Unit 2
Shell Variables

© Copyright IBM Corporation 2007
Course materials may not be reproduced in whole or in part without the prior written p

ermissi

Unit Objectives

After completing this unit, you should be able to:
e Set variables

e Reference variables

e Use positional parameters

e Shift arguments

e Set positional parameters

e Use shell parameters

e Understand inheritance

e List shell variables

e List environment variables

© Copyright IBM Corporation 2007

Setting Variables

To assign a value to a variable: nane=val ue
$ var1=Fri
$

To "unset" the value to a variable:
$ unset varl

To protect a variable against further changes:
readonly nane=val ue
- Or -
typeset -r nane=val ue

$ readonly var 1=Sun

$ var 1=Mon

ksh: varl: This variable is read only
$

$ readonly -p displays full list

© Copyright IBM Corporation 2007

Referencing Variables

To reference a variable, prefix name with a $

$ print $varl
Fri
$

To separate a variable reference from other text use: ${ }

$ print The course ends on $var lday

The course ends on
$ print The course ends on ${var1}day

The course ends on Friday
$

© Copyright IBM Corporation 2007

Positional Parameters

Parameters can be passed to shell scripts as arguments on the command
line

$ parans. ksh argl arg2

* "arg1" is positional parameter number 1
* "arg2" is positional parameter number 2
e Others are unset

They are referenced in the script by:

e $1 to $9 for the first nine
* ${ 10} to ${ n} for all after the first nine

© Copyright IBM Corporation 2007

Setting Positional Parameters

In a shell script the set command can:

* Change the values of positional parameters
* Unset positional parameters previously set

$ cat first.ksh
print $1 $2 $3
set appl e banana
print $1 $2 $3

$ first.ksh a b ¢
aboc
appl e banana

$

© Copyright IBM Corporation 2007

Variable Parameters

Shell scripts set a number of other shell parameters:
$# The number of positional parameters set
$@ Positional parameters in a space separated list
$* Positional parameters in a list separated by the
first | nternal Field Separator (the default is a space)
In double quotes, $@ and $* behave differently:
"$@" = Sl " $2" "3

||$*l|

"$1 $2 $3 . . . "

© Copyright IBM Corporation 2007

Some Shell Parameters

Shell parameters that remain fixed for the duration of the script:

$0 The (path)name used to invoke the shell script

$$ The Process ID (PID) of current process (shell)

Parameters set as the script executes commands:
$! The PID of the last background process

$? The return code from the last command executed

© Copyright IBM Corporation 2007

Shifting Arguments

In a shell script the shi ft command moves arguments to the left:
$ parans. ksh argl arg2 arg3

$1 $2 $3
Sets argl arg2 arg3
$1 $2
After
arg3
shift arg2 g
<< arguments

*Discarding the first or leftmost argument
*Decrementing the number of positional parameters

*Allowing Bourne shell to reference more than 9 arguments

© Copyright IBM Corporation 2007

Parameter Code Example

So, let's put all of it into action in a shell script.

$ cat second. ksh

print $$

print $0

print "$# PPs as entered"

print "PP1=$1 PP2=%$2 PP3=$3 PP4=$4"

shi ft

print $0

print "$# PPs after a shift"

print "PP1=$1 PP2=%$2 PP3=$3 PP4=$4"

set "$@

print 'Set "$@ - paraneters in double quotes'
print "PP1l=$1 PP2=%2 PP3=$3 PP4=$4"

set "g*"

print 'Set "$*" - parameters space separated’
print "PP1=$1 PP2=$2 PP3=$3 PP4=$4"

$

© Copyright IBM Corporation 2007

Parameter Output Example

Here's what it does.

$ second. ksh Atlanta NYC "Chicago and D.C. "
4687

second. ksh

3 PPs as entered

PP1=At | anta PP2=NYC PP3=Chi cago and D. C. PP4=
second. ksh

2 PPs after a shift

PP1=NYC PP2=Chi cago and D.C. PP3= PP4=

Set "$@ - paraneters in doubl e quotes
PP1=NYC PP2=Chi cago and D.C. PP3= PP4=

Set "$* "- paraneters space separated
PP1=NYC Chi cago and D.C. PP2= PP3= PP4=

$

© Copyright IBM Corporation 2007

This Shell and the Next

What happens to variables when you spawn a Subshell?

waiting shell
-ksh — e e

ksh

Unless you export variables, they will not be passed on.

$ set to list all variables and values

$ export var export variable var so that it will
-or - be inherited by subshells, or

$ typeset -x var use typeset in the Korn shell

$ declare -x var use declare in the Bash shell

$ export to list variables that are exported,
- or - other variables will be unset in a
$ typeset -x subshell

© Copyright IBM Corporation 2007

Inheritance Example - The export Command

Let's see inheritance in action...

$ x=324

$ print "$$:
4589: X=324
$ ksh

$ print "$$:
4590: X=

$ _ Crl-d
$ print "$$:
4589: X=324

$ export x
$ ksh

$ print "$$:
4591: X=324
$ x=3

$ _ Crl-d
$ print "$$:

4589: X=324

X=$x"

X=$x"

X=%x"

X=%x"

X=$x"

We can set a variable x
in our current shell

In a subshell, x is unset
- there is no value to print

Returning to the main shell...

X will have its value restored
If we export x, a subshell
can inherit the value of x

If we change x from the
subshell the change does
not affect the main Shell

© Copyright IBM Corporation 2007

Korn Shell Variables

Korn Shell sets certain variables each time they are referenced:

SECONDS seconds since Shell invocation

RANDOM random number in the range 0 to 32767

LI NENO current line number within a Shell Script
or function

ERRNO system error number of the last failed

system call — a system-dependent value!

© Copyright IBM Corporation 2007

Environment Variables

Several variables define the environment of a Shell:

CDPATH a search path for the cd command

HOVE your home directory

| FS input field separators (space, tab, newline)
PATH the system command search path

PS1 the primary Shell command prompt

PS2 a secondary prompt for multi-line entry

PS3 prompt for the sel ect command

PS4 debug prompt for ksh with the - x option
PWD the current working directory

CLDPWD previous working directory for cd -

© Copyright IBM Corporation 2007

Korn Environment Variables (1 of 2)

Korn Shell specific features require environment variables:

COLUWNS

LI NES

SHELL

TERM

ENV

FCEDI T

FPATH

H STFI LE

H STSI ZE

screen width

screen length

the pathname of the shell

the terminal type (selects terminfo file)
program/script to be sourced for each new shell
an editor for the f c command

a search path for function definition files

your history file

limit of history commands accessible

© Copyright IBM Corporation 2007

Korn Environment Variables (2 of 2)

LC COLLATE sorting sequence for pattern ranges

IVAI L the name of your mail file

MAI LCHECK mail check frequency (default 600 seconds)
MAI LMSG the "you have new mail" message

PPI D the parent process ID

REPLY set by sel ect command and the r ead

command if no argument is given
EDI TOR the editor for command line editing

VI SUAL a visual editor — overrides EDI TOR

© Copyright IBM Corporation 2007

Korn Shell 93 Variables

e There are several additional variables and variable meanings in ksh93.
Here are a few:

TMOUT also used to timeout of select menu
. sh. version identifies version of the shell -- use ${ }

© Copyright IBM Corporation 2007

Bash Environment Variables

e Bash variables are the same unless noted here:

e BASH ENV instead of ENV program to be sourced for each new
interactive shell

e PS1 has additional features (see below)

e Some additional variables in bash:

BASH VERSI ON version number for the instance of bash
HOSTNAME name of current host
HOSTTYPE describes machine bash is running on

SHLVL shell level - how deeply you are nested

© Copyright IBM Corporation 2007

Checkpoint

1.

2.

How could we use positional parameter 3 in a shell script?

Which variable contains the number of positional
parameters?

How can we change the value of a variable set in a different
process?

What is the variable IFS?
How can we reset PS1 to show the current directory?

By setting a variable, how can we have a command recall
facility?

© Copyright IBM Corporation 2007

Unit Summary

e Setting variables

e Referencing variables

e Using positional parameters
e Shifting arguments

e Setting positional parameters
e Using shell parameters

e Understanding inheritance

e Shell variables

e Environment variables

© Copyright IBM Corporation 2007

