
© Copyright IBM Corporation 2007
Course materials may not be reproduced in whole or in part without the prior written permission of IBM. 4.0.1

Unit 5
Shell Commands

© Copyright IBM Corporation 2007

Unit Objectives

After completing this unit, you should be able to:

●Use the print and echo command
●Use special printing characters
●Use the read command
●Understand option and argument processing with getopts
●Use history manipulations with fc
●Use the set command
●Use shell options with set
●Use shell invocation
●Use built-in commands
●Use shell commands provided by AIX

© Copyright IBM Corporation 2007

The print command is the Korn shell output mechanism:

print argument ... prints arguments to standard output separated
by spaces

print - argument ... to print arguments that look like options

print -r argument ... RAW mode – do not interpret print's special
characters (listed on next page)

print -R argument ... equivalent to "-" and "-r"

print -uN argument ... output sent to file descriptor N

print -s argument ... output to the shell history file only

The print Command (ksh 88 and ksh93)

© Copyright IBM Corporation 2007

\a Alarm - ring the terminal bell

\b Backspace

\c Print without trailing newline (same as print -n)

\f Form feed

\n Newline

\r Return

\t Tab

\v Vertical tab

\\ Backslash

\0xxx Character with octal code xxx (up to three octal digits)

Backslash character sequences have special meaning (except in raw
mode)

Special print Characters

© Copyright IBM Corporation 2007

The echo Command (Bash)

The echo command is the Bash shell output mechanism:

●The echo special characters in bash are the same as the
print special characters in ksh (\a, \b, \c, and so forth)

●To use the echo special characters, you must use the -e
option

●On some systems, -e is the default. In this case -E turns off
the interpretation of special characters (similar to -r in print)

echo also has -n option to omit trailing newline after input

© Copyright IBM Corporation 2007

print Examples
When you use the print command, here's what you get.

$ print "Line 1\n\tLine2"
Line1

Line 2
$ print 'One quarter = \0274'
One quarter = ¼
$ print 'Backslash = \0134'
Backslash = \
$ print -r 'hi\\\\there 1' with -r and quotes
hi\\\\there 1
$ print -r hi\\\\there 2 with -r and no quotes
hi\\there 2
$ print 'hi\\\\there 3' with no -r and quotes
hi\\there 3
$ print hi\\\\there 4 with no -r and no quotes
hi\there 4
$ _

© Copyright IBM Corporation 2007

The printf Command - An Advanced Print
The printf command allows for more powerful formatting.

The printf commands comes built-in with ksh93. However, AIX also
has a version of printf (/usr/bin/printf) that can be used from bash and
ksh88.

Syntax:

– printf format-string [arguments ...]

Examples: Results:

printf "#%10s#\n" title # Title#
printf "#%-10s#\n" title #Title #
printf "%.5f" 123456.789 123456.78900

© Copyright IBM Corporation 2007

The read Command
To get input while a shell script is running, use read:

read variable ...

The read command reads a line from its standard input

Assigns input words to the variables
Set remaining variables to null if too few words
Set last variable to the remainder of the words if too few variables

For the Korn and bash shells, if no variables are specified, the REPLY
variable is set to the whole input line

© Copyright IBM Corporation 2007

read Examples
We can use the read from the shell prompt as well:

$ read var1 var2
123 456 789
$ print "var1 = $var1 \tvar2 = $var2"
var1 = 123 var2 = 456 789
$ read var1 var2
abc
$ print "var1 = $var1 \tvar2 = $var2"
var1 = abc var2 =
$ read
hi there
$ print $REPLY
hi there
$ _

© Copyright IBM Corporation 2007

read Command Options
The Korn shell read command has some options:

read -r variable ... raw mode – \ is not taken as
a line continuation character

read -uN variable ... read from file descriptor N

You can specify a prompt for the command to display on standard error,
add a "?prompt" to the first variable
read variable?prompt variable ...

For example, to request a user for a text string:
read string?'Please enter a text string'

© Copyright IBM Corporation 2007

read -A variable reads words into an indexed array
named variable, starting at index 0

read -d delimiter use "delimiter" instead of newline

read -n number read, at most, "number" bytes

read -t seconds wait "seconds" for input, else exit

read Options for ksh93

© Copyright IBM Corporation 2007

read -a variable reads words into an indexed array
named variable, starting at index 0

read -p prompt variable similar to read var?prompt in ksh

read -s silient mode (no echo)

read Options for bash

© Copyright IBM Corporation 2007

#!/usr/bin/ksh
usage: readrun
prompt the user for their name
read first?"Enter your name: " last
print "firstname = $first\tlastname=$last"

What would the result be for the following?

readrun
Enter your name: Lee
firstname = __________ lastname = ___________

Enter your name: Lee Lynn Llewellyn
firstname = __________ lastname = ___________

read Options Examples (1 of 2)

© Copyright IBM Corporation 2007

#!/usr/bin/ksh
Usage: readpwd
Read & print parts of /etc/passwd.
IFS=:
while read name pwd uid guid gecos home shell
do

print "$name" "$uid" "$guid" "$shell"
done < /etc/passwd

Here's what happens:
$ readpwd
root 0 0 /bin/bash
bin 1 1 /sbin/nologin
daemon 2 2 /sbin/nologin
adm 3 4 /sbin/nologin
...
$ _

read Options Examples (2 of 2)

© Copyright IBM Corporation 2007

Processing Options
Parameters on a script command line are of two types:

Arguments – used in script

Options – used to tell the script what to process

General parameter/argument processing is difficult

Consider
$ myscript -a -f optionfile argfile
$ myscript -foptionfile -va argfile

Shell provides getopts as a solution

© Copyright IBM Corporation 2007

The getopts Command
The getopts command processes options and associated arguments
from a parameter list

getopts optionstring variable parameter...

Each invocation of getopts processes the next option in the
parameter list (parameter list usually comes from the command line,
but can come from within a script)

– Usually called within a loop

The optionstring lists expected option identifiers

– If an option identifier requires an associated argument, add a colon (:)

A leading colon in the list suppresses "invalid option" messages by
getopts

© Copyright IBM Corporation 2007

getopts Syntax Example
How are options processed when passed to a script?
Assumptions:

The possible options are a, b and c
Option b is to have an associated argument
Suppress normal OpSys error messages

Inside the script getopts will be used early on:
while getopts ':ab:c' flag
do

identify the values set by getopts
done

A correct command line to the script might be
$ prog.ksh +c -ab barg -- arg1 arg2

What about?
$ prog.ksh -c -b -a -- arg1 arg2

© Copyright IBM Corporation 2007

#!/usr/bin/ksh
Example of getopts
USAGE="usage: example.getopts.ksh [+-c] [+-v] [-a argument]"

while getopts :a:cv varflag
do
case $varflag in

a) argument=$OPTARG ;;
c) compile=on ;;

+c) compile=off ;;
v) verbose=on ;;

+v) verbose=off ;;
:) print "You forgot an argument for the switch called a.";

exit ;;
\?) print "$OPTARG is not a valid switch" ; print "$USAGE" ;

exit ;;
esac

done
print -c "compile is $compile; verbose is $verbose;
print "argument is $argument "
#END

getopts Example

© Copyright IBM Corporation 2007

getopts Notes
getopts does not support options that start with a "+" in bash

getopts supports putting a "#" after an option letter (in the valid option
list) instead of a ":" to specify the option's argument must be a number
in ksh93

– Example:
:ab#c b takes an argument, which must be a number

© Copyright IBM Corporation 2007

The fc Command

The Shell fc command interactively edits and then re-executes
portions of your command history file:

fc start end edits and executes a command range
-- start defaults to the last command
-- end defaults to the value of start

-e editor to specify an editor other than $FCEDIT
-- WARNING! The shell default is /bin/ed

To re-execute a single command with automatic editing:

fc -e - old=new command

old=new to swap string old with string new
command to specify a command

-- default command is the last command

© Copyright IBM Corporation 2007

fc Examples - Edit and Execute, List
Ranges may be strings, absolute or relative numbers...

$ fc edit the last command with the
$FCEDIT editor, and then re-execute

$ fc cc edit the previous command beginning with cc
$ fc -e vi 10 20 use vi to edit history lines 10 to 20

Automatic editing can specify a command in a similar way

$ fc -e - re-execute last command as it was
$ fc -e - 2=3 10 swap 3 for 2 in command number 10

The ksh fc command lists portions of your command history file:

$ fc -l start end list the specified command range
-- the default is the last 16 commands

For example...
$ fc -l pg grep lists commands from the last pg to a grep
$ fc -l 15 20 lists commands 15 to 20
$ fc -l -5 -1 lists the last 5 commands

© Copyright IBM Corporation 2007

set lists set variables with their values

set value ... resets the positional parameters

set -o vi enables line recall and editing

The set Command
We have seen three functions performed by the set command:

This last form sets a shell option. There are several more options to set:

Shell options and settings are listed by set –o

Turn option on using set -o option or set -L
(where L is an option identifier)

Turn option off using set +o option or set +L

© Copyright IBM Corporation 2007

Korn Shell Options with Set (1 of 2)
Option: L Description:

allexport a automatically export each variable set

bgnice run all background jobs at a lower priority
– this is on by default for interactive shells

ignoreeof stops an interactive shell exiting on <Ctrl-d>
– you must use the exit command

errexit e exits if any command returns a non-zero return code

noclobber C stops the shell overwriting existing files with
> redirection (>| works instead)

noexec n for a non-interactive shell to check syntax without
executing commands

© Copyright IBM Corporation 2007

Option L Description

noglob f to disable metacharacter expansion

notify b to notify asynchronously of background job
completions

nounset u displays an error message when an unset variable is
used

s to sort positional parameters -- ksh only

trackall h set-up a tracked alias for each new command
-– on for non-interactive shells

verbose v to display input on standard error as it is read

vi turns on history line recall and vi editing

xtrace x the debug option – the shell displays PS4 with each
processed command line

Korn Shell Options with Set (2 of 2)

© Copyright IBM Corporation 2007

Additional ksh93 Shell Options
set -o pipefail

Usually the exit status is of the last command in a pipeline.

set -o pipefail changes this behavior.
The exit status of a pipeline is changed to that of the last command to fail

set -o viraw
Allows for set -o vi plus allows <Tab> for file name completion

© Copyright IBM Corporation 2007

Bash Shell Options with Set
The bash shell options are the same as the Korn shell unless noted:

– The set -h (set -o hashall) disables hashing of commands
– There is no set -o bgnice or set -o trackall
– Bash users traditionally use set -o emacs

Use "set -o" to list all of bash's options

© Copyright IBM Corporation 2007

Set Quiz

1. What command would you use to re-set the positional
parameters to "one" "two" "three"?

2. What lists the shell options with settings?

3. Which set option ensures that each variable assignment will
be inherited by a subshell?

4. What would stop <Ctrl-d> from logging me out?

5. How can I use set to protect my files from being overwritten
by output redirection?

© Copyright IBM Corporation 2007

We have seen the following built-in shell commands:

In the later units we will see:

All built-in commands can run in the current environment

Special built-in commands may terminate the shell if an error occurs

. : bg break
cd continue echo eval
exec exit export fc

fg getopts jobs kill
print pwd read readonly
set shift test []
trap typeset unset wait

alias command let or (()) return

times ulimit unalias whence

Shell Built-in Commands

© Copyright IBM Corporation 2007

Some built-in Korn shell commands are also provided as AIX
commands, accessible from all shells:

AIX commands are also provided for the logical words:

Most of these commands are shell scripts in /usr/bin – they are provided
for POSIX compliance

command

getopt

read

alias

echo

jobs

umask

bg

fc

kill

unalias

cd

fg

newgrp

wait

false true

AIX Shell Commands

© Copyright IBM Corporation 2007

Checkpoint

1. Without using redirection, how could we print information to
file descriptor 2?

2. What is wrong with the following command?
read speed?"mph" distance?"miles"

3. What getopts statement would allow you to process
options p, and a, with option t expecting an associated
value?

4. In the bash shell, print is not built-in. What is the built-in
command in Bash that performs similarly to Korn's print?

5. Which set option disables metacharacter pathname
expansion?

6. Which set options would be most useful in helping to debug
a shell script?

© Copyright IBM Corporation 2007

Unit Summary

●The Korn shell print command
●The Bash shell echo command
●Special printing characters
●The read command
●Option and argument processing with getopts
●History manipulations with fc
●The set command
●Shell options with set
●Shell invocation
●Built-in commands
●Shell commands provided by AIX

