
© Copyright IBM Corporation 2007
Course materials may not be reproduced in whole or in part without the prior written permission of IBM. 4.0.1

Unit 7
Shell Types, Commands, and Functions

© Copyright IBM Corporation 2007

Unit Objectives

After completing this unit, you should be able to:

●Use shell arrays
●Define and call functions
●Use typeset command
●Use autoload functions
●Process command aliases
●Use preset aliases
●Use tracked aliases
●Use the whence command
●Understand command line processing
●Understand command line re-evaluation with eval

© Copyright IBM Corporation 2007

Defining Arrays

The Korn and Bash shells supports one-dimensional arrays:

●Arrays need not be "declared"
●Access an element of an array by a subscript to a variable

name
●Any variable with a valid subscript becomes an array
●A subscript is an expression enclosed within []
●Subscripts should lie in the range 0 to 4095 -- (ksh only)
●Variable attributes (for example, readonly) apply to all

elements of the array

Caution: An entire array cannot be exported, only the 0th
element

© Copyright IBM Corporation 2007

Assigning Array Elements
Just like ordinary variables, values can be assigned, and later referred to:

Assign contents to an array element using
array[N]=argument

To unset an array and assign new values sequentially, use
set -A array argument ...

To simply replace existing array values with new ones, use
set +A array argument ...

© Copyright IBM Corporation 2007

Associative Arrays in ksh93

●ksh93 allows associative arrays

●Associative arrays are indexed by string values

● Indicate an associate array with typeset -A

– Examples:

$ typeset -A tax
$ tax[NJ]=6
$ tax[NM]=5
$ tax[NY]=4

© Copyright IBM Corporation 2007

Referencing Array Elements
The $ notation is used to refer to the value in a variable:

When referencing an array element use ${ } notation
print ${array[N]}

To refer to all the elements of an array use an * or @ subscript (to
give a space separated list)
${array[*]} or ${array[@]}

If you omit a subscript, it means the zeroth element
${array[0]} == $array

To show how many elements exist within an array
${#array[@]}

© Copyright IBM Corporation 2007

Array Examples
$ list[0]="Line 0" fill the array list.
$ list[1]="Line 1"
$ list[3]="Line 3"
$ print $list print the zeroth element.
Line 0
$ print ${list[*]} print all elements.
Line 0 Line 1 Line 3
$ print ${list[0]} print elements individually.
Line 0
$ print ${list[1]}
Line 1
$ print ${list[2]} element [2] is null.

$ print ${list[3]}
Line 3
$ print $list[1] without { } notation, we
Line 0[1] get "$list" + "[1]".
$ _

© Copyright IBM Corporation 2007

Another Array Example
Here we have the beginnings of a card game.

#!/usr/bin/ksh
Usage: pickacard.ksh
To choose a random card from a new deck
integer number=0
for suit in CLUBS DIAMONDS HEARTS SPADES
do
for n in ACE 2 3 4 5 6 7 8 9 10 JACK QUEEN KING
do
card[number]="$n of $suit"
number=number+1
done

done
print ${card[RANDOM%52]}

$ pickacard.ksh
QUEEN of DIAMONDS
$ _

© Copyright IBM Corporation 2007

Bourne, Korn, and Bash Korn and Bash

identifier() function identifier
{ {

commands commands
} }

Defining Functions

●Commands can be group together and named.
●The set of commands form the function body.
●function definitions look like:

●Functions:
– Provide a means of breaking down programs into discrete units
– Stored in memory for fast access
– Executed, like new commands, in the current environment

© Copyright IBM Corporation 2007

Functions and Variables

Functions have different variables to the main script:

●Arguments
– Taken as positional parameters to the function
– Calling script $1-${n} parameters are reset on leaving the called

function

●Variables
– Declared with the typeset or integer commands (inside a Korn

shell function) are "local" variables to the function
– All other variables are "global" in the Script
– The "scope" of a "local" variable includes all functions called from the

current function

© Copyright IBM Corporation 2007

function Example
A useful function...

Handy for usage errors in Shell Scripts
Invoke function usage with arguments: script
followed by arglist. Note exit status!
function usage
{
prog="$1"; shift
print -u2 "$prog: usage: $prog $@"
exit 1

}

© Copyright IBM Corporation 2007

Ending Functions
A function completes after executing the last command:

The exit code is normally that of the last command

return can be used to specify an exit code N, or just end the function at
that point

return N

exit will terminate the current function and current shell
exit N

Errors within a Korn shell function cause it to return control and the error
exit code to the calling Script

Functions may be deleted from memory using...
unset -f functionname

© Copyright IBM Corporation 2007

The behavior of trap with functions is determined by the shell type:

Bourne: a trap is "global" – the same in and out of
a function

Korn:88 a trap is "local" to a function and is reset on
completion

a main program trap is shared with functions,
but can be overriden inside function

a signal that is not caught or ignored, may cause
the script to terminate

a signal that is ignored by the shell, is also
ignored by functions called from it

Functions and Traps

© Copyright IBM Corporation 2007

identifier () function identifier
{ ... { ...
} }
- All variables are global - Variables are made local with

"typeset"
- $0 always scriptname - $0 reflects function name while

inside the function
- A main program trap is shared - A main program trap is shared
with functions with functions
- A trap inside a function - A trap inside a function
overrides a main program trap, overrides a main program trap, but
and is passed out only while inside the function

Functions in ksh93
● Function's characteristics change in ksh93 depending on which syntax

was used to set up the function

© Copyright IBM Corporation 2007

Functions in bash
$0 will always be the scriptname, whether inside or outside function

Prefers "declare" or "local" over typeset

A main program trap is shared with function

A trap within a function overrides the main program trap while
inside the function, and is passed out to the main program

© Copyright IBM Corporation 2007

The typeset/declare Commands
The Korn shell typeset and Bash shell declare commands define or list variables

and their attributes:

typeset ±LN variable1=value1 variable2=value2 ...

Omitting variables lists variables with specified attributes
- sets attributes, or lists names and values
+ unsets attributes, or lists just names

Where L is any of ...

r the readonly attribute – no modification of variables' value
i sets the integer attribute – use with N to set number base
x the export attribute – the variable will be exported

The preferred method in bash is the "declare" command

© Copyright IBM Corporation 2007

typeset Examples
Declare arrays to specify size and/or attributes:

$ typeset -xi8 a2[1] exported & octal integer
$ a2=52
$ a2[1]=25
$ ksh
$ print $a2 ${a2[1]}
8#64 only element 0 was exported
$ _

Inside a Korn Shell function, typeset creates a "local"
variable...

Function to convert numbers into binary
function binary_convert
{

typeset -i2 binary=$1
print "$1 = $binary"

}

© Copyright IBM Corporation 2007

typeset with Functions
Other uses of typeset are:

Display functions

Set function attributes

Unset function attributes

typeset ±fL function1 function2 ...

To list functions with specified attributes, omit function list
-f sets attributes, or displays function names and definitions

+f unsets attributes, or displays only function names

Where L is any of...
x the export attribute – the function will be available to implicit

shells invoked from the current one
t the shell xtrace option for a function

© Copyright IBM Corporation 2007

typeset with Functions Examples
$ typeset -f shows functions in full
function list
{

while [["$1" != "X"]]
do

print $1
shift 1

done
}
$ typeset -fx list export the list function
$ typeset +f or typeset -F (bash)lists function names
list
$ unset -f list
$ typeset -f list doesn't exist anymore
$ _

© Copyright IBM Corporation 2007

autoload Functions
A shell function that is defined only when it is first called, is an
autoload function:

Using autoload functions improves performance
The shell searches directories listed in the FPATH variable for a file
with the name of the called function
Call the autoload from within your .profile (or .bash_profile)
The contents of that file then defines the function
Existing function definitions are not unset

Another way is to:
Place functions into a separate directory
Set $FPATH equal to the full pathname of that directory
Make sure the function name and file name is the same

© Copyright IBM Corporation 2007

Creation: alias name=definition

Deletion: unalias name

Aliases

The Korn shell alias facility provides:

●A way of creating new commands

●A means of renaming existing commands

An alias definition may contain any valid shell script or
metacharacters

© Copyright IBM Corporation 2007

Processing Aliases

Command lines are split into words by the shell:

●Check the first word of each command line for a defined
alias

●A backslash in front of a command name prevents alias
expansion if the alias exists

● If the definition ends in a space or tab, the next command
word will also be processed for alias expansion

●Resolve alias names within a function when function
definitions are read, not at execution

© Copyright IBM Corporation 2007

alias functions='typeset -f'

alias hash='alias -t'

alias history='fc -l'

alias integer='typeset -i'

alias nohup='nohup ' with trailing space

alias r='fc -e -'

alias stop='kill -STOP'

alias suspend='kill -STOP $$'

alias type='whence -v'

Preset Aliases

●Korn shell uses the following exported aliases
– May be unaliased or redefined

© Copyright IBM Corporation 2007

The alias Command

The alias command has some options:

alias -L name=definition

Where L is any mix of...

x to set, or display exported aliases

t to set, or list tracked aliases

If definition is quoted...

"definition" doubles are interpreted when entered

'definition' singles are interpreted when executed

© Copyright IBM Corporation 2007

$ x=10
$ alias px="print $x" rx='print $x'
$ x=100
$ px prints $x as it was
10
$ rx prints the current $x
100

$ alias -x ls='ls -a' ls is set and exported

$ rm /tmp/* you want to remove all /tmp
rm: remove '/tmp/atestfile'? _
<Ctrl-c> you realize the list is too long
$ \rm /tmp/* you escape the alias for rm
... you cross your fingers
$ ls /tmp you hope you did it correctly

alias Examples

© Copyright IBM Corporation 2007

Tracked Aliases
A tracked alias reduces the search time for a future use of a

command

set -o trackall or set -h

Turns on Shell trackall option

First use of a command creates tracked alias

Force creation with
alias -t name

List all tracked aliases
alias -t

NOTE: The value of a tracked alias becomes undefined when the PATH
variable is reset

© Copyright IBM Corporation 2007

Hashing in bash
A hash reduces the search time for a future use of a command.

All commands are remembered in a hash table by bash. Disable
this facility by:

set -d or set -o nohash

The built-in hash lists the table

Add an explicit entry by

hash command (must be in PATH)

To delete the hash table:

hash -r

© Copyright IBM Corporation 2007

The whence Command
whence reports how a command will be carried out by the shell

whence -pv command

-v for a verbose report
-p to force a PATH search even if the command is

an alias or function (AIX only option)

$ whence vi
/usr/bin/vi
$ whence -v vi executable program
vi is a tracked alias for /usr/bin/vi
$ whence -v print
print is a shell builtin
$ whence type so type is an alias
whence -v
$ type for
for is a reserved word
$ _

* when in bash, use type instead of whence (type is built-in in bash)

© Copyright IBM Corporation 2007

The eval Command

The shell processes each command line read before invoking
the relevant commands.

● If you want to reread and process a command line, use eval:

● eval processes its arguments as normal

●The arguments are formed into a space separated string

●The shell then executes that string as a command line

●The return value is that of the executed command line

© Copyright IBM Corporation 2007

eval Examples
Here are some eval command lines...

$ eval print '*sh'
getopts.example.ksh eval.ksh try.sh

$ message10=Hello

$ variable=message10 print the message
$ eval print '$'$variable named by $variable
Hello

$ cmd='ps -ef | grep marty' run a string command
$ eval $cmd to list marty's processes
...
$ _

© Copyright IBM Corporation 2007

Each command line is processed in the following way by the shell:

Alias Expansions

Tilde Expansions

Removal of
Unquoted Quotes

Word Separation

AIX Commands

Shell Commands

Shell Commands

Expand Tracked
Aliases

Command
Substitutions?

Variable & Parameter
Expansions

Pathname Expansion
of Metacharacters

Shell Commands

Regular
Builtins?

Special
Builtins?

Functions?
Yes

Yes

Yes

Yes

I/O Redirection

Command Line Processing

© Copyright IBM Corporation 2007

Checkpoint

1. How is an array defined?
2. How do we refer to array elements?
3. How could we set a variable users, to contain the number of

users logged onto the system?
4. How would we write a function to check the readability of a

file?
5. How do we print out the first and last positional parameter?
6. How do we define local variables within a function?
7. How can we list which functions are defined?
8. Which command would allow you to load a library of

functions?
9. How could we create an alias to show how many minutes

have elapsed since the current shell began?

© Copyright IBM Corporation 2007

Unit Summary
● Shell arrays – defining and referencing

● Functions

● typeset command

● autoload functions

● Command aliases

● Preset aliases

● Tracked aliases

● The whence command

● Command line processing

● Command line re-evaluation with eval

