
© Copyright IBM Corporation 2007
Course materials may not be reproduced in whole or in part without the prior written permission of IBM. 4.0.1

Unit 1
Basic Shell Concepts

© Copyright IBM Corporation 2007

Unit Objectives
After completing this unit, you should be able to:

● Describe the AIX shells

● Use the AIX filesystem

● Create a shell script

● Use metacharacters

● Use I/O redirection

● Use pipes and tees

● Group commands

● Run background processes

● Use shell job control

● Use command line recall and editing

© Copyright IBM Corporation 2007

Shells

●What is a shell?
– User interface to AIX
– Command interpreter
– Programming language

●AIX shells:
– Bourne - bsh
– Bourne-Again - bash
– C - csh
– Distributed - dsh
– Korn (88) - ksh
– Korn (93) - ksh93
– POSIX - psh
– Restricted - rsh
– Trusted - tsh
– Default - sh (links to ksh in AIX V4 and V5)

© Copyright IBM Corporation 2007

This Course

●AIX 5 loads with the 88 Korn Shell, the 93 Korn Shell, the
Bourne Shell, and the Bash Shell (and more).

● root may create different users who log into different shells.
●The default shell in AIX 5 is 88 Korn Shell.
●This course focuses on the 88 Korn Shell. The slight

differences in the other three shells will be noted on the slide
or in the student notes.

●Available logins are:
– team01, team02, team03, team04, team05
– bash01, bash02, bash03, bash04, bash05
– ksh9301, ksh9302, ksh9303, ksh9304, ksh9305

●The password is the same as your login name
●All exercises are located in /home/workshop:

– They need to be copied into your $HOME

© Copyright IBM Corporation 2007

●The filesystem comprises directories in a hierarchical structure

●Refer to the files and directories with a a full or relative path
name

● "." represents current dir, ".." represents parent directory

usr var

/

tmphome

adm

etc

spoolchrispat

bin sbin

Directories

© Copyright IBM Corporation 2007

Command Argument Function

mkdir directory Create new directory directory

rmdir directory Delete empty directory directory

rm file Remove a file

rm -r directory Delete directory directory and any sub-
directories

ls directory Give a listing of directory -
many options: l, R, d, a i, t

pwd Print working directory - where you are in
the tree right now

mv old new Rename a file or directory - "new" can be a new
file name, or a directory in which to place the file

cp old new Copies a file to a new name

ln name copy Creates another name without copying the
contents

cd directory Change working directory to directory

Basic File Commands

© Copyright IBM Corporation 2007

A File

●Definition:
– Collection of data, located on a portion of a disk.
– Stream of characters or a byte stream.

●No structure is imposed on an ordinary file by the operating
system.

●Examples:
– Binary executable code – /bin/ksh
– Text data – /etc/passwd
– C program text – /home/pat/prog.c
– Device special file – /dev/null
– Directory special file – /home

$ file filename – to find out which file type
$ strings filename – if the file type is 'binary'

© Copyright IBM Corporation 2007

AIX File Names

●Should be descriptive of the content

●Are case-sensitive

●Should use only alphanumeric characters:

UPPERCASE lowercase digits
. @ - _

●Should not begin with "+" or "-" sign

●Should not contain embedded blanks or tabs

●Should not contain shell "special" characters:
* ? > < / ; & ! ~ $ \ |
[] { } () ` ` ' ' " "

© Copyright IBM Corporation 2007

What Is a Shell Script?

●A readable text file which can be edited with a text editor
– /usr/bin/vi shell_prog

●Anything that you can do from the shell prompt

●A program, containing:
– System commands
– Variable assignments
– Flow control syntax
– Shell commands

●And comments
– #!/bin/ksh is not a comment if #! is in the first position

© Copyright IBM Corporation 2007

-ksh
ksh

-ksh
ksh

Invoking Shells
$ ksh begins a new 88 Korn shell,

interrupting the current one

$ ksh -c commands runs commands in a shell

$ ksh -r starts a restricted shell

waiting shell

terminates the current shell and
replaces with new shell

$ exec ksh terminated shell

new shell

© Copyright IBM Corporation 2007

$. prog (sourced) in current shell environment

$ ksh prog run prog in a new Korn shell
$ prog (or ./prog) run in a new shell if prog is executable

$ exec prog run prog in a new shell to replace the
current one

waiting shell
-ksh

ksh

-ksh
ksh

terminated shell
prog

prog
-ksh

prog

Invoking Scripts

© Copyright IBM Corporation 2007

Invoking the Korn Shell sources:

Sourced by all AIX processes

Sourced by login shells

Login shells source these files in the
user's home directory

A resource file listed in the ENV
environment variable will be sourced by
the shell

/etc/environment

/etc/profile

.profile

.exrc (.vimrc)

$ENV
.kshrc (.bashrc)

Each new explicit Korn shell sources the ENV file again

time

* If using CDE, .dtprofile must be changed to force an execute of
.profile. If using bash, please refer to student notes.

Korn Shell Configuration Files

© Copyright IBM Corporation 2007

What Are Metacharacters?

●Characters with special meaning

– Three types
• Wildcard (or expansion)
• Shell
• Quoting

– Shell processes metacharacters before executing a command

– There are many different shell metacharacters

– Metacharacters can be mixed

●Wildcard metacharacters can be turned off by shell options

© Copyright IBM Corporation 2007

Range list of all upper case letters
All lower case letters: a, b, c,... z
Digits: 0, 1, 2,... 9
Spacing characters: tab, space, and so forth

Character Equivalence Classes can be used in place of range
lists, to avoid National Language collation problems:

Match any number of any characters
Match any single character
Match a single character from the bracketed list
Match any single character except those listed
Inclusive range for a list

*
?
[abc]
[!az]
[a-z]

[[:upper:]]
[[:lower:]]
[[:digit:]]
[[:space:]]

-
-
-
-
-

-
-
-
-

Metacharacters that form patterns that are expanded into matching
filenames from the current directory:

Wildcard Metacharacters

© Copyright IBM Corporation 2007

usr vartmphome

adm

etc

spoolchrispat

bin

/

data_file table1shell_progscript3script2diary.apple dirA

File1

Sample Directory

© Copyright IBM Corporation 2007

Expansion Examples

$ rm d*y removes the diary file

$ file script* identifies script2 and script3

$ head script[345] displays the top lines of script3

$ more script[3-6] displays script3 screen by screen

$ tail script[!12] displays the last lines of script3

Now, it's your turn...

$ touch ?a*

$ pg [st][ah]*

$ ls d*

$ lpr [a-z]*t[0-9]

© Copyright IBM Corporation 2007

More Shell Metacharacters
The Korn shell can match multiple patterns

*(pattern|pattern...) zero or more occurrences
?(pattern|pattern...) zero or one occurrence
+(pattern|pattern...) one or more occurrences
@(pattern|pattern...) exactly one occurrence
!(pattern&pattern...) anything except

One or more patterns, separated with "|" for "or", "&" for "and"
Examples:

*([0-9]) 0 or more consecutive digits
?(warning) 0 or 1 occurrence of "warning"
+([[:upper:]]|[a-z]) 1 or more consecutive letters
@([0-9]|abc) 1 digit or "abc"
!(err*|fail*) Word cannot start with "err" or "fail"

© Copyright IBM Corporation 2007

Quoting Metacharacters
Stops normal shell metacharacter processing, including metacharacter

expansion

● To form strings

"double quotes" remove the special meaning of all
shell metacharacters except for the
$, `(backquote), and \

● To form literal strings

'single quotes' remove any special meaning of the
characters within the single quotes

● For a literal character

\character removes the special meaning of the
character immediately following the \

© Copyright IBM Corporation 2007

ProcessInput
(0)

(1)

(2)
Output

Error

Standard in - keyboard
Standard out - screen
Standard error - screen

Defaults

User-
defined

{ 0<
1>
2>
3

9

File descriptor table

.

.

.{

Process I/O

●Every process has a file descriptor table associated with it

© Copyright IBM Corporation 2007

Input Redirection
Redirecting standard input from a file: <

command < filename

$ mail marty
Subject: Hello
A letter to see if you are still with us.
<Ctrl-d>
$ _
$ mail -s "Hello" marty < letter
$ _

Input may also be given inline. This is called a HERE document.

command << END
text
…
END

© Copyright IBM Corporation 2007

2

0
file

Process

1

© Copyright IBM Corporation 2007

Output Redirection
Redirecting standard output to a file: >

command > filename

$ ls /home/chris
data_file script2 script3 shell_prog table1
$ _

$ ls /home/chris > listing
$ _

Redirecting standard error output to a file: 2>
command 2> filename

$ cat /home/chris/printout
cat: 0652-050 Cannot open printout.
$ _

$ cat /home/chris/printout 2> errors
$ _

© Copyright IBM Corporation 2007

2

0

file
Process

1

© Copyright IBM Corporation 2007

Output Appending
Appending standard output to a file: >>

command >> filename

$ wc -l /home/chris/script3
42 /home/chris/script3

$ _

$ wc -l /home/chris/script3 >> line_count
$ _

Appending standard error output to a file: 2>>
command 2>> filename

$ wc -c /home/chris/characters
wc: 0652-755 Cannot open characters.
$ _

$ wc -w /home/chris/words/ 2>> errors
$ _

© Copyright IBM Corporation 2007

2

0

file
Process

1

© Copyright IBM Corporation 2007

File descriptors can be joined, so that they output to the same place

command > file 2>&1

Redirects standard error to join with standard out

What do you think these command do?

$ cat message_file 2>&1 > errors_file
$ cat message_file 1>&2

0
1

2

Association

© Copyright IBM Corporation 2007

Setting I/O or File Descriptors
The built-in shell command exec allows you to

Open
Associate
Close

file descriptors

$ exec n>of Opens output file descriptor n to file "of"

$ exec n<if Opens input file descriptor n to read file "if"

$ exec m>&n Associates output file descriptor m with n

$ exec m<&n Associates input file descriptor m with n

$ exec n>&- Closes output file descriptor n

$ exec n<&- Closes input file descriptor n

© Copyright IBM Corporation 2007

Setting I/O Descriptor Examples
To open file descriptor 3 for output to Lee's out file and file descriptor 4 to

Lee's err file
$ exec 3> /home/lee/out
$ exec 4> /home/lee/err
$ date >&3
$ ls /home/lee 2>&4

To associate output to file descriptor 3 with file descriptor 4
$ exec 3>&4
$ wc -l /home/lee/script3 >&3
$ wc -l /home/lee/table1 >&4

To close file descriptors 3 and 4
$ exec 3>&-
$ exec 4>&-

© Copyright IBM Corporation 2007

Commands can be joined, so one inputs into the next
command1 | command2 | command3

Gives a command pipeline
$ ls /home/robin | sort -r | lp

sorts the file list into reverse order, and prints it

Pipelines may have a branch using the tee command file descriptor
$ ls /home/francis | tee raw_list | sort -r | lp

saves the unsorted list in the file raw_list

ls sort lp0 0 0 111

222

ls sort lp
0 0 01 11

222

tee
0 1

2

1

raw_list

Pipes

© Copyright IBM Corporation 2007

To combine the output of several commands: { } or ()
{ command ; command ... ; }

Runs commands in the current shell
Directory (or environment) changes remain in effect

{ cd /home/lynn ; chown lynn:bin s* ;}

(command ; command ...)
Does not change your current environment

(cd /home/lynn ; chown lynn:bin d*)

This leaves the working directory unchanged on completion

-sh

waiting shell
-sh

Command Grouping { } and ()

command line

© Copyright IBM Corporation 2007

sh

sleep &

date wait

Background Processing
Execute command in the background: &

$ sleep 999 &

Waiting for the end...
$ date
Mon Dec 31 11:59:59 EST 2007
$ wait

When all background processes have finished
$ _

© Copyright IBM Corporation 2007

Shell Job Control
The shell assigns job numbers to background or suspended processes

The jobs command lists your current shell processes and their job ids
<Ctrl-z> suspends the current foreground job
bg runs a suspended job in background
fg brings to foreground a suspended or background job
Jobs can be stopped with the kill command
The disown command can be used in ksh93

kill, fg and bg work with the following arguments:
pid process ID
%job_id job ID
%% %+ current job
%- previous job
%command match a command name
%?string match string in command line

© Copyright IBM Corporation 2007

$ cc -o RUNME program_in.c
... After some time running this long compilation...
Ctrl-z
[2] + 5692 Stopped (SIGTSTP) cc -o RUNME program_in.c
$ jobs
+ [2] Stopped (SIGTSTP) cc -o RUNME program_in.c
- [1] Running sleep 999 &
$ bg %+
[2] cc -o RUNME program_in.c
$ jobs
+ [2] Running cc -o RUNME program_in.c
- [1] Running sleep 999 &
$ kill %cc
[2] + 5692 Terminated cc -o RUNME program_in.c
$ fg %1
sleep 999
$ _
Completing the sleep in the foreground...
$ jobs
$ _

Job Control Example

© Copyright IBM Corporation 2007

Command substitution allows you to use the output of a command or
group of commands:

In a variable assignment
In part of an argument list

Nesting is possible but can be EXTREMELY confusing:

Bourne, Korn, and Bash variable=`command`
-- or --

Korn and Bash variable=$(command)

var=`cmd1 \`cmd2 \\\`cmd3\\\` \` `
-- or --

var=$(cmd1 $(cmd2 $(cmd3)))

Command Substitution

© Copyright IBM Corporation 2007

Command Substitution Examples (1 of 2)
Here is command substitution in action...

$ d=$(date)
$ print $d
Fri Feb 29 02:29:00 EST 2008
$ _
$ print "Contents of a file" > tmp_file
$ c=`cat tmp_file`
$ r=$(< tmp_file) no command, no Sub-Shell
$ print "Cat: $c"
Cat: Contents of a file
$ print "<: $r"
<: Contents of a file
$ _

© Copyright IBM Corporation 2007

Command Substitution Examples (2 of 2)
Can you explain exactly what is happening here?

$ print "Most recent file: $(ls -t | head -1)"
Most recent file: tmp_file
$ _
$ print "Today is $(date)"
Today is Sat July 07 07:07:07 EDT 2007
$ _

© Copyright IBM Corporation 2007

Command Line Editing and Recall
vi option for the Korn Shell and emacs for the Bash Shell give:

Command line editing
Command recall

$ set -o vi or set -o emacs

For vi simply press ESC to enter editing mode:
h to move the cursor left
l to move the cursor right
- or k fetches commands from the history file
+ or j if you go too far back

Plus other vi commands to perform line editing

For emacs:
Arrows work, DELete and BackSpace work, else <Ctrl-b>, <Ctrl-f>,
<Ctrl-d>
Up arrow to fetch previous command
(Check out the Student Notes for more fun stuff!)

© Copyright IBM Corporation 2007

Checkpoint

1. What type of file is /dev/tty3?
2. How could we find out a file type?
3. How can we get .kshrc to run in an explicit Korn Shell?
4. How can we specify the first character in a file name to be

uppercase?
5. How can we ignore error messages from a command?
6. How do you make the normal output of a command appear

as error output?
7. How can we group commands, in order to redirect the

standard output from all of them?
8. What will kill 1 do?
9. If you have submitted a job to run in foreground, how could

you move it to background?
10.How would you set up a command line recall facility?

© Copyright IBM Corporation 2007

Unit Summary

●AIX shells
●Hierarchical file-system
●Filenames and types
●Shell scripts
● Invoking shells
●Shell metacharacters: Expansion and quoting
●Redirection -- < and << input, > and >> output, 2> and 2>>

error
●Setting file descriptors
●Pipes and tees
●Command grouping
●Background processes
●Shell job control
●Shell command editing

