
© Copyright IBM Corporation 2007
Course materials may not be reproduced in whole or in part without the prior written permission of IBM. 4.0.1

Unit 9
Regular Expressions and

Text Selection Utilities

© Copyright IBM Corporation 2007

Unit Objectives

After completing this unit, you should be able to:

●Use regular expressions

●Use the grep command

●Use the tr command

●Use the cut command

●Use the paste command

© Copyright IBM Corporation 2007

To manipulate data, we need to know its format.
The data file we will use in this unit has the following structure:

Lastname,<Space>Firstname<Tab>nnn-mmmm

$ cat phone.list
Terrell, Terry 617-7989
Franklin, Francis 704-3876
Patterson, Pat 614-6122
Robinson, Robin 411-3745
Christopher, Chris 305-5981
Martin, Marty 814-5587
Llewellyn, Lynn 316-6221
Jansen, Jan 903-3333
Llewellyn, Lee 817-8823
$ _

Sample Data File

© Copyright IBM Corporation 2007

Regular Expressions

Powerful feature available in many programs

Used to select text in:
– vi, ex, emacs, grep/egrep, sed, awk, perl

What are RegExes?
– An expression representing a pattern of characters

– Contain a sequence of characters/metacharacters

© Copyright IBM Corporation 2007

Pattern Matches

alphanumeric
character

The character itself (not really
a metacharacter)

. (period) Any single character

[AZ] One of A or Z

[^AZ] Any character not A or Z

[A-Z] Any character in range A to Z

[-AZ] One of -, A or Z

[0-9] Any digit 0 to 9

Regular Expression Metacharacters

© Copyright IBM Corporation 2007

Extending the Pattern
Two ways:

Anchors
Multipliers

Anchors are
^ Matches beginning of line
$ Matches end of line

Multipliers apply to patterns. They are:
* zero or more occurrences of previous pattern
? zero or one occurrence of previous pattern
+ one or more occurrences of previous pattern
{m,n} at least m and no more than n occurrences of

previous pattern ("quoted braces")

© Copyright IBM Corporation 2007

Simple Regular Expression Example
What would the following match?

grep '^[M-Z]' phone.list

grep '^[^M-Z]' phone.list

grep '^L.*3$' phone.list

grep '^P.tt' phone.list

grep 'n*' phone.list

© Copyright IBM Corporation 2007

Quoted Braces
To specify the number of consecutive occurrences

Syntax 1: regular_expression\{min, max\}

To look for two, three or four occurrences of any combination of the characters 3, 4
and 5 consecutively
grep '[345]\{2,4\}' phone.list

Syntax 2: regular_expression\{exact\}

To look for any lines which have two consecutive "r" characters
grep 'r\{2\}' phone.list

Syntax 3: regular_expression\{min,\}

To look for any lines with at least two consecutive "r" characters preceded by an "e"
grep 'er\{2,\}' phone.list

© Copyright IBM Corporation 2007

Quoted Parentheses
To capture the result of a pattern:

Syntax: \(regular expression\)

Stores the character(s) that match the regular expression (within parentheses) in a
register.

Nine registers are available; characters which match the first quoted parentheses
are stored in register one, those that match the second quoted parentheses in
register two, and so forth.

To reference a register use a backslash followed by a register number:

\1 to \9

For example, to list any lines in "phone.list" where there are two identical characters
together...

grep '\(.\)\1' phone.list

© Copyright IBM Corporation 2007

'^[A-z]\{6\}, '

'^[ABC]'

', [A-z]\{4,\}'

'\([0-9]\)-\1'

Regular Expressions – Quiz
Using the "phone.list" file, what RE gives:

1. People with six-letter surnames?

2. People with first names of at least four characters?

3. All entries where the number before the dash is the same as that
after the dash for example 3-3456?

4. People whose surnames begin with A, B or C?

© Copyright IBM Corporation 2007

grep Command
Search files or standard input for lines containing a match for a specific
pattern

grep [options] pattern [filel file2 . . .]

Valid options:

-c print only a count of matching lines
-i ignore the case of letters when making comparisons
-l list only the names of the files with matching lines
-n number the matching lines
-s works silently, does not display error messages
-v print lines that do NOT match
-w do a whole word search

© Copyright IBM Corporation 2007

$ grep -i "tech support" phone.list

$ grep bob /etc/passwd

$ ps -ef | grep chris

$ ls -l | grep '^d'

$ grep -n '.*' /etc/passwd > \

> passwd.file.numbered.lines

$ egrep 'gene|jean' /etc/passwd

grep Examples

© Copyright IBM Corporation 2007

The tr command translates one set of characters into another:

tr LISTIN LISTOUT < in_file > out_file

– or -

tr -d LISTIN < in_file > out_file

Characters in LISTIN are replaced by the corresponding ones in LISTOUT

If LISTOUT contains fewer characters than LISTIN ignores extra ones from
LISTIN

If LISTOUT contains more characters than LISTIN ignores extra ones from
LISTOUT

With -d, characters in LISTIN are deleted

Only works with STDIN and STDOUT
The -s option squeezes multiple characters in a row into one character

tr For Translations

© Copyright IBM Corporation 2007

tr Examples
Some simple translations...

$ print $HOME | tr "/" "-"
-home-team01
$ print "{ { [...] } }" | tr "{}" "()"
(([...]))
$ print "Lower to upper" | tr "[a-z]" "[A-Z]"
LOWER TO UPPER
$ print "TOP DOWN" | tr '[:upper:]' '[:lower:]'
top down
$ print "vowels and consonants" | tr -d 'aeiou'
vwls nd cnsnnts
$ tr -d '\015' < dos_txt_file > aix_txt_file
$ print 'Lynn Llewellynn' | tr -s "ln"
Lyn Lewelyn
$ _

© Copyright IBM Corporation 2007

cut extracts fields or columns from text input

cut -dS -s -flist [file]

or

cut -cLIST [file]

-dS where S is the character to take as a delimiter
(<Tab> is default)

-s with -d s suppresses lines that do not contain delimiters
-fLIST specifies a LIST of fields to cut out and keep
-cLIST is a LIST of columns to cut (character positions)
LIST - specifies field or column numbers

- may contain comma separated values
(m,n) or a range (m-n)

The cut Command

© Copyright IBM Corporation 2007

cut Examples
Field numbering starts at 1

$ cut -d: -f1,3,4 /etc/passwd | head -3
root:0:0
daemon:1:1
bin:2:2
...
robin:0:0 What could this mean?
$ _
$ df | cut -c-12,35-41 | sort
/dev/hd1 4%
/dev/hd10opt 55%
/dev/hd2 95%
/dev/hd3 6%
/dev/hd4 39%
...
$ _

© Copyright IBM Corporation 2007

1. df | tr -s " " | cut -d " " -f4,7

2. df | cut -c35-40,56-

What If There Is No Common Delimiter?
Using tr -s and cut -d, have the output from the df command only
show %used and mount point

Using only cut -c, have the output from the df command only show
%used and mount point

We will do this again later using awk

© Copyright IBM Corporation 2007

The paste Command
As name suggests, paste sticks or merges things together

Commonly used to create or format a data stream

Default output is
line from file1 <Tab> line from file2

Separators may be changed on command line

Options:
-d [dlist] the delimiter between files (may be a list)
-s make the output a single line in each file

© Copyright IBM Corporation 2007

Checkpoint

1. What Reg Ex can you use to select surnames?
2. What regular expression can you use to select text with

repeated characters in the surname?
3. What command can you use to select lines in phone.list with

four character first names?
4. How could you count the number of processes whose PIDs

are in the range 1000-9999?
5. How would you convert spaces to a tab in phone.list?
6. What would this next command accomplish?

cut -d: -f1,3,4 /etc/passwd
7. Using the paste command, output the /etc/passwd file so

that each line of information is separated by a tab and so that
the fifth, sixth and seventh fields are on a separate line from
the others. (Hint: make each field a line.)

© Copyright IBM Corporation 2007

Unit Summary

●Understanding regular expressions

●Using the grep command to select text

●Using the tr command to translate characters

●Using the cut command to select text fields

●Using the paste command to merge data streams

