
© Copyright IBM Corporation 2007
Course materials may not be reproduced in whole or in part without the prior written permission of IBM. 4.0.1

Unit 6
Arithmetic

© Copyright IBM Corporation 2007

Unit Objectives
After completing this unit, you should be able to:

● Use the expr utility

● Understand expr arithmetic and logical operators

● Use shell let or (())

● Use number bases

● Use let logical operators

● Use integer variables

● Use implicit let

● Understand the bc utility

© Copyright IBM Corporation 2007

AIX provides the expr utility to perform integer arithmetic

expr argument1 operator argument2 …

expr features

Runs as an external executable

Writes results to standard output

Exit code is 0 for non-zero evaluations

Exit code is 1 for zero or null evaluations

Exit code is > 2 if an expression is invalid

Mostly used for control flow in shell scripts – loop counters

expr Arithmetic

© Copyright IBM Corporation 2007

expr Arithmetic Operators
To group expressions use:

() fixes evaluation order - otherwise
normal rules of precedence apply

The integer operators result in mathematical evaluations:
= equal
!= not equal
< less than
<= less than or equal
> greater than
>= greater than or equal

© Copyright IBM Corporation 2007

$ var1=6; var2=3

$ expr $var1 / $var2

2

$ expr $var1 - $var2

3

$ expr \($var1 + $var2 \) * 5

45

$ _

What is the result of the following?
$ expr 10 % 3

$ expr 10 / 3

Here is some simple integer arithmetic...

expr Examples

© Copyright IBM Corporation 2007

let argument ..

-or-

((argument))

The let Command

● The let built-in shell command performs long integer arithmetic
approximately 10 times faster than expr

● Evaluates each argument as an arithmetic expression
● No quotes for special characters, or arguments with spaces or tabs in

them, within ((...))
● Variables need no $
● The exit code is 0 (true) for non-zero, and 1 (false) for zero evaluations
● In ksh93, let will use decimal numbers, if you give the arguments in

decimal notation
● In bash and ksh88, integer only

© Copyright IBM Corporation 2007

() overrides normal precedence rules
* multiplication
/ division
% remainder
+ addition
- subtraction (or unary minus)
= assignment

let Arithmetic Operators
For simple arithmetic:

var op= exp means var = var op exp

Up to nine levels of nested processing will be evaluated:

$ z=2 ; y="z + 1"
$ ((x=3*y))
$ print $x
9
$ _

© Copyright IBM Corporation 2007

let Arithmetic Examples
Some simple arithmetic...

$ a=1 b=2
$ ((z = 2#10 + -b)) unary minus needs a space

before it, not after
$ let c=a+b d=b*b no spaces, but \ needed for

* multiple arguments
$ ((e = 9 / b)) integer division
$ ((e += a)) assignment: addition
$ print $z $a $b $c $d $e

What do you think we get?

What is the difference between these?
$((...)) and ((...))?

© Copyright IBM Corporation 2007

Logical expressions evaluate to 1 if true, 0 if false
(the exit code is 0 for non-zero, 1 for zero – as expected):

! logical negation

< less than
<= less than or equal to
> greater than
>= greater than or equal to
== equal to
!= not equal to

&& logical "and" = 1 if both LHS and RHS are true
(RHS not evaluated if LHS is false)

|| logical "or" = 1 if either LHS or RHS are true (if
LHS is true, RHS not used)

let Logical Operator

© Copyright IBM Corporation 2007

$ ((p = 9))

$ ((p = p * 6))
$ print $p
54

$ ((p > 0 && p <= 10))
$ print $?
1

$ q=100
$ ((p < q || p == 5))
$ print $?
0

$ if ((p < q && p == 54))
> then
> print TRUE
> fi
TRUE

$ _

let Logical Examples

© Copyright IBM Corporation 2007

With let you are not limited to just decimal (base ten) integers:

let constants are of the form base#number

base is an integer in the range 2 to 36 (10 default)

number may include upper or lowercase letters for bases greater than 10

2#100 in binary = 4 (in base 10)

8#33 in octal = 27

16#b in hexadecimal = 11

16#2A in base16 = 42

base#number Syntax

© Copyright IBM Corporation 2007

Shell variables are stored as character strings unless defined with the
integer command

Sets the integer attribute for each variable

typeset can define a base N, variables then print in the specified base (2
to 36)

Assignment to an integer variable causes expression evaluation – an
implicit let command

let does not have to convert integer variables from character strings to
numerical values

integer variable=value ...

typeset -iN variable=value ...
-or-

Shell integer Variables

© Copyright IBM Corporation 2007

integer Examples
Some examples of integer and typeset -i ...

$ integer x x can hold only integers
$ x=string
ksh: string: 0403-009 The specified number is
not valid for this command.
$ x=5+10 implicit let command
$ print $x
15
$ ((x = 5 + 100))
$ print $x
105
$ typeset -i8 nums0 nums1 nums2
$ nums0=8#5 define an octal integer variable
$ nums1=8#10
$ ((nums2=8#3*nums0)) assign value
$ print ${nums2}
8#17
$ x=${nums2}
$ print $x print gives answer in base 10
15
$ _

© Copyright IBM Corporation 2007

integer variable assignments are an implicit let command
Other implicit let commands are:

Values for the shift command

shift OPTIND-1

Resource limits with ulimit

ulimit -t TMOUT+60

Implicit let Command

© Copyright IBM Corporation 2007

bc - Mathematics
The AIX system provides the bc utility

bc [file]

●Performs floating point arithmetic

●Acts as a filter command or interactively

●Reads arithmetic expression strings from standard input or
from a specified file

●Semicolons or new lines separate expressions

●Sets the scale variable inside bc to define the required
number of decimal places

●Prints results to standard output

© Copyright IBM Corporation 2007

For simple arithmetic and logical evaluations, use:

A library provides complex mathematical functions:

(,), +, -, *, /, %, = as for let arithmetic operators
==, !=, <, <=, >, >= as for let logical operators
x^y raise x to the power y
sqrt(x) square root
x++ ++x post and pre increment x
x-- --x post and pre decrement x
x op= y ≡ x = x op y for +=, -=, *=, /=, %=, ^=

s(x) sine of x
c(x) cosine of x
e(x) natural exponential of x
l(x) natural log of x
a(x) arctangent of x
j(n,x) Bessel function

Precision functions:
length(n) number of significant digits for example, 123.456 has n=6
scale(n) number of digits after decimal point for example, 123.456 has n=3

bc Operators

© Copyright IBM Corporation 2007

Here are some examples of bc working both as a filter and
interactively.

$ print '1/4' | bc integer division without a scale
0
$ print 'scale = 3 ; 1/4' | bc explicit scale value set
0.250
$ print '5.5 * 2.2' | bc scale set implicitly from input
12.1
$ value=$('5.5 * 2.2' | bc) assign the answer to a variable
$ print $value
12.1
$ bc

sqrt(4) no prompt – this is my input
2 the result from the command
Ctrl-d to end interactive mode
$ _

bc Examples

© Copyright IBM Corporation 2007

1 2 3 4 5 6 7 8 9 10

The Bessel Function
J0

J1

J2

An Example of the Power

1.0

0.8

0.6

0.4

0.2

-0.2

-0.4

© Copyright IBM Corporation 2007

Checkpoint
1. Multiply together variables a and b, using expr.

2. Use expr to multiply variable a by the sum of b and c.

3. Set variable hex to contain the hexadecimal value 7c.

4. Write a let statement to test whether variable a is smaller
than variable b.

5. Define a variable num as numeric only.

6. Increment a numeric variable numvar, by three.

7. How would you calculate 6/7 to 6 decimal places?

8. How would you calculate the square root of 8541976320?

© Copyright IBM Corporation 2007

Unit Summary

●The expr utility

●expr arithmetic and logical operators

●Shell let or (())

●Number bases

●let logical operators

● Integer variables

● Implicit let

●The bc utility

