
© Copyright IBM Corporation 2007
Course materials may not be reproduced in whole or in part without the prior written permission of IBM. 4.0.1

Unit 2
Shell Variables

© Copyright IBM Corporation 2007

Unit Objectives
After completing this unit, you should be able to:

● Set variables

● Reference variables

● Use positional parameters

● Shift arguments

● Set positional parameters

● Use shell parameters

● Understand inheritance

● List shell variables

● List environment variables

© Copyright IBM Corporation 2007

Setting Variables
To assign a value to a variable: name=value
$ var1=Fri
$ _

To "unset" the value to a variable:
$ unset var1

To protect a variable against further changes:
readonly name=value

- or -
typeset -r name=value

$ readonly var1=Sun
$ var1=Mon
ksh: var1: This variable is read only
$ _
$ readonly -p displays full list

© Copyright IBM Corporation 2007

Referencing Variables
To reference a variable, prefix name with a $

$ print $var1
Fri
$ _

To separate a variable reference from other text use: ${ }

$ print The course ends on $var1day
The course ends on
$ print The course ends on ${var1}day
The course ends on Friday
$ _

© Copyright IBM Corporation 2007

Positional Parameters
Parameters can be passed to shell scripts as arguments on the command

line

$ params.ksh arg1 arg2

"arg1" is positional parameter number 1
"arg2" is positional parameter number 2
Others are unset

They are referenced in the script by:

$1 to $9 for the first nine
${10} to ${n} for all after the first nine

© Copyright IBM Corporation 2007

Setting Positional Parameters
In a shell script the set command can:

Change the values of positional parameters
Unset positional parameters previously set

$ cat first.ksh
print $1 $2 $3
set apple banana
print $1 $2 $3

$ first.ksh a b c
a b c
apple banana

$ _

© Copyright IBM Corporation 2007

Variable Parameters
Shell scripts set a number of other shell parameters:

$# The number of positional parameters set

$@ Positional parameters in a space separated list

$* Positional parameters in a list separated by the
first Internal Field Separator (the default is a space)

In double quotes, $@ and $* behave differently:

"$@" = "$1" "$2" "$3" . . .

"$*" = "$1 $2 $3 . . . "

© Copyright IBM Corporation 2007

Some Shell Parameters
Shell parameters that remain fixed for the duration of the script:

$0 The (path)name used to invoke the shell script

$$ The Process ID (PID) of current process (shell)

Parameters set as the script executes commands:

$! The PID of the last background process

$? The return code from the last command executed

© Copyright IBM Corporation 2007

Discarding the first or leftmost argument

Decrementing the number of positional parameters

Allowing Bourne shell to reference more than 9 arguments

In a shell script the shift command moves arguments to the left:
$ params.ksh arg1 arg2 arg3

Sets

After
shift

arg1 arg2 arg3

arg2 arg3

$2

$1

$1 $3

$2

arguments

Shifting Arguments

© Copyright IBM Corporation 2007

Parameter Code Example
So, let's put all of it into action in a shell script.

$ cat second.ksh
print $$
print $0
print "$# PPs as entered"
print "PP1=$1 PP2=$2 PP3=$3 PP4=$4"
shift
print $0
print "$# PPs after a shift"
print "PP1=$1 PP2=$2 PP3=$3 PP4=$4"
set "$@"
print 'Set "$@" - parameters in double quotes'
print "PP1=$1 PP2=$2 PP3=$3 PP4=$4"
set "$*"
print 'Set "$*" - parameters space separated'
print "PP1=$1 PP2=$2 PP3=$3 PP4=$4"

$ _

© Copyright IBM Corporation 2007

Parameter Output Example
Here's what it does.

$ second.ksh Atlanta NYC "Chicago and D.C."
4687
second.ksh
3 PPs as entered
PP1=Atlanta PP2=NYC PP3=Chicago and D.C. PP4=
second.ksh
2 PPs after a shift
PP1=NYC PP2=Chicago and D.C. PP3= PP4=
Set "$@" - parameters in double quotes
PP1=NYC PP2=Chicago and D.C. PP3= PP4=
Set "$* "- parameters space separated
PP1=NYC Chicago and D.C. PP2= PP3= PP4=
$ _

© Copyright IBM Corporation 2007

What happens to variables when you spawn a Subshell?

Unless you export variables, they will not be passed on.
$ set to list all variables and values

$ export var export variable var so that it will
- or - be inherited by subshells, or

$ typeset -x var use typeset in the Korn shell
$ declare -x var use declare in the Bash shell

$ export to list variables that are exported,
- or - other variables will be unset in a

$ typeset -x subshell

waiting shell
-ksh

ksh

This Shell and the Next

© Copyright IBM Corporation 2007

Inheritance Example - The export Command
Let's see inheritance in action...

$ x=324 We can set a variable x
$ print "$$: X=$x" in our current shell
4589: X=324
$ ksh In a subshell, x is unset
$ print "$$: X=$x" - there is no value to print
4590: X=
$ _ Ctrl-d Returning to the main shell...
$ print "$$: X=$x"
4589: X=324 x will have its value restored
$ export x If we export x, a subshell
$ ksh can inherit the value of x
$ print "$$: X=$x"
4591: X=324
$ x=3 If we change x from the
$ _ Ctrl-d subshell the change does
$ print "$$: X=$x" not affect the main Shell
4589: X=324

© Copyright IBM Corporation 2007

Korn Shell Variables

Korn Shell sets certain variables each time they are referenced:

SECONDS seconds since Shell invocation

RANDOM random number in the range 0 to 32767

LINENO current line number within a Shell Script
or function

ERRNO system error number of the last failed
system call – a system-dependent value!

© Copyright IBM Corporation 2007

Several variables define the environment of a Shell:

CDPATH a search path for the cd command

HOME your home directory

IFS input field separators (space, tab, newline)

PATH the system command search path

PS1 the primary Shell command prompt

PS2 a secondary prompt for multi-line entry

PS3 prompt for the select command

PS4 debug prompt for ksh with the -x option

PWD the current working directory

OLDPWD previous working directory for cd -

Environment Variables

© Copyright IBM Corporation 2007

Korn Shell specific features require environment variables:

COLUMNS screen width

LINES screen length

SHELL the pathname of the shell

TERM the terminal type (selects terminfo file)

ENV program/script to be sourced for each new shell

FCEDIT an editor for the fc command

FPATH a search path for function definition files

HISTFILE your history file

HISTSIZE limit of history commands accessible

Korn Environment Variables (1 of 2)

© Copyright IBM Corporation 2007

Korn Environment Variables (2 of 2)

LC_COLLATE sorting sequence for pattern ranges

MAIL the name of your mail file

MAILCHECK mail check frequency (default 600 seconds)

MAILMSG the "you have new mail" message

PPID the parent process ID

REPLY set by select command and the read
command if no argument is given

EDITOR the editor for command line editing

VISUAL a visual editor – overrides EDITOR

© Copyright IBM Corporation 2007

Korn Shell 93 Variables
There are several additional variables and variable meanings in ksh93.
Here are a few:

TMOUT also used to timeout of select menu
.sh.version identifies version of the shell -- use ${ }

© Copyright IBM Corporation 2007

Bash Environment Variables
Bash variables are the same unless noted here:

BASH_ENV instead of ENV program to be sourced for each new
interactive shell

PS1 has additional features (see below)

Some additional variables in bash:

BASH_VERSION version number for the instance of bash
HOSTNAME name of current host
HOSTTYPE describes machine bash is running on
SHLVL shell level - how deeply you are nested

© Copyright IBM Corporation 2007

Checkpoint

1. How could we use positional parameter 3 in a shell script?

2. Which variable contains the number of positional
parameters?

3. How can we change the value of a variable set in a different
process?

4. What is the variable IFS?

5. How can we reset PS1 to show the current directory?

6. By setting a variable, how can we have a command recall
facility?

© Copyright IBM Corporation 2007

Unit Summary

●Setting variables

●Referencing variables

●Using positional parameters

●Shifting arguments

●Setting positional parameters

●Using shell parameters

●Understanding inheritance

●Shell variables

●Environment variables

