
© Copyright IBM Corporation 2007
Course materials may not be reproduced in whole or in part without the prior written permission of IBM. 4.0.1

Unit 4
Flow Control

© Copyright IBM Corporation 2007

Unit Objectives

After completing this unit, you should be able to:

●Generate the if - then - else construct

●Generate conditional loops with until and while

●Understand specific value iteration with for

●Use multiple choice pattern matching with case

●Use the select command for menus

●Use break and continue in Loops

● Identify Doing Nothing – the null Command

© Copyright IBM Corporation 2007

The Simple if - then - else Construct

if expression1
then

commands to be executed if expression1 is
true

else
commands to be executed if all expressions

are false
fi

if [["$UID" -lt "100"]]
then

export PS1="# "
else

export PS1="$ "
fi

© Copyright IBM Corporation 2007

The Full if - then - else Construct

if [["$1" = "-a"]]
then

author=y ; control=n
version=n

elif "$1" = "-c"
then

author=n ; control=y
version=n

elif "$1" = "-v"
then

author=n ; control=n
version=y

else
author=n ; control=n
version=n

fi < /usr/local/defaults

© Copyright IBM Corporation 2007

if Example
Here is a simple if construct:
#!/usr/bin/ksh
Usage: goodbye username
#
if [[$# -ne 1]]
then

print "Usage is: goodbye username"
print "Please try again."
exit 1

fi
rmuser $1
print "O.K., $1 is removed."

When we run "goodbye", this is what we get ...
$ goodbye
Usage is: goodbye username
Please try again.
$ goodbye pete
O.K., pete is removed.
$ _

© Copyright IBM Corporation 2007

Conditional Loop Syntax

until cc prog.c
do

vi prog.c
done

while ["$x" -lt 3]
do

lsps -a >> ./statfile
df >> ./statfile
let x=x+1

done # should be "< ./statfile" here

© Copyright IBM Corporation 2007

while true Example
The Script "forever" is a tough cookie!

#!/usr/bin/ksh
An endless loop with a trap for INT QUIT TSTP
trap 'print "hasta la vista - baby!"' 2 3 18
while true
do

print "I'll be back."
sleep 10

done

$ forever
I'll be back. every ten seconds
I'll be back. the script speaks!
I'll be back.

<Ctrl-c> an attempt to stop it...

hasta la vista - baby! invokes the trap, and
I'll be back. it carries on.
I'll be back.

© Copyright IBM Corporation 2007

for Loop Syntax

for identifier in word1 word2 ...
do

commands using $identifier
more commands

done

for identifier # equivalent to: for identifier in "$@"
do

commands using $identifier which takes values from the
positional parameters

done # optional < filename

© Copyright IBM Corporation 2007

for - in Loop Example
Here we have a quick tidy-up to delete files:

$ for varfile in *.tmp
> do
> rm -f $varfile
> done
$ _

Why use the option -f ?
What else could be tested?

© Copyright IBM Corporation 2007

for Loop Example
The sample Script "getprice.ksh" will look up the price list:

#!/usr/bin/ksh
getprice.ksh - select price from "pricelist" file
for each item entered on the command line
Usage: getprice item1 item2 ...
#
for item
do

grep -i "$item" /home/cashier/pricelist
done

$ getprice.ksh "Shock Absorbers" "Air Filter"
Front Shock Absorbers 49.99
Rear Shock Absorbers 59.99
Air Filter 10.99
$ _

© Copyright IBM Corporation 2007

Arithmetic for Loop
The arithmetic for loop is available in ksh93 and bash.

for ((initialize; test; increment))
do
commands

done

Example:

for ((num=0; num <5; num++))
do
mv file${num} file${num}.bkup

done

© Copyright IBM Corporation 2007

The case Statement

case word in
(pattern1 | pattern2 | ...)

action ;;
(*) default ;;
esac

case $identifier in
(pattern1) command1

more_commands ;;
(pattern2 | pattern3) commands ;;
(*) commands ;;
esac

© Copyright IBM Corporation 2007

case Code Example
A guessing game of sorts:

#!/usr/bin/ksh
Usage: match string
To see how lucky you are feeling today

case "$1" in
Ace) print "You are really close." ;;
King) print "Missed it by that much." ;;
Queen) print "Finally!" ;;
Jack) print "Maybe next time." ;;
Ten|10) print "Getting closer." ;;
*) print "Guess again." ;;

esac

© Copyright IBM Corporation 2007

case Code Output
A casino dealer in the making?

$ match Three
Guess again.

$ match Jack
Maybe next time.

$ match Ace
You are really close.

$ match King
Missed it by that much.

$ match Queen
Finally!

© Copyright IBM Corporation 2007

Mini Quiz

1. True or False. There can be any number of elif statements
in an if – then – else construct.

2. How does one redirect for the whole of an until or while
loop?

3. True or False. The statement: "for identifier" takes its
input from positional parameters.

© Copyright IBM Corporation 2007

The Shell select Syntax

select identifier in word1 word2 ...
do

commands using $identifier usually containing a case
statement

done

select identifier # equivalent to: select identifier in "$@"
do

commands using $identifier from positional parameters
usually containing a case statement

done

© Copyright IBM Corporation 2007

select Code Example
To help identify animals we have a "barn.ksh" Shell Script:

#!/usr/bin/ksh
usage: barn.ksh
PS3="Pick an animal: "
select animal in cow pig dog quit
do

case $animal in
(cow) print "Moo"

;;
(pig) print "Oink"

;;
(dog) print "Woof"

;;
(quit) exit

;;
('') print "Not in the barn"

;;
esac

done

© Copyright IBM Corporation 2007

select Output Example
Running "barn.ksh" we can choose an animal to examine ...

$ barn.ksh
1) cow
2) pig
3) dog
4) quit
Pick an animal: 1
Moo
Pick an animal: 2
Oink
Pick an animal: 3
Woof
Pick an animal: 8
Not in the barn
Pick an animal: 4
$

Do you think setting PS3 to "Pick an animal" was a good choice?

© Copyright IBM Corporation 2007

More on Select

● In the previous example, the selected choice (for example
cow) was stored in $animal, however, the input from the user
was stored in $REPLY

●Using the $REPLY variable makes the select syntax a bit more
flexible as seen on the next page

● In ksh93, the TMOUT variable can be set to a number of
seconds. The select loop will timeout if no input is received
within the TMOUT seconds set.

© Copyright IBM Corporation 2007

#!/usr/bin/ksh

usage: barn.ksh

PS3 = "Pick an animal:"

Select animal in cow pig dog quit

do

case $REPLY in
cow|COW) print "Moo" ;;
pig|PIG) print "Oink" ;;
dog|DOG) print "Woof" ;;
quit|QUIT) exit ;;
*) print "Not in the barn" ;;
esac

done

Select Example Using $REPLY

© Copyright IBM Corporation 2007

exit the Loop
In the Korn shell script /usr/sbin/snap
...
if ["$badargs" = n]
then
if ["$found" = y]
then
if [-r "$destdir/$component/$component.snap"]
then
more $destdir/$component/$component.snap
else
echo "^Gsnap: $destdir/$component/$component.snap not found"
exit 25
fi

fi
else

usage
exit 26

fi ...

© Copyright IBM Corporation 2007

The break command jumps out of do . . . done loops:

Exits from the smallest enclosing loop
Jumps out a specified number of layers/loops

break number

select choice in Backup Restore Quit
do

case $choice in
(Backup) find . -print|backup -iqf /dev/rfd0
;;
(Restore) restore -xqf /dev/rfd0
;;
(Quit) break
;;
('') print "What ?" 2>&1
;;
esac

done

break the Loop

© Copyright IBM Corporation 2007

continue the Loop
The continue command begins the next iteration of a do . . . done

loop:

Starts at the top of the smallest enclosing loop
Begins again a specified number of layers/loops out

continue number

$ for File in *
> do
> if [[-d $File]]
> then
> continue
> fi
> file $File
> done
$ _

© Copyright IBM Corporation 2007

{

null Logic
Sometimes you require a command, but you don't actually want

to do anything – a NULL command

: # a COLON character

For example:

sys_call parameter1 parameter2
if [[$? -eq 0]]
then

Debug slot without the null command ":"
: this would be illegal syntax

else
print $0: Error: command failed
exit $ERRNO

fi

© Copyright IBM Corporation 2007

Program Logic Constructs Example
Here's a Script to delete empty files:

#!/usr/bin/ksh
Usage: delfile file1 file2 ...
while [[$# -gt 0]]
do

if [[-f "$1"]]
then

if [[! -s "$1"]]
then

rm "$1" && print "$1" deleted
else

print "$1" not deleted 2>&1
fi

elif [[-d "$1"]]
then

print "$1" is a directory
else

print "$1" is a special file
fi
shift

done

© Copyright IBM Corporation 2007

Checkpoint (1 of 2)

1. What is wrong with this fragment of shell script?

if ["$x" -eq 5]
then

echo $x
elif ["$x" -eq 3]
else

echo "x is only 3"
exit

fi

2. What is the fundamental difference between a while and an
until construct?

3. How could we write an endless loop?
4. What syntax would we use to perform a loop a finite number

of times, resetting an identifier (variable) each time the loop
goes through?

© Copyright IBM Corporation 2007

Checkpoint (2 of 2)

5. Which construct is best suited to allow conditional
processing, based on pattern matching?

6. What would the following lines produce?

select word in To be or not to be
do

:
done

7. Which construct is best used within the previous do-done?
block?

8. How can we terminate one iteration of a loop and commence
the next?

9. How can we abruptly terminate all iterations of a loop but
continue further processing in a shell script?

© Copyright IBM Corporation 2007

Unit Summary

●The if – then – else construct

●Conditional loops with until and while

●Specific value iteration with for

●Multiple choice pattern matching with case

●The select command for menus

●Leaving loops – exit and break

●Beginning again – continue

●Doing nothing — the null command – :

