Semi-Automatic Construction of Polish DeriNet

Mateusz Lango

Institute of Computing Science, Poznan University of Technology

September 18, 2017

◆□▶ ◆□▶ ◆三▶ ◆三▶ ○ ● ●

Poznań, the capital of Greater Poland

Poznań University of Technolgy

• the second university with the highest number of candidates

・ロト ・ 同ト ・ ヨト ・ ヨト

э

Resources for derivational morphology

- DeriNet for Czech a network of > 1M lemmas which are connected by derivational relation
- lack of such resources for Polish¹ (and many other languages)

¹some information about derivation can be extracted from the Polish WordNet

- Generation of frequent subsequences
- Ø Merging frequent subsequences into regular expressions
- Generation of possible parents for each lemma
- Sanking of candidate sets by machine-learned ranker

◆□▶ ◆□▶ ◆□▶ ◆□▶ □ のQ@

Sequential pattern mining

- one of the most important topics in frequent pattern mining
- the task is to extract all frequent subsequences with the support greater than a specified threshold
- in our case we treat lexicon as a database of sequences (words)
- \bullet we used SPADE algorithm with min. support $1\% \Rightarrow 27 \text{K}$ frequent patterns

Pattern Suppo		
n,i,e	87053	
o,w,y	27099	
c, z, n, o, ś, ć	7570	
d, z, o, ś, ć	4792	

Converting frequent patterns into regular expressions

- frequent pattern ",n,i,e" \Rightarrow *n*i*e*\$
- making expressions more specific
 - delete one of the * from the expression
 - recalculate support
 - accept new expression if the support is higher than 95% of the original support

▲ロ ▶ ▲ □ ▶ ▲ □ ▶ ▲ □ ▶ ▲ □ ▶ ● ○ ○ ○

•
$$*n*i*e*$$
 \Rightarrow $nie*$

Pattern	RegExp
n,i,e	^nie*\$
o,w,y	^*owy\$
c, z, n, o, ś, ć	^*cz*ność\$
d, z, o, ś, ć	^*d*z*ość\$

• Problem: some regular expressions are redundant (they cover almost the same set of words)

RegExp	Support	
^*z*ność\$	7547	
^*cz*ność\$	7543	

Solution:

- convert each regular expression to a binary feature
- calculate phi coefficient between corresponding features
- $\bullet\,$ if ϕ is greater than 95% drop less specific regular expressions

・ロト ・ 母 ト ・ ヨ ト ・ ヨ ・ うへつ

• 27K regular expressions \Rightarrow 13K regular expressions

- each regular expression is used as a binary feature
- two more features: length of the common prefix and length of the common suffix
- hand-annotated training set of (derived word, base word) pairs

▲ロ ▶ ▲ □ ▶ ▲ □ ▶ ▲ □ ▶ ▲ □ ▶ ● ○ ○ ○

• the classification task: is the pair a correct one?

- add a special character at the beginning and at the end of each word e.g. #wiek#
- split the word into all possible substrings of length > 3 (#wiek, #wie, #wi, wiek#, wiek, wie,..)
- Create a bi-partile graph in which the words are connected to its substrings

◆□▶ ◆□▶ ◆□▶ ◆□▶ □ のQ@

• a weight is added to each edge which is equal to $\frac{1}{d}$ where d is the degree of the node

うしん 同 (川田)(山下)(山下)(山下)

◆□▶ ◆□▶ ◆三▶ ◆三▶ → □ ◆ ⊙ へ ⊙

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 - のへで

- for each lemma we construct a candidate set from 100 most similar lemmas
- the problem has change: pick one (or none) from the set of candidates
- Learning to rank
 - originally proposed for ranking query results in the information retrieval systems

▲ロ ▶ ▲ □ ▶ ▲ □ ▶ ▲ □ ▶ ▲ □ ▶ ● ○ ○ ○

• many approaches: pointwise, pairwise, listwise

- Generation of frequent subsequences
- Ø Merging frequent subsequences into regular expressions
- Generation of possible parents for each lemma
- Sanking of candidate sets by machine-learned ranker

◆□▶ ◆□▶ ◆□▶ ◆□▶ □ のQ@

Ianguage resources

- Morfeusz SGJP Polish lexicon
- Słowosieć Polish Wordnet
- software
 - SPMF data mining library for frequent sequence mining

▲ロ ▶ ▲ □ ▶ ▲ □ ▶ ▲ □ ▶ ▲ □ ▶ ● ○ ○ ○

- xgboost implementation of Gradient Boosting Trees (supports learning-to-rank)
- 5-fold CV

	Classification	Ranking
Precision@1	80,75%	82,33%
Avg position of correct candidate	0.64	0.49
Precision@1 with threshold	88,3%	98,8%

◆□▶ ◆□▶ ◆ □▶ ◆ □▶ ● □ ● ● ● ●

- approx. 53,5 K connections were established
- 97% from 200 randomly sampled connections were correct
- we extracted 12 types of relations related with derivation from Słowosieć (the Polish WordNet) e.g. diminutives, femininity, inhabitant, derivationality
- by applying these connections to our lexicon 52K connections can be created

・ロト ・ 母 ト ・ ヨ ト ・ ヨ ・ うへつ

• finally, there is above 93,5 K connections in the network

- analysis of the inconsistencies between WordNet connections and our connections
- translation of the Czech DeriNet to Polish
- creation of a similar network for Spanish
- comparison of the structures of word-formation networks for Czech and Latin

◆□▶ ◆□▶ ◆□▶ ◆□▶ □ のQ@

• ...

Thank you for your attention!

▲□▶ ▲□▶ ▲ 臣▶ ▲ 臣▶ ― 臣 … のへぐ