Unit 6
Arithmetic

© Copyright IBM Corporation 2007
Course materials may not be reproduced in whole or in part without the prior written permissi

Unit Objectives

After completing this unit, you should be able to:

e Use the expr utility

e Understand expr arithmetic and logical operators
eUseshelllet or(())

e Use number bases

e Use | et logical operators

e Use integer variables

e Use implicit | et

e Understand the bc utility

© Copyright IBM Corporation 2007

expr Arithmetic

AIX provides the expr utility to perform integer arithmetic

expr argument1 operator argument2 ...

expr features

* Runs as an external executable

* Writes results to standard output

* Exit code is 0 for non-zero evaluations

* Exit code is 1 for zero or null evaluations
* Exit code is > 2 if an expression is invalid

* Mostly used for control flow in shell scripts — loop counters

© Copyright IBM Corporation 2007

expr Arithmetic Operators

To group expressions use:
() fixes evaluation order - otherwise

normal rules of precedence apply

The integer operators result in mathematical evaluations:

= equal

= not equal

< less than

<= less than or equal
> greater than

>= greater than or equal

© Copyright IBM Corporation 2007

expr Examples

Here is some simple integer arithmetic...
var 1=6; var 2=3
expr $varl / $var?2

$

$

2

$ expr S$varl - $var2

3

$ expr \(S$varl + $var2 \) *

45
$

What is the result of the following?
$ expr 10 % 3

$ expr 10 / 3

© Copyright IBM Corporation 2007

The let Command

| et argunent
Or

((argunment))

e The | et built-in shell command performs long integer arithmetic
approximately 10 times faster than expr

e Evaluates each argument as an arithmetic expression

e No quotes for special characters, or arguments with spaces ort abs in
them, within ((...))

e Variables need no $

e The exit code is 0O (true) for non-zero, and 1 (false) for zero evaluations

e In ksh93, | et will use decimal numbers, if you give the arguments in
decimal notation

e In bash and ksh88, integer only

© Copyright IBM Corporation 2007

let Arithmetic Operators

For simple arithmetic:

() overrides normal precedence rules
* multiplication

/ division

% remainder

+ addition

- subtraction (or unary minus)

= assignment

var op= exp means var = var op exp

Up to nine levels of nested processing will be evaluated:

z=2 ,;, y="z + 1"
((x=3*y))
print $x

© Copyright IBM Corporation 2007

let Arithmetic Examples

Some simple arithmetic...

$ a=1 b=2
$ ((z =2#10 + -b))

$ let c=a+tb d=b*b
$((e = 9/ b))
$((e += a))

$ print $z $a $b $c $d $e

What do you think we get?

What is the difference between these?

$((...)) and ((...))?

© Copyright IBM Corporation 2007

unary minus needs a space
before it, not after

no spaces, but\ needed for
* multiple arguments

integer division
assignment: addition

let Logical Operator

Logical expressions evaluate to 1 if true, 0 if false
(the exit code is 0 for non-zero, 1 for zero — as expected):

logical negation

less than

less than or equal to
greater than

greater than or equal to
equal to

not equal to

logical "and" = 1 if both LHS and RHS are true
(RHS not evaluated if LHS is false)

logical "or" = 1 if either LHS or RHS are true (if
LHS is true, RHS not used)

© Copyright IBM Corporation 2007

let Logical Examples

$((p=9))
$((p=p*6))

$ print $p

54
$((p>08&& p <=10))
$ print $?

1

g=100

((p<qll p==5))
print $?

if ((p<qgé&p==254))
t hen

print TRUE

fi

RUE

© HVVV®H Ot es

© Copyright IBM Corporation 2007

base#number Syntax

With | et you are not limited to just decimal (base ten) integers:

e | et constants are of the form base#nunber
e base is an integer in the range 2 to 36 (10 default)

e nunber may include upper or lowercase letters for bases greater than 10

2#100 in binary 4 (in base 10)

8#33 in octal

27

16#b in hexadecimal

11

16#2Ain base16

42

© Copyright IBM Corporation 2007

Shell integer Variables

Shell variables are stored as character strings unless defined with the
I nt eger command

I nt eger vari abl e=val ue ...
or
typeset -i N variabl e=val ue ...

eSets the i nt eger attribute for each variable

ot ypeset can define a base N, variables then print in the specified base (2
to 36)

eAssignment to an i nt eger variable causes expression evaluation — an
implicit | et command

e| et does not have to convert i nt eger variables from character strings to
numerical values

© Copyright IBM Corporation 2007

Integer Examples

Some examples of integer and typeset -i ...

$ integer x x can hold only integers

$ x=string

ksh: string: 0403-009 The specified nunber is

not valid for this command.

$ x=5+10 implicit let command

$ print $x

15

$ ((x =5+ 100))

$ print $x

105

$ typeset -i8 nuns0 nunsl nuns2

$ nuns0=8#5 define an octal integer variable
$ nuns1=8#10

$ ((nunms2=8#3*nuns0)) assign value

$ print ${nuns2}

8#17

$ x=${ nuns2}

$ print $x print gives answer in base 10
15

$

© Copyright IBM Corporation 2007

Implicit let Command

| nt eger variable assignments are an implicit | et command
Other implicit | et commands are:

e Values for the shi ft command
shift OPTIND- 1
e Resource limits with ul i m t

ulimt -t TMOUT+60

© Copyright IBM Corporation 2007

bc - Mathematics

The AlIX system provides the bc utility
bc [file]

e Performs floating point arithmetic
e Acts as a filter command or interactively

e Reads arithmetic expression strings from standard input or
from a specified file

e Semicolons or new lines separate expressions

e Sets the scal e variable inside bc to define the required
number of decimal places

e Prints results to standard output

© Copyright IBM Corporation 2007

bc Operators

For simple arithmetic and logical evaluations, use:

(,), + -, * [, % = as for | et arithmetic operators
==, =, <, <= > >= as for | et logical operators
XNy raise x to the powery
sqrt(x) square root

X++ ++X post and pre increment x
X-- --X post and pre decrement x
X Op= Y = X =XO0pYy for +=, -=, *=, |=, %=, A=
A library provides complex mathematical functions:

s(x) sine of x

c(x) cosine of x

e(x) natural exponential of x

I (x) natural log of x

a(x) arctangent of x

j (n,x) Bessel function

Precision functions:
| engt h(n) number of significant digits for example, 123.456 has n=6

scal e(n) number of digits after decimal point for example, 123.456 has n=3
© Copyright IBM Corporation 2007

bc Examples

Here are some examples of bc working both as a filter and
interactively.

$ print "1/4" | bc integer division without a scale
0

$ print "scale =3 ; 1/4' | bc explicit scale value set

0. 250

$ print '5.5* 2.2" | bc scale set implicitly from input
12. 1

$ value=$('5.5 * 2.2' | bc) assign the answer to a variable
$ print S$val ue

12. 1

$ bc

sqrt(4) no prompt — this is my input

2 the result from the command
crl-d to end interactive mode

$

© Copyright IBM Corporation 2007

An Example of the Power

The Bessel Function

© Copyright IBM Corporation 2007

Checkpoint

1.

2.

Multiply together variables a and b, using expr .
Use expr to multiply variable a by the sum of b and c.
Set variable hex to contain the hexadecimal value 7c.

Write a | et statement to test whether variable a is smaller
than variable b.

Define a variable numas numeric only.
Increment a numeric variable nunvar , by three.
How would you calculate 6/7 to 6 decimal places?

How would you calculate the square root of 85419763207

© Copyright IBM Corporation 2007

Unit Summary

e The expr utility

e expr arithmetic and logical operators
eShelll et or (())

e Number bases

e| et logical operators

e Integer variables

e Implicit | et

e The bc utility

© Copyright IBM Corporation 2007

