is
a table of Korn shell built-in commands in Unit 7 also.

General programming techniques can also bring about performance benefits. Move loop
invariants to before the loop if you have a fixed command inside a loop you are repeating it
many times without reason. Vary loop increments or the order of nesting; quite a bit of
optimization relies on this kind of trick, for example, the obvious way to perform matrix
multiplication is not the fastest!

© Copyright IBM Corporation 2007

Shell Script Performance
Tips for faster performance shell scripts:

Shell built-in commands run faster than UNIX built-ins

Avoid command substitution where you can use ${ } parameter
expansions, let or pattern matching

Note $(< file) is faster than $(cat file)

Use multiple arguments rather than separate commands – for example,
typeset -i a=3 b=4

Use set -f or set -o noglob if not using pathname
metacharacters

Use { } grouping that is faster than ()

Apply I/O re-directions to the whole of a loop syntax

Set the integer attribute for suitable variables and don't use $ for them
with arithmetic expressions
Course materials may not be reproduced in whole or in part
without the prior written permission of IBM.

© Copyright IBM Corp. 2007 Unit 12. Good Practices and Review 12-15

Student Notebook
Figure 12-15. Good Rules To Follow AL321.0

Notes:

1) Documentation: Comment, comment, comment.

2) Make backups: Every good user has a good backup... right?

3) Try three times: Then get help, whether it be another person,
a reference manual, or another set of eyes.
Don’t frustrate yourself too much, you’ll go
crazy!

4) Don't overlook the obvious: The easiest soluti<on to implement is the
easiest to overlook.

5) Try it, it might work: Just be sure of Rule Number 2.

6) Never say never, always avoid always: Either one will come back to haunt you.

7) There's usually another way to do it: Every situation can, and will, be different. Use
what works well for you.

© Copyright IBM Corporation 2007

Good Rules to Follow

1. Documentation

2. Make backups

3. Try three times

4. Do not overlook the obvious

5. Try it, it might work

6. Never say never, always avoid always

7. There is usually another way to do it
Course materials may not be reproduced in whole or in part
without the prior written permission of IBM.

12-16 Korn and Bash Shell Programming © Copyright IBM Corp. 2007

Student Notebook
V4.1

Uempty
Figure 12-16. Checkpoint AL321.0

Notes:

Write down your answers here:

1.

2.

3.

4.

© Copyright IBM Corporation 2007

Checkpoint

1. What allows you to document your program for future
reference?

2. Why is it a good idea to plan and design before you code?

3. Which statement is faster and why?
$(< data.file) or $(cat data.file)

4. What set options can help in debugging a script?
Course materials may not be reproduced in whole or in part
without the prior written permission of IBM.

© Copyright IBM Corp. 2007 Unit 12. Good Practices and Review 12-17

Student Notebook
Figure 12-17. Summary AL321.0

Notes:

© Copyright IBM Corporation 2007

Unit Summary

Planning and design

Documentation

Debugging

Performance issues

Guidelines for scripting

Course summary
Course materials may not be reproduced in whole or in part
without the prior written permission of IBM.

12-18 Korn and Bash Shell Programming © Copyright IBM Corp. 2007

Student Notebook
V4.1

Uempty
Figure 12-18. Course Summary AL321.0

Notes:

HAPPY SCRIPTING!

© Copyright IBM Corporation 2007

Course Summary

Basic concepts
Shell variables and parameters
Exit status, return codes and traps
Programming constructs – flow control
Shell commands and features
Arithmetic in shells
Shell types and functions
Regular expressions and text selection
Productivity using sed and awk
Summary – good practice, debugging, performance
Course materials may not be reproduced in whole or in part
without the prior written permission of IBM.

© Copyright IBM Corp. 2007 Unit 12. Good Practices and Review 12-19

Student Notebook
Course materials may not be reproduced in whole or in part
without the prior written permission of IBM.

12-20 Korn and Bash Shell Programming © Copyright IBM Corp. 2007

Student Notebook
V4.1

Uempty
 Appendix A. Utilities for Personal Productivity -
Optional

What this unit is about

This unit looks briefly at three utilities to help improve productivity - tar,
at and crontab.

What you should be able to do

After completing the unit, you should be able to:

 • Make use of tar archive
 • Be able to schedule scripts for execution at a later date

How you will check your progress

Accountability:

 • Checkpoint questions
 • Hands-on exercises
Course materials may not be reproduced in whole or in part
without the prior written permission of IBM.

© Copyright IBM Corp. 2007 Appendix A. Utilities for Personal Productivity - Optional A-1

Student Notebook
Figure A-1. Unit Objectives AL321.0

Notes:

© Copyright IBM Corporation 2007

Unit Objectives

After completing this unit, you should be able to:

Use the archive utility: tar

Manipulate when your work gets done: at and crontab
Course materials may not be reproduced in whole or in part
without the prior written permission of IBM.

A-2 Korn and Bash Shell Programming © Copyright IBM Corp. 2007

Student Notebook
V4.1

Uempty
Figure A-2. The tar Utility AL321.0

Notes:

The tar utility is very useful for temporary archives and backups. It was originally written to
output to a tape device but is now used for virtually any storage device. For AIX the normal
default is /dev/rmt0 but as you will see this can be changed by a command line option.

© Copyright IBM Corporation 2007

The tar Utility

This is an archive/backup command
Historically used tape but now any device

default to /dev/rmt0

Syntax: tar options pathname(s)
Course materials may not be reproduced in whole or in part
without the prior written permission of IBM.

© Copyright IBM Corp. 2007 Appendix A. Utilities for Personal Productivity - Optional A-3

Student Notebook
Figure A-3. tar Options AL321.0

Notes:

tar options are in two groups — required and optional. The original utility did not conform to
the normal syntax for parameters and options. Some old scripts using tar may be seen
without a leading hyphen (-) before the options. Normal modern practice is to use the
correct option syntax.

tar options are many and use of the AIX documentation and/or the man pages may be
helpful. As the syntax suggests, there must be a required option present. The most
common “optional” options are -f and -v. For example, to read an archive from the default
device:

$ tar -tv
-rw-r--r-- phil/office 527 2000-02-01 17:13:09 getopts.ksh
-rwxr-xr-x phil/office 50 2000-07-06 13:25:26 group1.ksh
-rwxr-xr-x phil/office 55 2000-07-06 13:25:26 group2.ksh
-rwxr-xr-x phil/office 195 2000-07-06 13:25:26 if-then-elif.ksh
-rwxr-xr-x phil/office 123 2000-07-06 13:25:26 if-then-else.ksh
$ _

© Copyright IBM Corporation 2007

tar Options

Options are of two types
– Required
– Optional

Should be specified using a leading hyphen

Required options are one of
– c - create an archive
– x - extract file(s) from archive
– t - list (tell) what is in archive

Other (optional) options are
– f - used to specify other than default device
– v - verbose (usually with t or x)
– m - restore/keep modification times
Course materials may not be reproduced in whole or in part
without the prior written permission of IBM.

A-4 Korn and Bash Shell Programming © Copyright IBM Corp. 2007

Student Notebook
V4.1

Uempty
 Notice that using v gives the equivalent of a long listing of a directory.

Typically the -f option is used to specify a tar file, often called a tarfile. For example:

$ tar -cf au23.tar examples
$ _

creates a tarball of the directory examples.

tar examples:

To back up your home directory relatively:

cd $HOME
tar -cvf /dev/fd0 .

To back up your home directory with a full path:

tar -cvf /dev/fd0 $HOME

To restore from the floppy

tar -xvf /dev/fd0

To get a listing of the files backed up on floppy

tar -tvf /dev/fd0
Course materials may not be reproduced in whole or in part
without the prior written permission of IBM.

© Copyright IBM Corp. 2007 Appendix A. Utilities for Personal Productivity - Optional A-5

Student Notebook
Figure A-4. tar Pathnames AL321.0

Notes:

Since a pathname is involved it can be either a full or relative path. With tar, a full pathname
will mean that files/directories extracted will be to the original path.

For that reason, relative pathnames are usually preferred for backups or archives. Choose
carefully if you think that full paths are necessary.

© Copyright IBM Corporation 2007

tar Pathnames

tar takes a pathname as one of its parameters

Full pathnames mean that restores (extracts) will be to original
directory

Relative pathnames mean that restores may be to any part of
filesystem

tar may be used to do recursive copies of data from one directory to
another

$ cd fromdir; tar cf - . | (cd todir;\ >tar xf -)
Course materials may not be reproduced in whole or in part
without the prior written permission of IBM.

A-6 Korn and Bash Shell Programming © Copyright IBM Corp. 2007

Student Notebook
V4.1

Uempty
Figure A-5. Working in Absentia AL321.0

Notes:

Suppose you want to process some material but can wait (for example, overnight). The AIX
utilities at and crontab (with the cron daemon) will help you.

It is possible that a tightly controlled system will not allow you to use these facilities until
expressly enabled by the system administrator.

© Copyright IBM Corporation 2007

Working in Absentia

You can submit jobs for execution later

AIX provides two useful utilities
– at
– crontab

Access to these facilities is controlled by the system
administrator
Course materials may not be reproduced in whole or in part
without the prior written permission of IBM.

© Copyright IBM Corp. 2007 Appendix A. Utilities for Personal Productivity - Optional A-7

Student Notebook
Figure A-6. The at Command AL321.0

Notes:

The set of commands (or script) submitted by at becomes an at job. This is not the same as
a job in the Korn Shell.

The time syntax can be absolute as in 2200 or relative to some other time. The time
specification can also include a date if required. The important point is that the “job” only
executes once.

Note that the script (the set of commands) are copied to a spool area. This means that
even if the script is subsequently edited, the changes are not made to the submitted script.

© Copyright IBM Corporation 2007

The at command

at submits a set of commands (a job) for later execution

Syntax: at [-r|-l] time

Commands are read from stdin
time can be specified as absolute or relative

The time may include a date

Options include
-l list your at jobs
-r remove your at job(s)

at uses mail to send the stdin and stderr output (unless
redirected)

System administrator determines who may use at
Course materials may not be reproduced in whole or in part
without the prior written permission of IBM.

A-8 Korn and Bash Shell Programming © Copyright IBM Corp. 2007

Student Notebook
V4.1

Uempty
Figure A-7. at Usage and Examples AL321.0

Notes:

There are many different formats that you can use to specify the time. The use of now and
tomorrow are useful.

© Copyright IBM Corporation 2007

at Usage and Examples

Here are some examples (commands excluded)

at 2100
at 10pm
at 4am
at 9am tomorrow
at 10:30 Jul 3
at now + 2 hours
at now + 2 days
at now + 1 year
Course materials may not be reproduced in whole or in part
without the prior written permission of IBM.

© Copyright IBM Corp. 2007 Appendix A. Utilities for Personal Productivity - Optional A-9

Student Notebook
Figure A-8. The crontab Command AL321.0

Notes:

crontab allows you to specify both date/time and frequency of a particular “job”. The
crontab file has a particular format (you will see this next). To create an entry in your
crontab, use

$ crontab job-file

The system daemon cron examines crontab files in the spool area every minute and loads
any changes. Using crontab to edit your crontab entries is the best way to ensure that cron
is informed of any updates.

Like the at command, a system administrator controls which users have access to crontab
facilities.

© Copyright IBM Corporation 2007

The crontab Command

This command is like at but for regular "jobs"

Syntax: crontab [-e | -l | -r] [job-file]

The commands executed are in job-file (or from stdin)
The options allow you to edit, list or remove your crontab file

System administrator determines who may use cron

cron will mail the output of the command to crontab owner
Course materials may not be reproduced in whole or in part
without the prior written permission of IBM.

A-10 Korn and Bash Shell Programming © Copyright IBM Corp. 2007

Student Notebook
V4.1

Uempty
Figure A-9. crontab File Format AL321.0

Notes:

Each of the six crontab fields are separated by whitespace, usually a space or tab
character.

© Copyright IBM Corporation 2007

crontab File Format
cron needs crontab files in a particular format
Each line has time(s)/date(s) and the command to run

Format of each line is a set of fields
minute (0-59)
hour (0-23)
day (1-31)
month (1-12)
day of week (0-6, 0 = Sunday)

Each of the first five fields may be
a number
a comma separated number list (1,3,4,13)
a range (4-9)
an asterisk (*)

Sixth field contains the command(s) executed (a % means a newline)
Course materials may not be reproduced in whole or in part
without the prior written permission of IBM.

© Copyright IBM Corp. 2007 Appendix A. Utilities for Personal Productivity - Optional A-11

Student Notebook
Figure A-10. Unit Summary AL321.0

Notes:

Each of the six cron tab fields are separated by whitespace, usually a space or tab
character.

© Copyright IBM Corporation 2007

Unit Summary

Having completed this unit, you should be able to:

Archiving using tar

Batching commands for later execution
– The tar command for backing up
– Using at
– Regular or repeated processes using cron tab
Course materials may not be reproduced in whole or in part
without the prior written permission of IBM.

A-12 Korn and Bash Shell Programming © Copyright IBM Corp. 2007

Student Notebook
V4.1

AP
 Appendix B. vi Reference

Overview of Operations

Initially, when you enter a command you are in input mode. To edit, the user enters control
mode by typing ESC and moves the cursor to the point needing correction and then inserts
or deletes characters or words as needed.

Most control commands accept an optional repeat Count prior to the command.

When in vi mode on most systems, canonical processing is initially enabled and the
command will be echoed again if the speed is 1200 baud or greater and it contains any
control characters or less than one second has elapsed since the prompt was printed.

The ESC character terminates canonical processing for the remainder of the command and
the user can then modify the command line.

This scheme has the advantages of canonical processing with the type-ahead echoing of
raw mode.

If the option viraw is also set, the terminal will always have canonical processing disabled.

This mode is implicit for systems that do not support two alternate end of line delimiters,
and might be helpful for certain terminals.

vi Input Edit Commands (by default the editor is in input mode)

ERASE (User-defined erase character as defined by the stty command, usually
Ctrl-h or #) Deletes previous character.

Ctrl-w Deletes the previous blank separated word.
Ctrl-v Escapes the next character.
Ctrl-v Editing characters, the user's ERASE or KILL characters can be entered in

a command line or in a search string if preceded by a Ctrl-v
Ctrl-V The Ctrl-V removes the next character's editing features (if any).
\ Escapes the next ERASE or KILL character.

Motion Edit Commands

l Moves the cursor forward (right) one character.
w Moves the cursor forward one alphanumeric word.
W Moves the cursor to the beginning of the next word that follows a blank.
e Moves the cursor to end of the current word.
E Moves the cursor to end of the current blank delimited word.
h Moves the cursor backward (left) one character.
b Moves the cursor backward one word.
B Moves the cursor to the previous blank separated word.
| Moves the cursor to the column specified by the Count parameter.
fc Finds the next character c in the current line.
Course materials may not be reproduced in whole or in part
without the prior written permission of IBM.

© Copyright IBM Corp. 2007 Appendix B. vi Reference B-1

Student Notebook
Fc Finds the previous character c in the current line.
tc Equivalent to f followed by h.
Tc Equivalent to F followed by l.
; Repeats Count times, the last single character find command.
0 Moves the cursor to start of line.
$ Moves the cursor to end of line.
^ Moves the cursor to start of line.

Text Modification Edit Commands

A Appends text to the end of the line.
C Deletes the current character through to the end of line and enters input

mode.
d Deletes the current character through to the end of line.
i Enters the input mode and inserts text before the current character.
I Inserts text before the beginning of the line.
P Places the previous text modification before the cursor.
p Places the previous text modification after the cursor.
R Enters the input mode and types over the characters on the screen.
rc Replaces the number of characters specified by the Count parameter,

starting at the current cursor position, with the character(s) specified by c
x Deletes the current character.
X Deletes the preceding character.
. Repeats the previous text modification command.
~ Inverts the case of the number of characters specified by the Count

parameter, starting at the current cursor positions, and advances the
cursor.

Search Edit Commands (these commands access your command
history)

k Fetches the previous command.
j Moves forward through command list.
G Fetches the command whose number is specified by the Count parameter

that should precede it.
/String Searches backward through history for a previous command containing the

specified String. String is terminated by a RETURN or new-line character. If
the specified string is preceded by a caret (^), the matched line must begin
with String. If String is null, the previous string will be used.

?String Same as / except that the search is in the forward direction.
n Searches for the next match of the last pattern to / or ? commands.
N Searches for the next match of the last pattern to / or ?, but in the opposite

direction. Searches history for the String entered by the previous /
command.
Course materials may not be reproduced in whole or in part
without the prior written permission of IBM.

B-2 Korn and Bash Shell Programming © Copyright IBM Corp. 2007

Student Notebook
V4.1

AP
 Other Edit Commands

y Yanks the current character through the character to which Motion would
move the cursor and puts them into the delete buffer. The text and cursor
are unchanged.

Y Yanks from the current position to the end of the line. Equivalent to y$.
u Undo the last text modifying command.
U Undo all the text modifying commands performed on the line.
e Count in the input buffer. If Count is omitted, then the current line is used.

Features of “vi” with “set -o vi” only

\ Filename completion. Replaces the current word with the longest common
prefix of all filenames matching the current word with an asterisk appended.
If the match is unique, a / is appended if the file is a directory and a space is
appended if the file is not a directory.

* Appends an asterisk to the current word and attempts filename generation.
If no match is found, it rings the bell. Otherwise, the word is replaced by the
matching pattern and input mode is entered.

= Lists the file names that match the current word as if an asterisk were
appended to it.

_ (Underscore) Causes the Count word of the previous command to be
appended and input mode entered. The last word is used if Count is
omitted.

@Letter Searches the alias list for an alias named Letter. If an alias of this name is
defined, its value is placed into the input queue for processing.

Sends the line after inserting a # in front of the line. Useful for causing the
current line to be inserted in the history without being executed.

Ctrl-c Terminates the set -o vi edit
Ctrl-j (New line) Executes the current line, regardless of the mode.
Ctrl-l Line feeds and prints the current line. Has effect only in control mode.
Ctrl-m (Return) Executes the current line, regardless of the mode.
Course materials may not be reproduced in whole or in part
without the prior written permission of IBM.

© Copyright IBM Corp. 2007 Appendix B. vi Reference B-3

Student Notebook
Course materials may not be reproduced in whole or in part
without the prior written permission of IBM.

B-4 Korn and Bash Shell Programming © Copyright IBM Corp. 2007

Student Notebook
V1.2.2

AP
 Appendix C. Checkpoint Solutions

Unit 1 - Basic shell Concepts

1. What type of file is /dev/tty3?

Correct Answer:

/dev/tty3 is a special device file, representing a terminal.

2. How could we find out a file type?

Correct Answer:

Use the file command to identify a file type.

3. How can we get .kshrc to run in an explicit Korn shell?

Correct Answer:

export ENV=”$HOME/.kshrc”.

4. How can we specify the first character in a file name to be uppercase?

Correct Answer:

[[:upper:]]* or [A-Z]*.

5. How can we ignore error messages from a command?

Correct Answer:

command ... 2>/dev/null.

6. How do you make the normal output of a command appear as error output?

Correct Answer:

command ... 1>&2.

7. How can we group commands, in order to re-direct the standard output from all of
them?

Correct Answer:

Use braces, or curly brackets, to surround the group and then do the redirection on the
closing brace.
Course materials may not be reproduced in whole or in part
without the prior written permission of IBM.

© Copyright IBM Corp. 1998, 2007 Appendix C. Checkpoint Solutions C-1

Student Notebook
8. What will kill 1 do?

Correct Answer:

Nothing. kill %1 will kill your job no.1, but kill 1 will attempt to kill process id 1, which is init,
the parent of all other process. Even root cannot kill init.

9. If you have submitted a job to run in foreground, how could you move it to background?

Correct Answer:

First suspend the job with <Ctrl>-z, and then use the bg command to move it to the
background.

10.How would you set up a command line recall facility?

Correct Answer:

set -o vi.

Unit 2 - Variables

1. How could we use positional parameter 3 in a shell script?

Correct Answer:

$3 or (better) ${3}.

2. Which variable contains the number of positional parameters?

Correct Answer:

$# or ${#}.

3. How can we change the value of a variable set in a different process?

Correct Answer:

This can't be done. A subprocess can only change a copy of an exported variable supplied
by its parent process.

4. What is the variable IFS?

Correct Answer:

Internal Field Separator used to read statements, and many other commands. It normally
contains a space character, followed by a tab character, followed by a newline character.
Course materials may not be reproduced in whole or in part
without the prior written permission of IBM.

C-2 AIX 5L Korn Shell Programming © Copyright IBM Corp. 1998, 2007

Student Notebook
V1.2.2

AP
5. How can we reset PS1 to show the current directory?

Correct Answer:

export PS1='${PWD} $ '.

6. By setting a variable, how can we have a command recall facility?

Correct Answer:

set EDITOR or VISUAL to vi, emacs, or gmacs, and export it.

Unit 3 - Return Codes and Traps

1. How can you tell whether a command you have just entered was successful?

Correct Answer:

echo $? or print $?

2. How can you test if file datafile is non-empty?

Correct Answer:

test -s datafile or

[-s datafile] or

[[-s datafile]]

3. How can you check if you have been logged on for more than 20 minutes, and if so,
print out a suitable message?

Correct Answer:

test “$SECONDS” -ge 1200 && echo Have a rest, $USER

4. How could you log off, using the kill command?

Correct Answer:

kill -9 $$ or kill $$

(The -9 is not usually necessary, unless a trap has been set.)

5. If you are a DBA is this a desirable command to terminate the <oracle_server>? kill
-KILL <oracle_server>

Correct Answer:
Course materials may not be reproduced in whole or in part
without the prior written permission of IBM.

© Copyright IBM Corp. 1998, 2007 Appendix C. Checkpoint Solutions C-3

Student Notebook
Probably not — but at least you are the DBA and can clean up the situation.

6. What does this command do? trap echo you did <Ctrl-c> 2

Correct Answer:

Nothing! You get an error message indicating invalid syntax. It tries to identify the word
'you' as a signal. (It converts it to uppercase too). Single quotes need to be put around the
echo and its arguments: trap 'echo “you did <cntrl-c>”' INT

7. How could you get <Ctrl-c> to log you off?

Correct Answer:

trap 'exit' 2.

Note: In this case, the quotes are not necessary, discipline yourself to use them anyway.

Unit 4 - Flow Control

1. What is wrong with this fragment of shell script?

if ["$x" -eq 5]
then
 echo $x
elif ["$x" -eq 3]
else
 echo "x is only 3"
 exit
fi

Correct Answer:

There must be a then statement after the elif.

2. What is the fundamental difference between a while and an until construct?

Correct Answer:

While statements assume “true”, until statements assume “false”.

3. How could we write an endless loop?

Correct Answer:

while true
Course materials may not be reproduced in whole or in part
without the prior written permission of IBM.

C-4 AIX 5L Korn Shell Programming © Copyright IBM Corp. 1998, 2007

Student Notebook
V1.2.2

AP
 4. What syntax would we use to perform a loop a finite number of times, resetting an
identifier each time?

Correct Answer:

For identifier in word1 word2 word3 ...

Also for ((initialize, test, increment))

5. Which construct is best suited to allow conditional processing, based on pattern
matching?

Correct Answer:

case $identifier in

6. What would the following lines produce?

select word in To be or not to be
do

:
done

Correct Answer:

As follows:

1) To
2) be
3) or
4) not
5) to
6) be
#?

7. Which construct is best used within the previous do-done? block?

Correct Answer:

case statement

8. How can we terminate one iteration of a loop and commence the next?

Correct Answer:

Continue
Course materials may not be reproduced in whole or in part
without the prior written permission of IBM.

© Copyright IBM Corp. 1998, 2007 Appendix C. Checkpoint Solutions C-5

Student Notebook
9. How can we abruptly terminate all iterations of a loop but continue further processing in
a shell script?

Correct Answer:

break

Unit 5 - Shell Commands

1. Without using redirection, how could we print information to file descriptor 2?

Correct Answer:

Use -u2 option to the print command.

2. What is wrong with the following command?
read speed?”mph” distance?”miles”

Correct Answer:

read speed? “Enter MPH and DISTANCE” miles.

3. What getopts statement would allow you to process options p, and a, with option t
expecting an associated value?

Correct Answer:

Specify a : after the t option getopts pat: varname

4. In the Bash shell, print is not built-in. What is the built-in command in bash that performs
similarly to Korn’s print?

Correct Answer:

The echo command

5. Which set option disables metacharacter pathname expansion?

Correct Answer:

set -o noglob or set -f

6. Which set options would be most useful in helping to debug a shell script?

Correct Answer:

You can do this by either using the full name options or the single letters.

set -o verbose or set -o xtrace or set -vx.
Course materials may not be reproduced in whole or in part
without the prior written permission of IBM.

C-6 AIX 5L Korn Shell Programming © Copyright IBM Corp. 1998, 2007

Student Notebook
V1.2.2

AP
 Unit 6 - Arithmetic

1. Multiply together variables a and b, using expr.

Correct Answer:

expr $a * $b

2. Use expr to multiply variable a by the sum of b and c.

Correct Answer:

expr $a * \($b + $c \)

3. Set variable hex to contain the hexadecimal value 7c.

Correct Answer:

hex=16#7c

4. Write a let statement to test whether variable a is smaller than variable b.

Correct Answer:

((a<b)) or let “a < b”

5. Define a variable num as numeric only.

Correct Answer:

integer num

6. Increment a numeric variable numvar, by three.

Correct Answer:

Assuming the variable has been defined as an integer, we can use an implicit list:

numvar=numvar+3

Otherwise,

((numvar=numvar+3)) or let numvar=numvar+3

((numvar += 3)) or let numvar += 3

7. How would you calculate 6/7 to 6 decimal places?

Correct Answer:

echo “scale=6; 6/7”| bc
Course materials may not be reproduced in whole or in part
without the prior written permission of IBM.

© Copyright IBM Corp. 1998, 2007 Appendix C. Checkpoint Solutions C-7

Student Notebook
or

echo “scale=6 \n 6/7”| bc

answer is 0.857142

8. How would you calculate the square root of 8541976320?

Correct Answer:

echo “sqrt(8541976320)” | bc -l

answer is 92422.81276827707541375356 -- OK, so who cares about this number? Well, if
anyone is still awake, that is the only number that uses all 10 digits alphabetically.

Unit 7 - Shell Types, Commands, and Functions

1. How is an array defined?

Correct Answer:

For a new array, we can use: set -A arrayname (values) or set +A arrayname (values).

Or we can simply assign a value to any single element arrayname[17]=99.

2. How do we refer to array elements?

Correct Answer:

By using braces and square brackets:

${arrayname[99]} or we can simply assign a value to any single element.

3. How could we set a variable users, to contain the number of users logged onto the
system?

Correct Answer:

users=$(who l wc -l) or users=`who l wc -l`

4. How would we write a function to check the readability of a file?

Correct Answer:

function caniread
{
if [-r “$1”]
then

echo yes
return 0
Course materials may not be reproduced in whole or in part
without the prior written permission of IBM.

C-8 AIX 5L Korn Shell Programming © Copyright IBM Corp. 1998, 2007

Student Notebook
V1.2.2

AP
 else
echo no
return 1

fi
}

5. How do we print out the first and last positional parameter?

Correct Answer:

eval print $1 '$'{$#}

6. How do we define local variables within a function?

Correct Answer:

With the integer or typeset commands.

7. How can we list which functions are defined?

Correct Answer:

typeset +f (-f option to list the function definitions)

8. Which command would allow you to load a library of functions?

Correct Answer:

The autoload or typeset -fu command

9. How could we create an alias to show how many minutes have elapsed since the
current shell began?

Correct Answer:

alias mins='echo $(expr $SECONDS / 60)'

Unit 8 - More on shell Variables

1. What happens when the variable TMOUT is set and you enter the following?
TMOUT=${TMOUT:-60}

Correct Answer:

Nothing, if TMOUT already has a value, otherwise TMOUT is given the value 60.
Course materials may not be reproduced in whole or in part
without the prior written permission of IBM.

© Copyright IBM Corp. 1998, 2007 Appendix C. Checkpoint Solutions C-9

Student Notebook
2. What would your prompt say if you were in your bin directory and you entered this:
PS1='${PWD#$HOME/} $'.

Correct Answer:

Your prompt would read: bin $.

3. How could you find out the number of characters in the variable HOME?

Correct Answer:

Use the # operator; print ${#HOME}.

Unit 9 - Regular Expressions and Text Selection Utilities

1. What regular expression can you use to select surnames?

Correct Answer:

^[A-Z][a-z]*[^a-z]

2. What regular expression can you use to select text with repeated characters in the
surname?

Correct Answer:

^.*\(.\)\1.*,

3. What command can you use to select lines in phone.list with four character first names?

Correct Answer:

grep ', [A-Z][a-z]\{3\}[^a-z]' phone.list

4. How could you count the number of processes whose PIDs are in the range
1000-9999?

Correct Answer:

ps -ef | grep '^[a-z]*[0-9]\{4\}'\

'[^0-9]' | wc -l

5. How would you convert spaces to a tab in phone.list?

Correct Answer:

Use the command

tr “ “ “\t” <phone.list >phone.list.nospaces
Course materials may not be reproduced in whole or in part
without the prior written permission of IBM.

C-10 AIX 5L Korn Shell Programming © Copyright IBM Corp. 1998, 2007

Student Notebook
V1.2.2

AP
6. What would this next command accomplish? cut -d: -f1,3,4 /etc/passwd

Correct Answer:

This will display the username, userid, and groupid from /etc/passwd file

7. Using the paste command, output the /etc/passwd file so that each line of information is
separated by a tab and so that the fifth, sixth and seventh fields are on a separate line
from the others. (Hint: make each field a line.)

Correct Answer:

tr “:” “\n” </etc/passwd | paste -s -d”\t\t\t\n\t\t\n” -

Unit 10 - The sed Utility

1. Write a command line script that displays a ps -ef with your username as the owner of
init.

Correct Answer:

ps -ef | grep init | sed 's/root/teamXX/'

2. How can I make phone.list appear double spaced?

Correct Answer:

sed `a\
> `$HOME/phone.list

3. Cat out the sulog (located in /var/adm/sulog) and change all “+”s to the word successful
and all “ - “ to the word unsuccessful using sed.

Correct Answer:

cat /var/adm/sulog|sed ‘s/+/successful/
s/ - /unsuccessful/’

4. Using sed, insert “#!/usr/bin/ksh” as the first line of a program called program1 and store
in program2.

Correct Answer:

sed ‘1i\
#usr/bin/ksh’program1>program2
Course materials may not be reproduced in whole or in part
without the prior written permission of IBM.

© Copyright IBM Corp. 1998, 2007 Appendix C. Checkpoint Solutions C-11

Student Notebook
Unit 11 - The AWK Program

1. With awk, what happens if I don't supply a pattern?

Correct Answer:

The action is applied to each and every line.

2. With awk, what happens if I don't supply the action?

Correct Answer:

The pattern is applied and matches will display to STDOUT.

3. awk causes the -f option to read instructions from a default line.

Correct Answer:

No, the -f tells awk to read instructions from a named file, for example,

awk -f check.sum phone.list.

4. awk must have both the BEGIN and END statements.

Correct Answer:

No, neither is necessary.

5. Using awk, have the output from the dg command only show the % used and indent
point.

Correct Answer:

df | awk ‘{print $4, $7}’

Unit 12 - Good Practices and Review

1. What allows you to document your program for future reference?

Correct Answer:

Comments, #

2. Why is it a good idea to plan and design before you code?

Correct Answer:

It will help you to know when you are finished.

3. Which statement is faster and why? $(< data.file) or $(cat data.file)
Course materials may not be reproduced in whole or in part
without the prior written permission of IBM.

C-12 AIX 5L Korn Shell Programming © Copyright IBM Corp. 1998, 2007

Student Notebook
V1.2.2

AP
 Correct Answer:

$(< data.file) because < does not create a new process

4. What set options can help in debugging a script?

Correct Answer:

verbose, xtrace, and noexec
Course materials may not be reproduced in whole or in part
without the prior written permission of IBM.

© Copyright IBM Corp. 1998, 2007 Appendix C. Checkpoint Solutions C-13

Student Notebook
Course materials may not be reproduced in whole or in part
without the prior written permission of IBM.

C-14 AIX 5L Korn Shell Programming © Copyright IBM Corp. 1998, 2007

Student Notebook
V4.1

bibl
 Bibliography

ISBN 0-13-460866-6 UNIX shells by Example, Ellie Quiqley, Prentice Hall,
1997

ISBN 0-201-56324-X Korn shell Programming Tutorial, Barry Rosenberg,
Addison-Wesley, 1991

SR28-5706-00 The New Korn shell Command and Programming
Language, M. I. Bolsky & D. G. Korn, Prentice Hall,
1995

SR28-4965-00 UNIX Power Tools, Peek, O'Reilly, and Loukides,
O'Reilly & Associates, Inc., 1994

SR28-4856-01 Essential System Administration, Aeleen Frisch,
O'Reilly & Associates, Inc., 1995

SR285268-00- Learning the Korn shell 2nd Edition, Bill Rosenblatt
and Arnold Robbins, O'Reilly & Associates, Inc.,
2002

ISBN 1-53592-001-5 UNIX in a Nutshell, Daniel Gilly, O'Reilly &
Associates, Inc., 1994

ISBN 1-56592-225-5 sed & awk, Dale Dougherty & Arnold Robbins,
O'Reilly &Associates, Inc., 2nd. Edition, 1997.

Learning the bash Shell 2nd edition, Cameron
Newham & Bill Rosenblatt, O'Reilly 1998
Course materials may not be reproduced in whole or in part
without the prior written permission of IBM.

© Copyright IBM Corp. 2007 Bibliography X-1

Student Notebook
Course materials may not be reproduced in whole or in part
without the prior written permission of IBM.

X-2 Korn and Bash Shell Programming © Copyright IBM Corp. 2007

V4.1

backpg

Back page

���®

	Front cover
	Contents
	Trademarks
	Course description
	Agenda
	Unit 1. Basic Shell Concepts
	Unit 2. Variables
	Unit 3. Return Codes and Traps
	Unit 4. Flow Control
	Unit 5. Shell Commands
	Unit 6. Arithmetic
	Unit 7. Shell Types, Commands, and Functions
	Unit 8. More on Shell Variables
	Unit 9. Regular Expressions and Text Selection Utilities
	Unit 10. The sed Utility
	Unit 11. The awk Program
	Unit 12. Good Practices and Review
	Appendix A. Utilities for Personal Productivity - Optional
	Appendix B. vi Reference
	Appendix C. Checkpoint Solutions
	Bibliography

