
© Copyright IBM Corporation 2007
Course materials may not be reproduced in whole or in part without the prior written permission of IBM. 4.0.1

Unit 3
Return Codes and Traps

© Copyright IBM Corporation 2007

Unit Objectives

After completing this unit, you should be able to:

●Recognize return values
● Identify exit codes
● Identify conditional execution
●Use the test command
●Understand compound expressions
●Examine file test operators
●Use numerical expressions
●Understand string expressions
●Understand shell test operators
●Use shell [[]] expressions
●Handle signals
●Understand sending signals
●Understand catching signals

© Copyright IBM Corporation 2007

Return Values
Each command, pipeline, or group of commands returns a value to

its parent process.

$? contains the value of the return code

zero means success

non-zero means an error occurred

The single value returned by a pipeline is the return code of the last
command in the pipeline.

For grouped commands – that is, () or { } – the return code is
that of the last command executed in the group.

© Copyright IBM Corporation 2007

Exit Status
A shell script provides a return code using the exit command.

$ print $$ check the shell process id
879
$ ksh start a new subshell
$ print $$ and check its process id
880
$ exit quit the subshell
$ print $? and print the return code
0
$ print $$
879
$ ksh begin another subshell
$ print $$
890
$ exit 101 exit with a value to set
$ print $? the return code
101
$ print $$
879
$ _

© Copyright IBM Corporation 2007

Conditional Execution
A return code (or exit status) can be used to determine whether or not to

execute the next command.

If command1 is successful execute command2

command1 && command2

$ rm -f file1 && print file1 removed

If command1 is not successful execute command2

command1 || command2

$ who|grep marty || print Marty logged off

© Copyright IBM Corporation 2007

The test Command
The test command is used for expression evaluation

test expression
- or

[expression]

Returns zero if the expression is true
Returns non-zero if the expression is false

The Korn and Bash shells provide an improved version

[[expression]]

Easier syntax
Includes same functionality as test
Additional operators
Shell expansions prevented

© Copyright IBM Corporation 2007

File Test Operators
File status can be examined using several operators.

Operator: True if ...:
-s file file has a size greater than zero
-r file file exists and is readable
-w file file exists and is writable
-x file file exists and is executable
-u file file exists and has the SUID bit set
-g file file exists and has the SGID bit set
-k file file exists and has the SVTX sticky bit set
-e file file exists
-f file file exists and is an ordinary file
-d file file exists and is a directory
-c file file exists as a character special file
-b file file exists and is a named pipe file
-p file file exists and is a named pipe file
-L file file exists and is a symbolic link

© Copyright IBM Corporation 2007

Numeric Expressions
For arithmetic expressions and integer values use:

Expression: True if ...:

exp1 -eq exp2 exp1 is equal to exp2

exp1 -ne exp2 exp1 is not equal to exp2

expl -lt exp2 exp1 is less than exp2

exp1 -le exp2 exp1 is less than or equal to exp2

exp1 -gt exp2 exp1 is greater than exp2

exp1 -ge exp2 exp1 is greater than or equal to exp2

© Copyright IBM Corporation 2007

String Expressions
To examine strings use one of the following:

Expression: True if ...:

-n str str is non-zero in length

-z str str is zero in length

str1 = str2 str1 is the same as str2

str1 != str2 str1 is not the same as str2

© Copyright IBM Corporation 2007

More Shell Test Operators
The shell provides a number of additional test operators.

Expression: True if ...:

file1 -ef file2 file1 is another name for file2

file1 -nt file2 file1 is newer than file2

file1 -ot file2 file1 is older than file2

-t des file descriptor des is open and
associated with a terminal device

© Copyright IBM Corporation 2007

Shell [[]] Expressions

When using the shell [[]] syntax there are a few extra expressions.

Expression: True if ...:

str = pattern str matches pattern

str != pattern str does not match pattern

str1 < str2 str1 is before str2 in the ASCII collation seq.

str1 > str2 str1 is after str2 in the ASCII collation seq.

-o opt option opt is on for this shell

You may use shell metacharacters in the patterns.

© Copyright IBM Corporation 2007

Compound Expressions
For the [] or test command

exp1 -a exp2 binary and operation
exp1 -o exp2 binary or operation
! exp logical negation
\(\) used to group expressions

For the [[]] syntax

exp1 && exp2 true if both expressions are true -
the second is only evaluated if the first is true

exp1 || exp2 true if either expression is true -
the second is only evaluated if the first is false

! exp logical negation
() used to group expressions

© Copyright IBM Corporation 2007

$ [[-s /etc/passwd || -r /etc/group]]
$ print $? True or False?

$ test -f /etc/motd -a ! -d /home
$ print $? True or False?

$ x="005"
$ y=" 10"
$ test "$y" -eq 10
$ print $? True or False?

$ ["$x" = 5]
$ print $? True or False?

$ [[-n "$x"]]
$ print $? True or False?

$ test -S /dev/tty0
$ print $? True or False?

$ [[1234 = +([0-9])]]
$ print $? True or False?

Practice Test

© Copyright IBM Corporation 2007

Signals

●The kernel sends signals to processes during their execution

– Certain system events issue signals when they
• Run out of paging space
• Receive special key sequences like <Ctrl-c>

– The kill command sends a specific signal to a process

© Copyright IBM Corporation 2007

What You Can Do with Signals

Signals sent to processes may be:

●Caught the process deals with it

● Ignored nothing happens

●Defaulted use default handlers

© Copyright IBM Corporation 2007

The Kill Command
● To send a signal to a process:

kill -sig pid -or- kill -s sig pid

● To list all defined signals

kill -l (lowercase "ell")

● To list a specific signal

kill -l # (replace # with a number)

● To list the signal that caused an exit error

kill -l $?

© Copyright IBM Corporation 2007

Signal List (1 of 2)
Here is a list of some useful signals.

Signal: Event:

0 EXIT issued when a process or function completes
(shell specific)

1 HUP you logged out while the process was still running
– sent to sub-shells too

2 INT interrupt pressed <Ctrl-c>

3 QUIT quit key sequence pressed <Ctrl-\>

9 KILL special 'force' signal, cannot be ignored

15 TERM default kill command signal

18 TSTP process suspend <Ctrl-z>

© Copyright IBM Corporation 2007

Signal List (2 of 2)
Signal: Event:

19 CONT continue if stopped – issued by kill to a
suspended process before TERM or HUP

29 PWR power failure imminent – save data now!

33 DANGER paging space low

63 SAK you pressed <Ctrl-x> and <Ctrl-r> the SAK
sequence

© Copyright IBM Corporation 2007

Catching Signals with Traps
The trap command specifies any special processing you want to do

when the process receives a signal:

To process signals

$ trap 'rm /tmp/$$; print signal!; exit 2' 2 3

To ignore signals

$ trap '' INT QUIT

To reset signal processing

$ trap - INT QUIT - or - trap 2 3

To list traps set

$ trap

© Copyright IBM Corporation 2007

#!/usr/bin/ksh
ps_monitor
monitor processes using ps -elf at intervals
of 30 seconds for 2 minutes. If interrupted,
a summary report is produced by executing
psummary.
#
trap 'print $0: interrupt received ;

./psummary ;
exit' 2 3 15

ps -elf > /tmp/pdata
sleep 30
ps -elf >> /tmp/pdata
sleep 30
ps -elf >> /tmp/pdata
sleep 30
ps -elf >> /tmp/pdata
sleep 30
ps -elf >> /tmp/pdata
trap - 2 3 15

Trap Example

© Copyright IBM Corporation 2007

Checkpoint

1. How can you tell whether a command you have just entered
was successful?

2. How can you test if file datafile is non-empty?

3. How can you check if you have been logged on for more than
20 minutes, and if so, print out a suitable message?

4. How could you log off, using the kill command?

5. If you are a DBA is this a desirable command to terminate
the <oracle_server>? kill -KILL <oracle_server>

6. What does this command do? trap echo you did
<Ctrl-c> 2

7. How could you get <Ctrl-c> to log you off?

© Copyright IBM Corporation 2007

Unit Summary

●Return values
●Exit status
●Conditional execution
●The test command
●Compound expressions
●File test operators
●Numerical expressions
●String expressions
●Shell test operators
●Shell [[]] expressions
●Signals
●Sending signals – kill command
●Catching signals – trap command

