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Abstract — Zusammenfassung

Using Tabu Search Techniques for Graph Coloring. Tabu search techniques are used for moving step by
step towards the minimum value of a function. A tabu list of forbidden movements is updated during the
iterations to avoid cycling and being trapped in local minima. Such techniques are adapted to graph
coloring problems. We show that they provide almost optimal colorings of graphs having up to 1000
nodes and their efficiency is shown to be significantly superior to the famous simulated annealing.
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Die Tabu-Methoden zur Graphenfirbung. Tabu-Methoden werden beniitzt, um schrittweise den
minimalen Wert einer Funktion zu erreichen. Eine sogenannte Tabuliste von verbotenen Schritten wird
wihrend des Prozesses nachgefiihrt, so daB man im Algorithmus keine Zyklen hat und nicht in lokalen
Minima gefangen wird. Solche Methoden werden auf Graphenfirbung angepalt. Wir zeigen, daB man
mit dieser Technik fast optimale Farbungen fiir Graphen mit bis zu 1000 Knoten erhilt. Die Effizienz
dieser Methoden ist viel besser als diejenige der berithmten ,,Simulated Annealing” Algorithmen.

1. Introduction

Various techniques have been described for obtaining colorings of the nodes of large
graphs. The efforts made by many researchers have been motivated by a collection
of applications going from cluster analysis to group technology in Computer
Integrated Manufacturing.

Recently the famous simulated annealing technique [6] which had some success in
dealing with large combinatorial optimization problems has been applied to the
graph coloring problem [2].

Such a method may be helpful in approximating the minimum value of a so-called
energy function by slowly reducing a parameter which is analogous to the
thermodynamical temperature in a physical system of particles [6].

Many papers have been devoted to the application of this approach to famous
combinatorial optimization problems. Nevertheless the analogy between a system of
particles with a temperature and a combinatorial optimization problem is not
always obvious and perhaps not always justified. In particular the definition of an
objective function which may be assimilated to an energy function may cause some
difficulties.
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A few years ago a simple idea was suggested by Glover [4] for moving stepwise to
the optimum value of an objective function with a special feature designed to avoid
being trapped by local minima. This is the tabu search technique which has not been
exploited yet on very many types of combinatorial optimization problems.

In the next section we shall sketch the basic ideas of tabu search and Section 3 will
contain the adaptation of this technique to graph coloring. Section 4 will be devoted
to a combined tabu method. A discussion of the results will be contained in
Section 5.

2. Tabu Search Technique

In rough terms the tabu search method can be sketched as follows: we want to move
step by step from an initial feasible solution of a combinatorial optimization
problem towards a solution giving the minimum value of some objective function.

For this we may represent each solution by a point in some space and we have to
define a neighbourhood N (s) of each point s.

The. basic step of the procedure consists in starting from a feasible point s and
generating a sample (with fixed size rep) of solutions in N (s); then we choose the best
neighbour s* generated so far and we move to s* whether f(s*) is better than f(s) or
not.

Up to this point this is close to a local improvement technique except the fact that we
may move to a worse solution s* from s (this is a situation which occurs in simulated
annealing where a move to a worse solution may be accepted with a probability
which decreases when the number of completed iterations increases).

The interesting feature of tabu search is precisely the construction of a list T of tabu
moves: these are moves which are not allowed at the present iteration. The reason
for this list is to exclude moves which would bring us back where we were at some
previous iteration. Now a move remains a tabu move only during a certain number
of iterations, so that we have in fact a cyclical list 7 where at each move s—s* the
opposite move s* —s is added at the end of 7 while the oldest move in T is removed
from 7.

In conclusion the basic step consists in generating randomly a fixed number rep of
possible moves from s (whenever a move in T'is generated, it is destroyed and a new
move is generated). Then the best one of the generated moves is realized and the tabu
list 7" is updated accordingly.

Now a stopping rule should be also defined: in general we may give a maximum
number nbmax of iterations. In our case we will use an estimation f* of the
minimum value of the objective function f(s). As soon as we are close enough to f*
(or when we have reached f*) we may stop the whole procedure.

More refined versions of the tabu search are described in [3].
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3. Application to Node Colorings

Let us now describe how the tabu search technique may be used to find colorings of
large graphs. We will essentially try to find a coloring of a given graph G which uses a
fixed number k of colors. Then we may vary k as we wish.

Given a graph G=(V, E) a feasible solution will be a partition s=(V;, V5, ..., V}) of
the node set Vinto a fixed number k of subsets. If E (V) is the collection of edges of G
with both endpoints in ¥}, we may define the objective function f as the number of
edges for which both endpoints are in the same ¥ (i.e. have the same color):

FO=2(EW|:i=1,...,k).

Clearly s will be a coloring of the nodes of G with k colors if and only if f (s)=0. In fact
we can estimate the best possible value of f(s) with /* =0; this will give us a stopping
condition in the algorithm.

From s we generate a neighbour §' (i.e. another partition into k subsets of nodes) as
follows: we choose a random node x among all those which are adjacent to an edge
in E(V)) v ... u E(V;). Then assuming x € V;, we choose a random color j i and we
obtain s from s=(V7,..., V}) by setting:

Vi=Viuixy;, Vi=VNx}, Vi=V.forr=1,.. kir#i,j.

Having generated rep neighbours of s (which do not lead to tabu moves), we pick up
the best one and we move to it.

The tabu list is obtained as follows: whenever a node x is moved from V; to V; to get
the new solution, the pair (x, i) becomes tabu: node x cannot be returned to ¥, for
some iterations. As described before the list 7" of tabu moves is cyclic.

Now we shall continue the iterations until either we get a solution s such that
f{s)=/* or until we reach the maximum number nbmax of iterations. In this case,
we will not have obtained a coloring if for the last solution s we have f(s)>0.

Following Glover [3] we are using a function A (z) which is the aspiration level of the
objective function value next to be reached when the current value is z=f(s). It is
used like this: if a move to a neighbour s’ is tabu but gives f(s") < A(z), then we drop
the tabu status of this move and we consider it as a normal member of the sample
which is generated.

Initially we set A (z)=z— 1 for all values of z. Then whenever we generate an s’ with

f(s)<A(f(s) then we set A(f(s)=F(s)~—1.

The complete formulation of the tabu search technique for our coloring problem is
given in Table 1; we will call it TABUCOL.

Several local improvements have been introduced for reducing the computation
time.

First during the process of generating neighbours s of s we may get at some stage an
s’ (not in the tabu list) with £(s") < f(s). Instead of continuing until we have generated
rep neighbours, we move directly from s to s'.
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Table 1. The TABUCOL algorithm

Input G=(V,E)
k=number of colors
| T|=size of tabu list .
rep =number of neighbours in sample
nbmax =maximum number of iterations.

Initialization

Generate a random solution s=(Vy, ..., V})
nbiter:=0; choose an arbitrary tabu list 7.

While f(s)>0 and nbiter <nbmax
generate rep neighbours s; of s with move s—s;¢7 or f{s)<A(f(5)
(as soon as we get an s; with f(s;) < f(s) we stop the generation).

Let s* be the best neighbour generated

update tabu list T

(introduce move s—s' and remove oldest tabu move)
s:=§

nbiter: =nbiter +1

endwhile
Output  If f(s)=0, we get a coloring of G with k colors: Vy, ..., V, are the color sets. Otherwise no
coloring has been found with k colors.

Also when the edges in E(V}) v ... u E(V,) form a star (i.e. they have a common
node), then we examine if a solution s* with f(s%)=0 can be reached by moving at
most three nodes (among which this common node will be counted). This
improvement is motivated by the fact that one may be at some step very close to an
optimum solution and miss it due to the random choice of the next move.

This search for improvements in at most three moves is very fast to perform but
could become time-consuming if we allowed more moves.

An important parameter is the size | T'| of the tabu list. As suggested by Glover [3]
we have taken | 7|=7. Smaller values may create cycling and larger values do not
improve the procedure while increasing the computation time.

4. A Combined Method

As we observed for annealing, it turns out that the efficiency of tabu search for large
graphs (more than 500 nodes) can be increased by combining it with other
techniques [2].

The idea is the following:

Given a parameter g, we construct consecutively color sets (i.e. independent sets)
Vi, Vs, ... which are as large as possible, until we are left with at most g nodes. Then
these are colored by the TABUCOL procedure.

Finding a large independent set can also be done efficiently with the tabu approach.
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We may proceed as follows for finding an independent set with p nodes: a feasible
solution s is a partition (S, S) of the node set with | S|=p. The function f(s) to be
minimized is f(s)=| E(S)] i.e. the number of edges inside S.

Let us denote by N (x) the set of all neighbours of x in S. The set S (resp. S) is ordered
“in such a way that if x is before y in S (resp. S) then | Ng(x)|>|Ng(y)| (resp.
| Ns ()| <[ Ns W)

We construct two tabu lists 7(S)and 7(S) of same cardinality | 7’| which contain all
the nodes which were moved in the last | 7'] steps.

Here we do not proceed as in the general case by generating rep neighbours of the
current solution s. We can work in a much simpler way: we generate the best move
which does not involve tabu nodes.

This is done as follows:

At each step we choose the first node x in $\7'(S) and the first node y in S\T'(S) and
we obtain s by setting S =(S\{x}) U {y} and S=(S\{y}) U {x}; x (resp. y) enters the
list 7'(S) (resp. 7(S)) while the oldest node in this list is removed.

For random graphs with n nodes and edge probability 0.5, Matula and Johri [5]
have given estimations & (n) of the size of a largest independent set.

We use these in our construction of color sets V7, V5, ... as follows: when we are left
with a graph having n’ nodes, we set p~d(n') and we run the tabu method until
£{(s)=0 or nbiter =nbmax. In the first case, we have found a new color class and we
remove these nodes from the graph. In the second case, we decrease p by 1 and we
reapply this tabu search. This is iterated until we get an independent set.

Finally, when the color sets V4, ..., ¥, constructed leave an uncolored graph with at
most g nodes we apply the TABUCOL procedure for the remaining nodes.

5. Numerical Results and Discussion
Computational experiments have been run on a CDC Cyber 170/855 with random
graphs. The density (probability of presence of each edge) was 0.5.

We summarize in Table 2 the results obtained with TABUCOL. We give there the
smallest value k for which all examples of the same size have been successful (i.e. a
coloring has been obtained).

Table 2. Computational results of TABUCOL

n nb. nb. average average
nb. of of graphs X6 of colors CPU time nb. of rep
nodes in sample used (in sec.) iterations
100 20 16 16 0.5 355 50
300 10 35 35 59.7 9826 170
500 5 50 51 33447 330818 250
1000 2 85 93 8719.2 279466 600
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Comparisons with the simulated annealing technique (see Table 3) show that the
tabu method provides colorings for smaller values of k than annealing and it also

takes less CPU-time (see those in [2]).

Table 3. Best k without failure in sample

b, Of"no des 100 300 500 1000
X 16 35 50 85
k (combined tabu) 16 35 50 87
k (TABUCOL) 16 35 51 93
k (annealing) 16 36 54 98

Our best results are obtained with combined techniques. For graphs having up to
500 nodes we have obtained colorings with no more colors than the probabilistic
estimation given in [5]. In fact, such a combined procedure based on the annealing
method has already given for a random graph G with n= 1000 nodes a coloring with
91 colors [ 2]; this was an improvement in comparison to the pure annealing method
(see Table 3).

Table 4 summarizes the results for the combined tabu method applied to the same
graph G. The total number of colors is 87 which is close to the probabilistic
estimation %(G)=385 of the chromatic number »(G) (see [5]).

Table 4. Combined tabu for n=1000 and g =500

ize |5 nb. of sets nb. of nb. of colors time
S1Z of size [ S| colored nodes used in sec.
.
successful
15 3 searches
Construction of 6417
large 14 24 511 37
independent sets unsuccessful
13 10 searches
3000
AN
s
13 1
12 0
11 15 ‘
TABUCOL 10 15 489 50 3837
9 10
8 8
7 1
-~
Totals 1000 87 13254
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With an entirely different approach Bollobas et al. [ 1] have obtained colorings with
an average of 86.9 colors. We do not know any other procedure which constructs
colorings with at most 87 colors in such graphs.

Tt is difficult to compare the times of our method and of the one of Bollobas etal. [1].
Our approach has however a practical advantage; if we want a coloring with p
colors where p is not too close to » (G), we get it easily in a much shorter CPU-time
(the same occurred for the annealing technique [2]).

Furthermore if for a given p, we do not get a coloring with p colors, then we know
where the “bad” edges are and we have an idea of the edges which should be deleted
in order to get the desired coloring.

In our codes we have not used any special data structure for representing the graph
and the lists needed in the algorithm. It is likely that computing times can still be
reduced; our purpose was simply to exploit the tabu method and to show that it can
provide good heuristics for graph coloring.
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