
© Copyright IBM Corporation 2007
Course materials may not be reproduced in whole or in part without the prior written permission of IBM. 4.0.1

Unit 12
Good Practices and Review

© Copyright IBM Corporation 2007

Unit Objectives

After completing this unit, you should be able to:

●Write any serious script you need to

●Plan the activity

●Produce good code

● In this unit:
– Planning and design
– Documentation
– Debugging
– Performance issues
– Guidelines for scripting
– Course summary

© Copyright IBM Corporation 2007

Planning and Design

●As well as your favorite design methodology (Flow Charts,
Data-Flow, SSADM, and so forth) consider:
– Functionality – clearly defined specification
– Modular design – use of functions, separate programs
– Environment – variables, directories
– File naming convention – for temporary files, results
– Testing – individual units, integration tests, boundary conditions
– Debugging code – do not forget the next maintainer

© Copyright IBM Corporation 2007

Use of Comments

●A good programmer uses comments in a program to:
– Explain the purpose and function of the code at key points
– Describe the use of variables
– Explain complicated syntax
– Give yourself the credit (or the blame) for your work
– Mark corrections or additions

●Remember to update the comments with the code

© Copyright IBM Corporation 2007

Commenting Out

●Lines can be commented out using the # comment character:
• # command arg1 arg2

– No Shell interpretation is performed to the right of #
– Legal anywhere, except as the only statement in a flow-control

construction (if, while, until)

●The "null" command can be used where commenting out would
not work:
• : command arg1 arg2

– Arguments are ignored, but processed as usual
– Always returns 0 (true)

© Copyright IBM Corporation 2007

Script Layout
Some things must be done in a certain order other things can be
arranged for good code:

– Shell control line (first in script)
#!/usr/bin/ksh or #!/bin/bash

– Header comments
– Validation of options
– Testing of arguments
– Initialization of variables
– Function definitions
– Main code

© Copyright IBM Corporation 2007

Debugging Code
Shell options can help with syntax checking:

To check the syntax of a script without running it

set -o noexec or set -n
For the shell to print its input as it reads it

set -o verbose or set -v
An execution trace displays each command before it is run and after
command line processing

set -o xtrace or set -x
For functions, use

typeset -ft function ...

© Copyright IBM Corporation 2007

DEBUG Traps
After each simple command the shell issues the fake signals

– DEBUG

– ERR

– EXIT

The order is DEBUG, ERR, then any other traps, and lastly EXIT

To display the environment after each command set this trap

trap "set" DEBUG

When a command has a non-zero exit status, the shell sends the ERR signal

For example, to see what signals are causing error exits set this trap
trap "kill -l $?" ERR

© Copyright IBM Corporation 2007

Maintaining Code

●Documentation: Design and comments

●Clarity
– Code
– Documentation

●Modularity
– Main script
– Use "good" functions or separate programs

© Copyright IBM Corporation 2007

Good Functions

●To write functions that are reliable and easy to maintain:
– Avoid altering global variables inside a function
– Define and export functions only when necessary
– Do not change the working directory inside a function
– Tidy up local temporary files

© Copyright IBM Corporation 2007

Performance Issues for Shell Scripts

● If performance is an issue
– Do not guess
– Measure

●Performance of a script means two areas:
– That of the shell
– That of the script

●Remember that you should work in this order
– Make it work
– Make it robust
– Make it more efficient/faster

© Copyright IBM Corporation 2007

Timing Commands
To report the elapsed, user and system time for a command or pipeline,
use time in the Korn or Bash shells:
– A reserved word (not a command)
– Output is to standard error
– Input or output redirection applies to the commands under test only
– Return value is that of the commands under test

$ time find / -name 'unix*' -print|sort
/unix

/usr/lib/unixtomh output from find
real 0m25.51s wall clock time
user 0m1.56s
sys 0m11.01s
$ _

© Copyright IBM Corporation 2007

Times for Shells
The times command displays how much time your current shell and all
its subshells have consumed:

$ times
0m0.99s 0m15.37s
0m8.61s 0m33.21s

– User and system timings given in hundredths of a second
– First line for the current shell
– Second line for the subshells

© Copyright IBM Corporation 2007

Shell Performance
To increase the startup speed of a new shell:

– Keep your history file (.sh_history) small
– Minimize the size of any $ENV file
– Use autoload with your functions (ksh)
– Use FPATH with your functions
– Use set -o nolog to prevent function definitions being logged in

your history (ksh)
– Use tracked aliases or hashes
– Try to use an alias in place of a simple function
– Set MAILCHECK greater than the 600 second default
– In bash, use brace expansion, for example:
mkdir ../release_{src,doc}

© Copyright IBM Corporation 2007

Shell Script Performance
Tips for faster performance shell scripts:

Shell built-in commands run faster than UNIX built-ins

Avoid command substitution where you can use ${ } parameter
expansions, let or pattern matching

Note $(< file) is faster than $(cat file)

Use multiple arguments rather than separate commands – for example,
typeset -i a=3 b=4

Use set -f or set -o noglob if not using pathname
metacharacters

Use { } grouping that is faster than ()

Apply I/O re-directions to the whole of a loop syntax

Set the integer attribute for suitable variables and don't use $ for them
with arithmetic expressions

© Copyright IBM Corporation 2007

Good Rules to Follow

1. Documentation

2. Make backups

3. Try three times

4. Do not overlook the obvious

5. Try it, it might work

6. Never say never, always avoid always

7. There is usually another way to do it

© Copyright IBM Corporation 2007

Checkpoint

1. What allows you to document your program for future
reference?

2. Why is it a good idea to plan and design before you code?

3. Which statement is faster and why?
$(< data.file) or $(cat data.file)

4. What set options can help in debugging a script?

© Copyright IBM Corporation 2007

Unit Summary

●Planning and design

●Documentation

●Debugging

●Performance issues

●Guidelines for scripting

●Course summary

© Copyright IBM Corporation 2007

Course Summary

●Basic concepts
●Shell variables and parameters
●Exit status, return codes and traps
●Programming constructs – flow control
●Shell commands and features
●Arithmetic in shells
●Shell types and functions
●Regular expressions and text selection
●Productivity using sed and awk
●Summary – good practice, debugging, performance

