
© Copyright IBM Corporation 2007
Course materials may not be reproduced in whole or in part without the prior written permission of IBM. 4.0.1

Unit 11
The awk Program

© Copyright IBM Corporation 2007

Unit 11 Objectives -- The awk Program

After completing this unit, you should be able to use the awk
utility by looking at:

●Regular expressions in awk
●Basic awk programming
●BEGIN and END processing
●Flow control – if, while and for
●Leaving loops – continue, next and exit
●awk arrays
●Better printing
●awk functions

© Copyright IBM Corporation 2007

What Is Awk?
awk is a programming language used to manipulate text

awk sees data as words (fields) in a line (record)

An awk command consists of a pattern and an action comprising
one or more statements

awk '/pattern/ { action }' file ...

awk tests every record in the specified file(s) for a pattern match. If
a match is found, the specified action is performed

awk can act as a filter in a pipeline or take input from the keyboard
(standard input) if no file(s) are specified

© Copyright IBM Corporation 2007

Lastname,<Space>Firstname<Tab>nnn-mmmm

$ cat phone.list
Terrell, Terry 617-7989
Franklin, Francis 704-3876
Patterson, Pat 614-6122
Robinson, Robin 411-3745
Christopher, Chris 305-5981
Martin, Marty 814-5587
Llewellyn, Lynn 316-6221
Jansen, Jan 903-3333
Llewellyn, Lee 817-8823
$ _

The same file is used in the RE and sed units

Sample Data – awk

© Copyright IBM Corporation 2007

awk Regular Expressions
Like sed, regular expressions are "/" delimited – "/x/"

All of the previous regular expression metacharacters can be used with
awk

awk has the following extensions

/x+/ for one or more occurrences of x
/x?/ zero or one occurrence of x
/x|y/ matches either "x" or "y"
(string) groups a string – for use with + or ?

Example:

/t[i|o]?n[iey]+/
matches: tiny, tony, toni, toney, tone, tny (and others...)

© Copyright IBM Corporation 2007

awk Command Syntax
Basic syntax

pattern { actions }
pattern

{
actions
}

Multiple statements in an action

– Use a line break or a semi-colon
$ awk '/Ll/ { print $1 ; print $3 }' phone.list

Comments start with a # until the end of a line

$ awk '/Ll/ { print $1 # prints field 1
> print $3 }' phone.list

© Copyright IBM Corporation 2007

The print Statement
One useful action is to print the data!

awk '/pattern/ { print }' ifile > ofile

awk tests each record of the input for the specified pattern

When a match is found the print statement sends the entire record
to standard output

© Copyright IBM Corporation 2007

awk Fields and Records
Referencing fields in a record

$0 = the entire record
$1 = the first field in the record
$2 = the second field in the record
...

To print Jansen's phone number from phone.list:

$ awk '/Jansen/ { print $3 }' phone.list
903-3333

To place that phone number into a variable:

$ JanNum=$(awk '/Jansen/ { print $3 }' phone.list)

© Copyright IBM Corporation 2007

print Examples
Special character sequences are available for use in print strings or
regular expressions

\n newline
\t tab
\r carriage return

$ awk '/^Ll/ { print "Name:\t", $1
> print "Number:\t", $3, "\n" }' phone.list
Name: Llewellyn,
Number: 316-6221

Name: Llewellyn,
Number: 817-8823

$ _

© Copyright IBM Corporation 2007

Comparison Operators and Examples
To compare regular expressions or strings with values:

== equal to != not equal to
< less than <= less than or equal to
> greater than >= greater than or equal to
~ matched by RE !~ not matched by RE
|| logical "or" && logical "and"

Examples:

$1 ~ /x/ field one matches regular expression x
$1 != "No" field one doesn't match string "No"

You can use comparison operators in the pattern to select records

$ awk '$1 == "Terrell," { print $2, "Smythe" }' phone.list
Terry Smythe
$ _

© Copyright IBM Corporation 2007

Arithmetic Operators
You can use the following operators to perform arithmetic:

+ addition
- subtraction
* multiplication
/ division
% remainder
^ exponential (x^y, raise x to the power y)
++x x++ pre and post increment
--x x-- pre and post decrement
= assignment (x = 4)

x op= y x = x op y
for: +=, -=, *=, /=, %=

Example
count = count + 2
count += 2

© Copyright IBM Corporation 2007

User Variables and Expressions

You can define your own variables:
●Names must:

– Start with a letter or underscore
– Be followed by letters, underscores, or digits

●awk does not require variables to be defined before use

Variables are initialized as empty (numerically zero)
– The empty string is null ("")

●Referenced by name only
●Can be passed through from the command line

© Copyright IBM Corporation 2007

BEGIN and END Processing
You have seen the pattern and action with awk syntax
You can also have actions at the beginning and end of input
You use the special patterns BEGIN and END

awk 'BEGIN { begin_action }
pattern { action }
pattern { action }
END { end_action }' file...

Where:

BEGIN means execute the begin_action before any input read

END means execute end_action once all input has been read

© Copyright IBM Corporation 2007

BEGIN without END Example
You can use BEGIN to print a header to the output...

Here we have a BEGIN with no END

$ awk 'BEGIN { print "Words in phone.list"}
> { wcount = wcount + NF
> print wcount }' phone.list
Words in phone.list

3
6
9
...
24
27

$ _

The statements within the second set of braces were performed on every line of
"phone.list" as no pattern was specified

© Copyright IBM Corporation 2007

END without BEGIN Example
You can use END to print a trailer or summary after the output:

$ awk '{ wcount = wcount + NF }
> END { print "Words in phone.list: ",

wcount }' phone.list
Words in phone.list: 27
$ _

The statement within the first set of braces refers to the main action
The main action is performed on every line of the file "phone.list", so
the final value of wcount holds the total number of fields (or words) in
the file
At the end of the input END actions are processed
This prints the heading with the total word count

© Copyright IBM Corporation 2007

Built-In Variables

awk provides a number of useful built-in variables:

FILENAME the name of the current file

NF total number of fields in the current record

NR number of records encountered

FS input field separator (default is space or tab)

RS input record separator (default is newline)

OFS output field separator (default is space)

ORS output record separator (default is newline)

© Copyright IBM Corporation 2007

$ cat employee.list
Name, company, city, phone
Drew A. Chart, IBM, Wash. D.C., 202-555-3788
Wanda C. Results, IBM, Denver, 303-555-8068
Hyde N. Sikh, IBM, Atlanta, 404-555-3523
$ _

$ awk 'BEGIN { FS = "," ; OFS = ":" }
> { print $1, $4 }' employee.list
Name: phone
Drew A. Chart: 202-555-3788
Wanda C. Results: 303-555-8068
Hyde N. Sikh: 404-555-3523
$ _

Built-In Variables Examples (1 of 2)

© Copyright IBM Corporation 2007

$ cat authors
Drew A. Chart FIELD 1
Wash. D.C. FIELD 2
202-555-3788 FIELD 3

RECORD SEPARATOR
Wanda C. Results
Denver, CO
303-555-8068

Hyde N. Sikh
Atlanta, GA
404-555-3523

$ awk 'BEGIN { FS="\n" ; RS="\n\n" ; OFS="\n" ;
ORS="\n\n"}
> { print $1, $3
> } ' authors

Built-In Variable Examples (2 of 2)

© Copyright IBM Corporation 2007

if - else if - else Statement
Syntax:
awk '{

if (first logical test) {
action if test true

}
else if (second logical test) {

action if first test false and
second test true

}
else {

action if both tests false
}

}' file
Example:
$ awk '{

{ if ($2 == "Terry")
print $2 ", " $1 "--" $3

}
}' phone.list

© Copyright IBM Corporation 2007

The while Loop
Syntax:

awk ' {
while (condition) {

action
}
} ' file

Example:

awk ' {i = 1
while (i <= 4)
{ print $i ; ++i }
} ' file

© Copyright IBM Corporation 2007

The for Loop
Syntax:
awk '{

for (initialize; test; increment)
{ action
}
}' file

Examples...

To read and print each field of the current input line
for (i=1; i<=NF; i++){

print $i
}

To print from the last field to the first of the current line
for (i=NF; i>=1; i--){

print $i
}

© Copyright IBM Corporation 2007

The break, continue and next Statements
The continue statement stops the current innermost loop iteration and starts the next one:

awk '{
y = 42
for (x=1; x<=NF; x++) {

if (y!=$x)
{

continue # break
}
print x, $x
}

}' file
The next statement causes the next record to be read in, and the program to start from the

first pattern { action } block again:
awk 'BEGIN { action }

pattern {
action
action
next
action

}
END { action }' file

© Copyright IBM Corporation 2007

$ awk '{
> y = 42
> for (x=1; x<=NF; ++x) {
> if (y==$x) {
> print x, $x
> exit
> }
> }
> }
> END { exit 3 }' file
$ print $?
3
$ _

The exit statement jumps to any END processing – or out of the
program if already in the END section. An exit code can be passed
back to the shell:

The exit Statement

© Copyright IBM Corporation 2007

Arrays
awk allows array variables

An array is a variable with an index

An index is an expression in brackets

– For example, array[10]
awk arrays are associative

– Index can be a string or number
– No implicit order
– To access all elements, use the in operator
for (var in array_name)

Be aware that all array indices are internally strings

© Copyright IBM Corporation 2007

printf for Formatted Printing
One use of awk is as a report generator

Better printing formats required

– Use printf
– printf syntax: printf (fmt [, args])
Parentheses are optional

fmt is usually a string constant with format specifications

Specifiers are like the C language printf

Format specification: %<char>

– %s string
– %d decimal integer
– %f,%e floating point (fixed or exponent notation)
– %o unsigned octal
– %% literal percent

© Copyright IBM Corporation 2007

printf Formats
Format specification strings can use modifiers

%-width.precision
– If width used, contents are right justified
– Use - (minus/hyphen) after % to left justify
– Precision controls

Number of digits to right of decimal point for numeric values
Maximum number of characters to print for string values

To print Hello within #'s right justified in 10 character field

printf ("#%10s#\n", "Hello")
To print a number left justified with minimum three characters

printf ("%-3d\n", $1)

© Copyright IBM Corporation 2007

Functions in Awk

●There are four types of functions

●Three types are built-in to awk
– General
– Arithmetic
– String

●The fourth type is a user defined function
– General functions include

• Close
• System
• Getline

© Copyright IBM Corporation 2007

Functions available include:

atan2(y,x) arctangent of y/x in range -π to +π
cos(x) cosine of x (x in radians)
sin(x) sine of x
exp(x) e to the power x
log(x) natural log of x
sqrt(x) square root of x
int(x) truncated value of x

rand() pseudo-random number r, 0 < r >1

Built-In Arithmetic Functions

© Copyright IBM Corporation 2007

Functions available include:

length(s) length of string s or of $0 if s not supplied

index(s,t)
position of substring t in s or zero if not present

match(s,r) position in s of where RE r begins or zero

sub(r,s,t),
gsub(r,s,t) substitute s for r in t, returns 1 for OK

uses $0 if t not supplied (gsub does all
matches)

split(s,a,sep)
parses s into array a elements using field
separator sep (use RS if not supplied)

Set by match()
RSTART

start of the match (same as the return value)

RLENGTH length of the matching sub-string

Built-In String Functions

© Copyright IBM Corporation 2007

Built-In String Functions Examples

1 awk ‘{print len($1)}’ myfile

2 awk ‘{print index($1, “a”)}’ myfile

3 awk ‘{print match($1, “i.a”)}’ myfile

4 awk ‘{match($1, “i.a”); print RSTART, RLENGTH]’
myfile

5 awk ‘{print gsub(/a/,”b”,$1), $0}’ myfile

6 awk ‘{gsub(/a/,”b”,$1)’ print $0}’ myfile

7 awk ‘{split ($0,var,”:”); print var[1], var[2],
var[6]]’ /etc/passwd

© Copyright IBM Corporation 2007

Checkpoint
1. With awk, what happens if I don't supply a pattern?

2. With awk, what happens if I don't supply the action?

3. awk causes the -f option to read instructions from a default line.

4. awk must have both the BEGIN and END statements. T or F

5. Using awk, have the output from the df command only show the %
used and mount point.

© Copyright IBM Corporation 2007

Unit Summary
Regular expressions in awk

Basic awk programming

BEGIN and END processing

Flow control – if, while and for

Leaving loops – continue, next and exit

awk arrays

Better printing

awk functions

