Unit 6
Arithmetic
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Unit Objectives

After completing this unit, you should be able to:

e Use the expr utility

e Understand expr arithmetic and logical operators
eUseshelllet or(( ))

e Use number bases

e Use | et logical operators

e Use integer variables

e Use implicit | et

e Understand the bc utility
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expr Arithmetic

AIX provides the expr utility to perform integer arithmetic

expr argument1 operator argument2 ...

expr features

* Runs as an external executable

* Writes results to standard output

* Exit code is 0 for non-zero evaluations

* Exit code is 1 for zero or null evaluations
* Exit code is > 2 if an expression is invalid

* Mostly used for control flow in shell scripts — loop counters
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expr Arithmetic Operators

To group expressions use:
() fixes evaluation order - otherwise

normal rules of precedence apply

The integer operators result in mathematical evaluations:

= equal

= not equal

< less than

<= less than or equal
> greater than

>= greater than or equal
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expr Examples

Here is some simple integer arithmetic...
var 1=6; var 2=3
expr $varl / $var?2

$

$

2

$ expr S$varl - $var2

3

$ expr \( S$varl + $var2 \) \*

45
$

What is the result of the following?
$ expr 10 % 3

$ expr 10 / 3
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The let Command

| et argunent
_Or_

(( argunment ))

e The | et built-in shell command performs long integer arithmetic
approximately 10 times faster than expr

e Evaluates each argument as an arithmetic expression

e No quotes for special characters, or arguments with spaces ort abs in
them, within (( ... ))

e Variables need no $

e The exit code is 0O (true) for non-zero, and 1 (false) for zero evaluations

e In ksh93, | et will use decimal numbers, if you give the arguments in
decimal notation

e In bash and ksh88, integer only
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let Arithmetic Operators

For simple arithmetic:

( ) overrides normal precedence rules
* multiplication

/ division

% remainder

+ addition

- subtraction (or unary minus)

= assignment

var op= exp means var = var op exp

Up to nine levels of nested processing will be evaluated:

z=2 ,;, y="z + 1"
(( x=3*y ))
print $x
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let Arithmetic Examples

Some simple arithmetic...

$ a=1 b=2
$ (( z =2#10 + -b))

$ let c=a+tb d=b\*b
$((e = 9/ b))
$((e += a))

$ print $z $a $b $c $d $e

What do you think we get?

What is the difference between these?

$(( ... )) and (( ... ))?
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unary minus needs a space
before it, not after

no spaces, but\ needed for
* multiple arguments

integer division
assignment: addition



let Logical Operator

Logical expressions evaluate to 1 if true, 0 if false
(the exit code is 0 for non-zero, 1 for zero — as expected):

logical negation

less than

less than or equal to
greater than

greater than or equal to
equal to

not equal to

logical "and" = 1 if both LHS and RHS are true
(RHS not evaluated if LHS is false)

logical "or" = 1 if either LHS or RHS are true (if
LHS is true, RHS not used)
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let Logical Examples

$((p=9))
$((p=p*6))

$ print $p

54
$((p>08&& p <=10))
$ print $?

1

g=100

((p<qll p==5))
print $?

if (( p<qgé&p==254))
t hen

print TRUE

fi

RUE
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base#number Syntax

With | et you are not limited to just decimal (base ten) integers:

e | et constants are of the form base#nunber
e base is an integer in the range 2 to 36 (10 default)

e nunber may include upper or lowercase letters for bases greater than 10

2#100 in binary 4 (in base 10)

8#33 in octal

27

16#b in hexadecimal

11

16#2Ain base16

42
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Shell integer Variables

Shell variables are stored as character strings unless defined with the
I nt eger command

I nt eger vari abl e=val ue ...
_or_
typeset -i N variabl e=val ue ...

eSets the i nt eger attribute for each variable

ot ypeset can define a base N, variables then print in the specified base (2
to 36)

eAssignment to an i nt eger variable causes expression evaluation — an
implicit | et command

e| et does not have to convert i nt eger variables from character strings to
numerical values
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Integer Examples

Some examples of integer and typeset -i ...

$ integer x x can hold only integers

$ x=string

ksh: string: 0403-009 The specified nunber is

not valid for this command.

$ x=5+10 implicit let command

$ print $x

15

$ (( x =5+ 100))

$ print $x

105

$ typeset -i8 nuns0 nunsl nuns2

$ nuns0=8#5 define an octal integer variable
$ nuns1=8#10

$ (( nunms2=8#3*nuns0 )) assign value

$ print ${nuns2}

8#17

$ x=${ nuns2}

$ print $x print gives answer in base 10
15

$
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Implicit let Command

| nt eger variable assignments are an implicit | et command
Other implicit | et commands are:

e Values for the shi ft command
shift OPTIND- 1
e Resource limits with ul i m t

ulimt -t TMOUT+60
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bc - Mathematics

The AlIX system provides the bc utility
bc [file]

e Performs floating point arithmetic
e Acts as a filter command or interactively

e Reads arithmetic expression strings from standard input or
from a specified file

e Semicolons or new lines separate expressions

e Sets the scal e variable inside bc to define the required
number of decimal places

e Prints results to standard output
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bc Operators

For simple arithmetic and logical evaluations, use:

(, ), + -, * [, % = as for | et arithmetic operators
==, =, <, <= > >= as for | et logical operators
XNy raise x to the powery
sqrt(x) square root

X++ ++X post and pre increment x
X-- --X post and pre decrement x
X Op= Y = X =XO0pYy for +=, -=, *=, |=, %=, A=
A library provides complex mathematical functions:

s(x) sine of x

c(x) cosine of x

e(x) natural exponential of x

I (x) natural log of x

a( x) arctangent of x

j (n,x) Bessel function

Precision functions:
| engt h( n) number of significant digits for example, 123.456 has n=6

scal e(n) number of digits after decimal point for example, 123.456 has n=3
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bc Examples

Here are some examples of bc working both as a filter and
interactively.

$ print "1/4" | bc integer division without a scale
0

$ print "scale =3 ; 1/4' | bc explicit scale value set

0. 250

$ print '5.5* 2.2" | bc scale set implicitly from input
12. 1

$ value=$( '5.5 * 2.2' | bc ) assign the answer to a variable
$ print S$val ue

12. 1

$ bc

sqrt(4) no prompt — this is my input

2 the result from the command
crl-d to end interactive mode

$
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An Example of the Power

The Bessel Function
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Checkpoint

1.

2.

Multiply together variables a and b, using expr .
Use expr to multiply variable a by the sum of b and c.
Set variable hex to contain the hexadecimal value 7c.

Write a | et statement to test whether variable a is smaller
than variable b.

Define a variable numas numeric only.
Increment a numeric variable nunvar , by three.
How would you calculate 6/7 to 6 decimal places?

How would you calculate the square root of 85419763207
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Unit Summary

e The expr utility

e expr arithmetic and logical operators
eShelll et or (( ))

e Number bases

e| et logical operators

e Integer variables

e Implicit | et

e The bc utility
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