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Abstract - -  Zusammenfassung 

Using Tabu Search Techniques for Graph Coloring. Tabu search techniques are used for moving step by 
step towards the minimum value of a function. A tabu list of forbidden movements is updated during the 
iterations to avoid cycling and being trapped in local minima. Such techniques are adapted to graph 
coloring problems. We show that they provide almost optimal colorings of ~aphs having up to 1000 
nodes and their efficiency is shown to be significantly superior to the famous simulated annealing. 
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Die Tabu-Methoden zur Graphenfiirbung. Tabu-Methoden werden bentitzt, um schrittweise den 
minimalen Wert einer Funktion zu erreichen. Eine sogenannte Tabuliste yon verbotenen Schritten wird 
w~ihrend des Prozesses nachgeffihrt, so dab man im Algorithmus keine Zyklen hat und nicht in lokalen 
Minima gefangen wird. Solche Methoden werden auf Graphenffirbung angepaBt. Wir zeigen, dab man 
mit dieser Technik fast optimale F~irbungen fiir Graphen mit bis zu 1000 Knoten erhS.lt. Die Effizienz 
dieser Methoden ist viel besser als diejenige der ber/ihmten ,,Simulated Annealing" Algorithmen. 

1. Introduction 

Various techniques have been described for obtaining colorings of the nodes of large 
graphs. The efforts made by many researchers have been motivated by a collection 
of applications going from cluster analysis to group technology in Computer 
Integrated Manufacturing. 

Recently the famous simulated annealing technique [-6] which had some success in 
dealing with large combinatorial optimization problems has been applied to the 
graph coloring problem [2]. 

Such a method may be helpful in approximating the minimum value of a so-called 
energy function by slowly reducing a parameter which is analogous to the 
thermodynamical temperature in a physical system of particles [6]. 

Many papers have been devoted to the application of this approach to famous 
combinatorial optimization problems. Nevertheless the analogy between a system of 
particles with a temperature and a combinatorial optimization problem is not 
always obvious and perhaps not always justified. In particular the definition of an 
objective function which may be assimilated to an energy function may cause some 
difficulties. 
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A few years ago a simple idea was suggested by Glover [-4] for moving stepwise to 
the opt imum value of an objective function with a special feature designed to avoid 
being trapped by local minima. This is the tabu search technique which has not been 
exploited yet on very many  types of combinatorial optimization problems. 

In the next section we shall sketch the basic ideas of tabu search and Section 3 will 
contain the adaptation of this technique to graph coloring. Section 4 will be devoted 
to a combined tabu method. A discussion of the results will be contained in 
Section 5. 

2. Tabu Search Technique 

In rough terms the tabu search method can be sketched as follows: we want to move 
step by step from an initial feasible solution of a combinatorial optimization 
problem towards a solution giving the minimum value of some objective function. 

For this we may represent each solution by a point in some space and we have to 
define a neighbourhood N (s) of each point s. 

T h e  basic step of the procedure consists in starting from a feasible point s and 
generating a sample (with fixed size rep) of solutions in N (s); then we choose the best 
neighbour s* generated so far and we move to s* whether f(s*) is better thanf ( s )  or 
not. 

Up to this point this is close to a local improvement technique except the fact that we 
may move to a worse solution s* from s (this is a situation which occurs in simulated 
annealing where a move to a worse solution may be accepted with a probability 
which decreases when the number of completed iterations increases). 

The interesting feature of tabu search is precisely the construction of a list T of tabu 
moves: these are moves which are not allowed at the present iteration. The reason 
for this list is to exclude moves which would bring us back where we were at some 
previous iteration. Now a move remains a tabu move only during a certain number 
of iterations, so that we have in fact a cyclical list T where at each move s~s*  the 
opposite move s* ~ s  is added at the end of T while the oldest move in T is removed 
from T. 

In conclusion the basic step consists in generating randomly a fixed number rep of 
possible moves from s (whenever a move in Tis  generated, it is destroyed and a new 
move is generated). Then the best one of the generated moves is realized and the tabu 
list T is updated accordingly. 

Now a stopping rule should be also defined: in general we may give a maximum 
number nbmax of iterations. In our case we will use an estimation f *  of the 
minimum value of the objective function f(s). As soon as we are close enough to f *  
(or when we have reached f*)  we may stop the whole procedure. 

More refined versions of the tabu search are described in [3]. 
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3. Application to Node Colorings 

Let us now describe how the tabu  search technique m a y  be used to find colorings of 
large graphs.  We will essentially t ry to find a coloring of a given g raph  G which uses a 
fixed number  k of colors. Then  we m a y  vary  k as we wish. 

Given  a g raph  G =(V,  E) a feasible solution will be a par t i t ion s = ( V  1, V2,..., Vk) of  
the node  set Vinto  a fixed number  k of subsets. I f  E (Vii) is the collection of edges of G 
with bo th  endpoints  in V~, we m a y  define the objective function f as the number  of 
edges for which bo th  endpoints  are in the same V i (i.e. have the same color): 

f ( s )  = Z (1 E (V~)I : i = 1, ..., k). 

Clearly s will be a coloring of the nodes of G with k colors if and only if f (s) = 0. In  fact 
we can est imate the best possible value of f ( s )  with f *  = 0; this will give us a s topping 
condit ion in the algori thm. 

F r o m  s we generate  a neighbour  s' (i. e. another  par t i t ion into k subsets of nodes) as 
follows: we choose a r a n d o m  node  x a m o n g  all those which are adjacent  to an edge 
in E (V1) u ... u E (Vk). Then  assuming x ~ Vi, we choose a r a n d o m  color j :p i and we 
obtain  s' f rom s = (V~, ..., l/k) by  setting: 

V j = V j u { x } ;  V/'=Vi\{x}; V~=Vrforr=l,.. . ,k;r=/=i,j.  

Having  generated rep neighbours  of s (which do not  lead to tabu  moves), we pick up 
the best one and  we move  to it. 

The  tabu  list is obta ined as follows: whenever  a node x is moved  from V~ to Vj to get 
the new solution, the pair  (x, i) becomes tabu:  node x cannot  be returned to V i for 
some iterations. As described before the list T of tabu  moves is cyclic. 

N o w  we shall continue the i terat ions until either we get a solution s such tha t  
f(s) = f *  or until we reach the m a x i m u m  number  n b m a x  of iterations. In  this case, 
we will not  have  obta ined a coloring if for the last solution s we have f(s)> O. 

Following Glover  [3] we are using a function A (z) which is the aspirat ion level of the 
objective function value next  to be reached when the current  value is z - - f ( s ) .  I t  is 
used like this: if a move  to a neighbour  s' is tabu  but  gives f(s') <_ A (z), then we drop  
the tabu  status of this move  and  we consider it as a no rma l  member  of the sample  
which is generated.  

Initially we set A (z) -- z -  1 for all values of z. Then  whenever  we generate  an s' with 
f (s') <_ A ( f  (s)) then we set A ( f  (s)) - - f ( s ' )  - 1. 

The  complete  formulat ion of the tabu  search technique for our coloring p rob lem is 
given in Table  1; we will call it T A B U C O L .  

Several local improvements  have been int roduced for reducing the computa t ion  
time. 

First  during the process of generat ing neighbours  s' of s we m a y  get at some stage an 
s' (not in the t abu  list) with f (s') < f(s). Ins tead  of continuing until we have generated 
rep neighbours,  we move  directly f rom s to s'. 
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Table 1. The TABUCOL algorithm 

Input G = (V, E) 
k =number of coIors 
[ TI =size of tabu list. 
rep = number of nr in sample 
nbmax =maximum number of iterations. 

Initialization 
Generate a random solution s = ( V  1 . . . .  , Vk) 
nbiter: =0; choose an arbitrary tabu list T. 

While f (s)  >0 and nbiter <nbmax 
generate rep neighbours s i of s with move s o s i r  f(s~)<_ A (f(s)) 
(as soon as we get an sl with f(s~)<f(s)  we stop the generation). 

Let s ' bc the be~t neighbour generated 

update tabu list T 
(introduce move s--*s' and remove oldest tabu move) 

S :  = S  r 

nbiter: = nbiter + 1 

endwhile 
Output If f (s)=0, we get a coloring of G with k colors: V1, ..., V k are the coIor sets. Otherwise no 

coloring has been found with k colors. 

Also when the edges in E(VI)  w . . .  w E ( V k )  form a s tar  (i.e. they have a c o m m o n  
node), then we examine if a solut ion s* with f ( s * ) ~ - 0  can be reached by  moving  at  
most  three nodes  (among which this c o m m o n  node  will be counted).  This  
improvemen t  is mot iva ted  by  the fact that  one m a y  be at  some step very close to an 
op t imum solut ion and  miss it due to the r a n d o m  choice of the next move.  

This search for improvements  in at  most  three moves  is very fast to per form but  
could become t ime-consuming if we al lowed more  moves.  

An i m p o r t a n t  pa r ame te r  is the size [ T[ of  the t abu  list. As suggested by Glover  [3]  
we have taken I TI = 7. Smaller  values m a y  create cycling and  larger  values do not  
improve  the p rocedure  while increasing the compu ta t ion  time. 

4. A Combined Method 

As we observed for anneal ing,  it  turns out  tha t  the efficiency of t abu  search for large 
graphs  (more than  500 nodes) can be increased by  combin ing  it with o ther  
techniques [2]. 

The  idea  is the following: 
Given  a pa r ame te r  q, we construct  consecutively color  sets (i.e. i ndependen t  sets) 
V1, V2, ... which are  as large as possible,  unti l  we are left with at  mos t  q nodes.  Then 
these are  colored by  the T A B U C O L  procedure .  

F ind ing  a large independent  set can also be done efficientIy with the tabu  approach .  
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We may proceed as follows for finding an independent set with p nodes: a feasible 
solution s is a partition (S, S) of the node set with I S I = P. The function f(s) to be 
minimized is f ( s ) =  I E(S)] i.e. the number of edges inside S. 

Let us denote by N s (x) the set of all neighbours ofx in S. The set S (resp. S) is ordered 
' in  such a way that if x is before y in S (resp. ;~) then [Ns(x)[>_lgs(Y)l (resp. 

I gs(x)l-< [ gs(Y)l). 

We construct two tabu lists T(S) and T(S) of same cardinality [ Zl which contain all 
the nodes which were moved in the last ] TI steps. 

Here we do not proceed as in the general case by generating rep neighbours of the 
current solution s. We can work in a much simpler way: we generate the best move 
which does not involve tabu nodes. 

This is done as follows: 
At each step we choose the first node x in S\T(S) and the first node y in S\T(S) and 
we obtain s' by setting S = (S\{x}) u {y} and S =  (S\{y}) u {x}; x (resp. y) enters the 
list T(S) (resp. T(S)) while the oldest node in this list is removed. 

For random graphs with n nodes and edge probability 0.5, Matula  and Johri [5] 
have given estimations c~(n) of the size of a largest independent set. 

We use these in our construction of color sets V 1, V2 . . . .  as follows: when we are left 
with a graph having n' nodes, we set p-~ o7 (n') and we run the tabu method until 
f(s) = 0 or nbiter = nbmax. In the first case, we have found a new color class and we 
remove these nodes from the graph. I n  the second case, we decrease p by 1 and we 
reapply this tabu search. This is iterated until we get an independent set. 

Finally, when the color sets V1, ..., Vk constructed leave an uncolored graph with at 
most q nodes we apply the T A B U C O L  procedure for the remaining nodes. 

5. Numerical Results and Discussion 

Computational  experiments have been run on a CDC Cyber 170/855 with random 
graphs. The density (probability of presence of each edge) was 0.5. 

We summarize in Table 2 the results obtained with TABUCOL.  We give there the 
smallest value k for which all examples of the same size have been successful (i. e. a 
coloring has been obtained). 

Table 2. Computational results of TABUCOL 

F/ 

nb. of 
nodes 

100 
300 
500 

1000 

nb. 
of graphs 
in sample 

20 
10 
5 
2 

~(6) 

16 
35 
50 
85 

nb. 
of colors 

used 

16 
35 
51 
93 

average 
CPU time 

(in sec.) 

0.5 
59.7 

3344.7 
8719.2 

average 
nb. of 

iterations 

355 
9826 

330818 
279466 

rep 

50 
170 
250 
600 
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Comparisons with the simulated annealing technique (see Table 3) show that the 
tabu method provides colorings for smaller values of k than annealing and it also 
takes less CPU-time (see those in [2]). 

Table 3. Best k without failure in sample 

n 

nb. of nodes 

2(6) 

k (combined tabu) 

100 300 500 1000 

16 35 50 85 

16 35 50 87 

k (TABUCOL) 16 35 51 93 

k (annealing) 16 36 54 98 

Our best results are obtained with combined techniques. For graphs having up to 
500 nodes we have obtained colorings with no more colors than the probabilistic 
estimation given in [5]. In fact, such a combined procedure based on the annealing 
method has already given for a random graph G with n = 1000 nodes a coloring with 
91 colors [2]; this was an improvement in comparison to the pure annealing method 
(see Table 3). 

Table 4 summarizes the results for the combined tabu method applied to the same 
graph G. The total number of colors is 87 which is close to the probabilistic 
estimation if(G)= 85 of the chromatic number z(G) (see [5]). 

Construction of 
large 

independent sets 

TABUCOL 

Table 4. Combined tabu for n = 1000 and q = 500 

i 

size I S I 

14 

13 

13 

12 

11 

10 

9 

8 

7 

rib. of sets 
ofsize[SI 

3 

24 

10 

1 

0 

15 

15 

10 

8 

1 

Totals 

nb. of 
colored nodes 

511 

489 

1000 

nb. of colors 
used 

37 

50 

87 

time 
in sec. 

successful 
searches 

6417 

unsuccessful 
searches 

3000 

3837 

13254 
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Wi th  an ent i rely different a p p r o a c h  BollobAs et al. [1] have ob ta ined  colorings with 
an average of 86.9 colors. We  do no t  know any  other  p rocedure  which constructs  
color ings wi th  at  mos t  87 colors in such graphs .  

I t  is difficult to compare  the t imes of  our  me thod  and  of the one of  Bollob/ts et al. [-1]. 
Our  a p p r o a c h  has  however  a prac t ica l  advan tage ;  if we want  a color ing with p 
colors  where  p is not  too close to ~ (G), we get it easi ly in a much  shor ter  C P U - t i m e  
(the same occurred for the anneal ing  technique [2]). 

F u r t h e r m o r e  if for a given p, we do no t  get a color ing with  p colors,  then we know 
where the " b a d "  edges are  and  we have an idea of the edges which should be deleted 
in order  to get the desired coloring.  

In our  codes we have not  used any  special  da t a  s t ructure  for represent ing the g raph  
and  the lists needed  in the a lgor i thm.  It  is l ikely tha t  comput ing  t imes can still be 
reduced;  our  purpose  was s imply to exploi t  the t abu  me thod  and  to show tha t  it  can 
provide  good  heurist ics for g raph  coloring. 
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