Unit 8 L
More on Shell Variables -

© Copyright IBM Corporation 2007 v | L
p‘ﬂ IBM. i

Course materials may not be reproduced in whole or in part without the prior written permissi



Unit Objectives

After completing this unit, you should be able to:
e Use variable replacements

e Evaluate variable substrings

e Evaluate variable lengths

e Understand further t ypeset options

e Use compound variables

e Use indirect variables

e Use tilde expansions

© Copyright IBM Corporation 2007



Variable Replacements

Value of variables can be replaced with alternate values

${vari abl e: - WORD} value is WORD if variable is unset (use as a
temporary value)

${vari abl e: =WWORD} value is WORD if variable is unset and assigns
word to variable if it is unset (use as a
permanent value)

${vari abl e: +\WORD} value is null if variable is unset, else value is
WORD (use as alternate value)

${vari abl e: ?VWORD} if variable is unset, WORD is displayed on
standard error and the shell script or function
terminates with a non-zero exit code (exit 1)

© Copyright IBM Corporation 2007



Variable Replacement Examples

Some simple examples...

* Print date and time using command substitution, or use what was set earlier
(do not allow null date):

print ${date:-$(date)}

* To assign the value of TERM_DEF to TERM if it is unset or null:
TERM DEF=i bn8162

print "TERM set as ${ TERM =$TERM DEF}"

* Using the alternate value "1" if variable has a value:
var _fl ag=${var: +1}

* To exit the script if var1 is unset or null
${flag: ?"flag is unset"}

© Copyright IBM Corporation 2007



Shell Substrings

In the shell the ${ } syntax also works with patterns:

${vari abl e#pattern} removes smallest matching left
pattern from variable
${vari abl e##pattern} removes the largest matching left
pattern
${vari abl e%pat t er n} removes the smallest right matching
pattern
${vari abl e%pat t er n} removes the largest matching right
pattern
Hit
*mat ch
#

vari abl e="string match and natch again"
%
980

mat ch*

© Copyright IBM Corporation 2007



Shell Substring Examples

A bit of chopping...

$ variable="Now is the ting"

$ print ${variabl e#Ni} shortest left
s the tinme

$ print ${variabl e##N*i} longest left
me

$ print ${variabl e%ine} shortest right
Now i s the

$ print ${variabl e¥i *e} longest right
Now i s

$ _

Here's a function to strip out the file name from its path and print it...
function base

{
print ${1##*/} # match what?

© Copyright IBM Corporation 2007



Shell Substring Quiz

Now it's your turn...

1. How can | strip the ".c" extension from a C program file name
held in variable "name", and print it?

2. Write a function "path" to print the pathname part of a file name.
-- lusr/local/bin/program

© Copyright IBM Corporation 2007



Variable Lengths

A special variant of the ${ } syntax can be used to find the length
of a variable:

* To find the number of characters in a variable...
${#vari abl e}

* The number of positional parameters is...
${#*} or H#D

* For the number of elements set in an array (not the highest
element subscript)...

${#array[*]} or ${#array[ @}

© Copyright IBM Corporation 2007



typeset Options Review

t ypeset command is used to:

— Set attributes for variables or functions
— Create local variables in functions

typeset LN vari abl e=val ue. ..

where L is... [ integer, N is a fixed base
r to set readonly
X to export the variable

typeset xfL function...

where L is... X to export the function
u for an autoload function
t to set xtrace in the function

- To set attributes, display names and values
+ To unset attributes or display just names

© Copyright IBM Corporation 2007



Further typeset Options

Options below allow variables to be formatted upon expansion by the
Korn shell:
typeset =LN vari abl e=val ue. ..

where L is...
u convert value to uppercase when expanded

| convert value to lowercase

L left-justify, pad with trailing blanks to width N — if value is too big, truncate
from the right

R right-justify, adding leading blanks to width N- if wider than N, truncate from
the left

LZ left-justify to width N and strip leading zeros
Rz right-justify to width N, adding lead zeros if the first character is a digit

*The bash shell does not support these options

© Copyright IBM Corporation 2007



typeset Examples

Here are the different types in action...

$ typeset -u var=upper

$ print $var

UPPER

$ typeset -1 var=LONER # lower case "ell"
$ print $var

| ower

$ typeset -L6 text=SIDE

$ print "${text}="

SIDE =

$ typeset -R6 text

$ print "=$text"

= SIDE

$ typeset -LZ4 nume000. 1234567
$ print ${nun}

. 123

$ typeset -RZ5 nume123
$ print $num
00123

© Copyright IBM Corporation 2007



Compound Variables in ksh93

ksh93 has an additional feature called compound variables, for example:

$ tinme="10:47: 24 EST"
$ tine. hour=10; tine.m nute=47
$ tinme.seconds=24; tine.zone=EST
$ print $tine
10: 47: 24 EST
$ print ${tine.hour}
10
-or-
$ time=(hour=10 m nut e=47 seconds=24 zone=EST)
$ print $tine
(hour=10 m nut e=47 seconds=24 zone=EST)
$ print ${tine.zone}
EST

© Copyright IBM Corporation 2007



Variable Pattern Substitution in bash and ksh93

The bash and ksh93 shells allow for on the fly variable pattern
substitution.

Syntax:

${vari abl e/ patt er n/ newpatt er n}

If var i abl e contains pat t er n the first match the of pattern is
replaced with newpat t ern

${vari abl e/ / pattern/ newpatt ern}
Same as above syntax, except every match of pat t er n is replaced

Also:

${vari abl e: of f set : | engt h}
Show the substring beginning at of f set for | engt h number of
characters

© Copyright IBM Corporation 2007



Tilde Expansions

Following al i as expansion the Korn shell checks for a leading unquoted
~ character to see if it is:
~ tilde by itself is replaced by $HOVE

~user _nane is expanded into the $HOVE value for the
user_name given

~ot her _t ext will be left alone
Examples...

cd ~ = cd $HOVE

| ast di r =~- = | ast di r =$OLDPWD

j ohns=~j ohn = j ohns=/ hone/j ohn

© Copyright IBM Corporation 2007



Checkpoint

1.

What happens when the variable TMOUT is set and you enter
the following? TMOUT=${ TMOUT: - 60}

What would your prompt say if you were in your bin directory
and you entered this: PS1=" ${ PN\D#SHOVE/ } $' .

How could you find out the number of characters in the
variable HOVE?

© Copyright IBM Corporation 2007



Unit Summary

e Variable replacements
— For unassigned/null strings
e Variable substrings
— Simple pattern matches
e Variable lengths
— The # operator
e Further typeset options
— Justification and padding
e Tilde expansions
— Shortcuts
e Compound variables
— ksh93
e Indirect variables
— ksh93

© Copyright IBM Corporation 2007



