
Accelerating Local Search in a Memetic

Algorithm for the Capacitated Vehicle Routing
Problem

Marek Kubiak and Przemys�law Weso�lek

Institute of Computing Science, Poznan University of Technology
Piotrowo 2, 60-965 Poznan, Poland
Marek.Kubiak@cs.put.poznan.pl

Abstract. Memetic algorithms usually employ long running times, since
local search is performed every time a new solution is generated. Acceler-
ation of a memetic algorithm requires focusing on local search, the most
time-consuming component. This paper describes the application of two
acceleration techniques to local search in a memetic algorithm: caching of
values of objective function for neighbours and forbidding moves which
could increase distance between solutions. Computational experiments
indicate that in the capacitated vehicle routing problem the usage of
these techniques is not really profitable, because of cache management
overhead and implementation issues.

1 Introduction

Population-based algorithms are usually more time-consuming than their single-
solution-based counterparts. Evolutionary algorithms, as an example of the first
type, employ large computation times, as compared to e.g. simulated annealing
or tabu search. Memetic algorithms (MAs) [1], a kind of evolutionary ones, are
even more prone to this problem; in a memetic algorithm a local search process
is conducted for every solution in a population, which makes the process of
computation even longer.

On the other hand, population-based algorithms usually offer the possibility of
exploration of the search space to high extent and, thus, generate better solutions
than procedures based solely on local search. Therefore, algorithms managing a
population of solutions are a useful tool of optimization. Nevertheless, it would
be profitable if the speed of memetic algorithms could be increased without
deterioration in the quality of results.

The majority of computation time of a memetic algorithm is usually spent
on local search, after each recombination and mutation [1]. Consequently, each
attempt to speed up the whole algorithm should be focused on local search.

The main acceleration possibility in local search concerns the computation
of quality of neighbours to a current solution. If the difference of the objec-
tive function between the current solution and its neighbour may be computed
faster than the objective for the neighbour from scratch, then the whole process

C. Cotta and J. van Hemert (Eds.): EvoCOP 2007, LNCS 4446, pp. 96–107, 2007.
c© Springer-Verlag Berlin Heidelberg 2007

Accelerating Local Search in a Memetic Algorithm for the CVRP 97

speeds-up drastically. In [1] Merz claims that it is possible for almost every com-
binatorial optimization problem. Jaszkiewicz [2] mentions that local search for
the TSP performed almost 300 times more function evaluations per second than
a genetic procedure computing the objective from scratch. This is also the case
in the capacitated vehicle routing problem (CVRP), which is considered here:
neighbours of a solution (w.r.t. commonly used neighbourhood operators) may
be evaluated quicker than random solutions.

However, Ishibuchi et al. [3] rightly note that there are problems for which such
acceleration is not possible. They give an example of a flowshop problem with
the completion time as the objective: a neighbour to a solution is not evaluated
faster than a completely new solution. This results from the fact that certain
objectives and/or constraints have global character and even a small change in
contents of a solution require complete recomputation of the objective function
and/or checking all constraints.

Another possibility of speeding-up local search requires caching of (storing in
auxiliary memory) values of the difference in objective functions. This technique
is not new and is also known as “don’t look bits” [4]: if a neighbour of a solution
has been evaluated as worse in a previous iteration of local search, then it is not
evaluated at all in the current iteration. Such an approach requires that only the
changing part of a neighbourhood of a current solution is evaluated.

The two mentioned techniques do not take the memetic search into account.
However, there is a possibility to speed-up local search also based on information
contained in the population of an MA. If the optimization problem considered
exhibits the ’big valley’ structure, then it means that good solutions of the
problem are located near to each other, and to global optima, in the search space
[5], [1], [6]. In such a case recombination operators of MAs should be respectful
or distance-preserving [5], [7], [1]. Moreover, the local search process, which is
always launched after a recombination, should also observe that the distance
between an offspring and its parents is not inflated. This is the place where
speed-up may be obtained: some moves of local search on an offspring should be
forbidden and, therefore, some neighbours not checked for improvement at all,
since they would lead to an increase in distance to parents. This technique was
successfully applied in MAs by Merz [8] for the quadratic assignment problem
and by Jaszkiewicz [9] for the TSP.

This paper is a study of the application of the two latter acceleration tech-
niques to the capacitated vehicle routing problem. It firstly describes design of
and experiments with cache in local search. Then, experiments with local search
moves forbidden after distance-preserving recombination are presented. However,
due to the nature of the analysed problem and implementation issues it appears
that these techniques result in only small acceleration of the memetic algorithm.

2 The Capacitated Vehicle Routing Problem

The capacitated vehicle routing problem (CVRP) [10] is a very basic formula-
tion of a problem which a transportation company might face in its everyday

98 M. Kubiak and P. Weso�lek

operations. The goal is to find the shortest-possible set of routes for the com-
pany’s vehicles in order to satisfy demands of customers for certain goods. Each
of identical vehicles starts and finishes its route at the company’s depot, and
must not carry more goods than its capacity specifies. All customers have to
be serviced, each exactly once by one vehicle. Distances between the depot and
customers are given.

The version of the CVRP considered here does not fix the number of vehicles
(it is a decision variable); also the distance to be travelled by a vehicle is not
constrained. Compared to the multiple-TSP, the CVRP formulates one more
constraint, the capacity constraint: the sum of demands of customers serviced
by one vehicle (i.e. in one route) must not exceed the vehicle’s capacity.

Refer to [10] for more information about the CVRP.

3 Cache for Neighbourhood Operators

3.1 The Idea of Caching Evaluations of Neighbours

When applied to a solution, neighbourhood operators in local search for the CVRP
usually modify only a small fragment of its contents. Large parts of this solution
stay intact. Consequently, large number of moves which modified the original so-
lution may also be performed for the modified, new one, and the modifications of
the objective function stay the same. Therefore, there is no need to recompute this
change of the objective; it may be stored in cache for later use.

Nevertheless, some moves from the original solution are changed by the ac-
tually performed move. These modified moves must not be stored; they have
to be removed from the cache. The set of such moves strongly depends on the
performed move.

These remarks lead to the following algorithm of local search with cache:

localSearch(s)
do:

for each s′ ∈ N(s) do:
if Δf(s′, s) is stored in the cache:

Δf = Δf(s′, s) is taken from the cache
else:

compute Δf = Δf(s′, s) = f(s′) − f(s)
store Δf(s′, s) in the cache for later use

if Δf < 0 then si = s′ is an improved neighbour of s
if si has been found (an improved neighbour of s):

s = si (move to the neighbour)
update the cache:

for each sa ∈ N(s) affected by the move, delete Δf(sa, s) from
the cache

else: break the main loop (a local optimum was found)
while (true)
return s (a local optimum)

Accelerating Local Search in a Memetic Algorithm for the CVRP 99

From this description one may notice the possible source of gain in speed:
instead of computing Δf(s′, s) = f(s′) − f(s) (the fitness difference) for each
neighbour s′ of s, this value is stored in the cache for later use. However, the
operation of cache update, which has to be called after a move is found in order
to ensure the cache stays valid, is a possible source of computation cost. The
goal of caching is to make the gain higher than the cost.

Local search is usually utilised in one of two possible ways: first improvement
(greedy) or best improvement (steepest). It may be predicted [11] that the gain
from caching will be greater for the steepest algorithm. It has to check the whole
neighbourhood in every iteration, so the auxiliary memory will be fully up-to-
date. In case of the greedy algorithm cache is initially empty and stays in this
state for many iterations, until it becomes hard to find an improving neighbour.
Only then it is filled with up-to-date values. However, the overhead connected
with cache updates is present in every iteration.

3.2 Cache Requirements

In the CVRP not only the objective function matters. There is also the capacity
constraint, which involves whole routes, not only single customers. Thus, if the
capacity constraint for a neighbour is violated then this neighbour is infeasible;
such moves are forbidden in local search. Therefore, not only the change in the
objective function has to be stored in the cache, but also the status of feasibility
of a neighbour.

Three neighbourhood operators are considered here (size of a neighbourhood
is given in brackets):

– merge: merge of any 2 routes (O(T 2); T is the number of routes in a solution)
– 2opt: exchange of any 2 edges (O((n + T)2); n is the number of customers)
– swap: exchange of any 2 customers (O(n2))

Because these operators have different semantics, cache must be designed and
implemented independently for each of them (in separate data structures).

The local search considered here assumes that the neighbourhoods of these
operators may be joined to form one large neighbourhood. It also means that
the order of execution of operators cannot be determined in advance (it may
be e.g.: merge, merge, 2opt, swap, 2opt,. . . ; it may be any other order). Such
a possibility makes local search potentially more powerful (there are less local
optima in the search space) but also more time-consuming. In case of cache this
possibility creates a requirement that when one type of move is performed, then
cache of all operations has to be updated.

The neighbourhoods of the operators have different sizes; the neighbourhood
of 2opt and swap is considerably larger than the one of merge. Moreover, the
merge operation is very specific: the number of applications of this operator is
always very limited by the minimum possible number of routes. Finally, initial
experiments with MAs indicated that the number of applications of this opera-
tor amounts to 5–10% of the total number of applications of all operators; the
majority of search effort is spent on 2opt and swap. Therefore, the cache was

100 M. Kubiak and P. Weso�lek

implemented for these two operators only. The size of memory for the cache
structures is the same as the size of the related neighbourhoods.

4 Speeding-Up 2opt Feasibility Checks

In the CVRP, 2opt may be used in two main configurations [12]:

– exchanging 2 edges inside one route (in-route 2opt),
– exchanging 2 edges between two different routes (between-routes 2opt).

The main computation cost of finding an improving 2opt move is related to fea-
sibility checks of between-routes 2opt ; it involves two routes, which may become
infeasible after the move is performed, due to the capacity constraint present in
the CVRP.

For the exemplary solution shown in Figure 1 (top, left) there are two ways in
which a 2opt may be executed if removing edges (2, 3) and (8, 9) (the marked ones):

– by connecting (2, 8) and (3, 9) (Figure 1, top, centre);
– by connecting (2, 9) and (3, 8) (Figure 1, top, right).

Both of these between-routes 2opt configurations are prone to infeasibility; e.g.
while connecting (2, 8) and (3, 9) if the sum of demands of customers (1, 2, 8, 7)
or (6, 5, 4, 3, 9, 10, 11, 12) exceeds the capacity, then this move is infeasible.

All such moves require, therefore, that parts of routes (e.g. the mentioned
(1, 2) and (8, 7)) have known demands, so they could be added for the feasibility
check. This is the cause of additional high computation cost in local search
(pessimistically: O(n)), if these parts of demands are computed from scratch
every time a between-routes 2opt is checked.

In [12] a technique was described which reduces this cost to a constant. It is
based on the observation that demands of parts of routes may be stored and
simply updated when iterating over neighbours of a current solution in a right
order. This order is called a lexicographic one.

An example of such order is given in Figure 1. The top of Figure 1 shows a
2opt removing edges (2, 3) and (8, 9) (as described above); the demands of parts
(1, 2), (3, 4, 5, 6), (7, 8), (9, 10, 11, 12) are required. The bottom of Figure 1 shows
the immediately next 2opt moves (in the lexicographic order), the ones removing
edges (2, 3) and (9, 10). The required demands of parts (1, 2), (3, 4, 5, 6) have just
been computed in the previous iteration and may be used; the demands of parts
(7, 8, 9) and (10, 11, 12) may be computed from the previous values at the cost
of two additions.

Due to the high predicted gain in computation time, this technique was used
in local search in each configuration with cache.

5 Forbidden Moves of Local Search After Recombination

Based on the results of ’big valley’ examination in the CVRP [7] it is known that
preservation of edges is important for quality of solutions, as it is the case of the

Accelerating Local Search in a Memetic Algorithm for the CVRP 101

Fig. 1. Edge exchanges in lexicographic order: 2opt for (2, 3), (8, 9) (top) and 2opt for
(2, 3) and (9, 10) (bottom)

Fig. 2. Example of application of crossover operators: parent1, parent2, CECPX2 off-
spring (common edges emphasized), SPX offspring (edges from parent1 emphasized)

TSP [9]. Therefore, Kubiak [7] proposed a set of distance-preserving crossover
operators for the problem. One of them, CECPX2, creates an offspring in such a
way that it always contains all edges common to both parents (common edges),
possibly including some additional ones. An example of application of CECPX2
is shown in Figure 2.

Having the idea of ’big valley’ and distance preservation in mind, it makes
sense after CECPX2 to forbid in local search all moves which would change any
edge from the set of common edges. Therefore, an offspring of CECPX2 has the
common edges marked as ’forbidden’. All neighbourhood operators check if a

102 M. Kubiak and P. Weso�lek

move deleted one of such edges and if so, the move is forbidden. In consequence,
a significant speed-up should be obtained if sets of common edges are large.

This technique might be used with other types of operators (not distance-
preserving) provided that such operator explicitly computed the set of common
edges. If a crossover does not determine the set, it cannot forbid moves changing
common edges. As an example of such operator we use SPX (its offspring is
shown in Figure 2). It is a very good and fast crossover designed by Prins [13].

6 Computational Experiments

In all experiments 7 well-known instances of the CVRP were used, taken from
[14]. Their names (which also indicate the number of customers) are given in
tables with results, e.g. Table 1. Instances with different sizes were selected in
order to observe the effect of scale in cache and forbidden moves.

6.1 Experiments with Local Search

In order to asses the efficiency of cache in local search, an experiment with 10
different configurations of this algorithm was conducted. These configurations
resulted from:

– two versions of local search: greedy and steepest;
– three versions w.r.t. cache: without cache (denoted nc); with all cache struc-

tures (c); the same as c, but without 2opt cache (c∗);
– two types of neighbourhoods: one joined neighbourhood of merge, 2opt, swap

(described as n-3); a merge neighbourhood followed by a joined 2opt and
swap (described as n-1-2).

Each configuration was run in a multiple start local search (MSLS) algorithm,
each time starting from a new random solution. MSLS was run 10 times; each
run stopped after 100 LS processes.

Average times of computation in this experiment are given in Table 1. Quality of
results is not given, since all the configurations had them approximately the same.

The greedy version of local search is several times faster than the steepest
one. The version n-1-2 of greedy search is slightly faster than n-3. These results
were expected: greedy is usually faster; n-1-2 searches smaller neighbourhoods.

What is more important, the usage of cache in n-3 drastically deteriorates
the runing times. This might be explained by the merge operations included in
the neighbourhood. This operation has no cache on its own, but each time it is
performed it results in updates to cache of other operators, making the cache
almost empty and the cache management cost unacceptably high.

The usage of cache in n-1-2 gives no improvement, as well.
For the steepest version of local search, the comparison of n-3 and n-1-2 (no

cache) yields the same conclusions: the latter is faster. The cache also deteriorates
the situation here. Only the c∗ version results in slight improvements.

Accelerating Local Search in a Memetic Algorithm for the CVRP 103

Table 1. Average times of computation (in seconds) for local search algorithms, greedy
(left) and steepest (right)

n-3 n-1-2

instance nc c nc c c∗

c50 0.7 2.0 0.7 1.2 0.5
tai75d 2.5 6.9 2.2 4.1 2.5
tai100d 5.5 16.8 4.8 8.4 5.5

c120 11.5 34.6 8.7 14.3 9.2
tai150b 20.8 83.1 17.9 27.2 17.7

c199 30.4 289.4 29.1 43.3 29.5
tai385 299.9 5649.1 301.3 394.3 292.3

n-3 n-1-2

instance nc c nc c c∗

c50 3.5 5.0 2.0 2.7 2.0
tai75d 14.2 18.4 8.8 10.1 8.1
tai100d 34.0 44.3 20.4 22.6 18.5

c120 61.3 80.1 36.8 39.4 31.0
tai150b 122.7 178.7 77.5 81.2 68.8

c199 279.4 519.9 168.8 173.5 147.1
tai385 2543.5 7897.6 1597.5 1594.8 1385.7

To summarize, the results of this experiment show that cache structures do
not really improve LS running times. Instead, they slow LS down in many con-
figurations. The cause of this effect lies most probably in the capacity constraint.
Because of this constraint the operation of cache updates is time-consuming: if
a move to a neighbour changes more than one route (which happens often with
2opt and swap), then a large part of cache has to be invalidated – all moves
concerning every part of the modified routes. This is not the case e.g. in TSP or
other unconstrained problems (see [1]).

The possible source of this disappointing result might also lie in details of
cache implementation.

6.2 Local Search Execution Profiles

We decided to make detailed profiles of local search executions in order to gain
insights into the cost of search and cache operations. In this case, analytical
computation of cost is difficult: it is hard to compute the actual or expected
number of local search iterations, or to estimate the cache usage. That is why
we analysed the issue empirically [11].

We tested LS with the following settings:

– LS version: greedy or steepest,
– cache usage: without cache (nc); with all cache structures (c); with the most

promising cache settings, leaving 2opt cache out as too costly (c∗),
– neighbourhood: n-1-2.

Only two instances were tested, tai100d and c120. One run of MSLS was con-
ducted for each setting and instance, consisting of 5 independent LS processes.
The runs were limited and short because code profiling usually considerably
increases the run time due to injection of timing routines into the original code.

The profiling results of greedy LS for instance c120 are presented in Table 2.
They contain the times of operations (search and cache) for each profiled LS set-
ting. Also percentages of the total run time of the base version (n-1-2-nc) are

104 M. Kubiak and P. Weso�lek

Table 2. Times of execution of search and cache operations in greedy LS; c120

n-1-2-nc n-1-2-c n-1-2-c∗

operation time [s] (percent) time [s] (percent) time [s] (percent)

2opt : eval. of neighbours 146.3 (50.4) 47.6 (16.4) 57.1 (19.7)
2opt : cache read/write 0.0 (0.0) 30.1 (10.4) 2.6 (0.9)
2opt : cache update 0.0 (0.0) 19.8 (6.8) 0.0 (0.0)
2opt : total search cost 146.3 (50.4) 97.5 (33.6) 59.7 (20.6)

swap: eval. of neighbours 33.2 (11.4) 13.3 (4.6) 11.5 (4.0)
swap: cache read/write 0.0 (0.0) 8.1 (2.8) 7.2 (2.5)
swap: cache update 0.0 (0.0) 5.1 (1.8) 5.1 (1.8)
swap: total search cost 33.2 (11.4) 26.5 (9.2) 23.8 (8.2)

operators: total 179.5 (61.8) 124.0 (42.7) 83.5 (28.8)

greedy LS: total 290.2 (100.0) 209.9 (72.3) 173.1 (59.6)

shown. The merge operator is not reported due to insignificant cost of its oper-
ations (1–2% of the total run time in all runs).

For the greedy version without cache, very high cost of search by the 2opt
operator is clearly visible (50.4% of the total run time). The cost of swap is
lower, although it is also considerable (11.4%). Consequently, there is space for
improvement in this base version.

The introduction of cache decreases the 2opt evaluation time, to 16.4%. How-
ever, it introduces new cost components: cache reads and writes (10.4%), and
cache updates after a performed move (6.8%). In total, the 2opt search time
drops from 50.5% to 33.6%; it seems that the decrease is not as high as could
be: the 2opt cache cost is considerable.

The same conclusion applies to the swap operator: the evaluation time drops
from 11.4% to 4.6%, but cache management (read/write and update) takes an-
other 4.6%, making the cache only slightly profitable.

The analysis of cache usage in these profiled runs demonstrated that only
28.1% of 2opt cache is used, while for swap it is 58.8%. As predicted, the cached
values are rarely used in the greedy version, because improving steps are usu-
ally found very quickly (the neighbourhood is not completely searched through,
sparsely filling cache with valid values). Moreover, these numbers indicate that
2opt updates invalidate large parts of cache, while for the swap operator most
of the cache stays valid after an improving move is performed.

The last setting, n-1-2-c∗, did not use 2opt cache; it seemed that the cache
management cost for this operator was too high. The results show that this
approach gives the highest gain for the greedy LS: the evaluation cost for 2opt
amounts to 19.7%, but the management cost is almost none (the figure 0.9% re-
flects the time of calls to empty cache which is not updated at all). In conjunction
with some gain from swap, the overall speed-up of LS equals 40.4%.

Accelerating Local Search in a Memetic Algorithm for the CVRP 105

In case of instance tai100d (the detailed results are not reported) the cache
management cost was generally higher, making cache usage too expensive. It
indicates that cache may be beneficial for larger instances only, if ever.

The steepest version differed mainly in the cache usage: 62.0% of 2opt neigh-
bours were evaluated based on the cache contents; as much as 77.2% in the case
of swap. Therefore, gains from cache were slightly higher.

To summarise this experiment, the execution profiles indicate high cache man-
agement cost which is generally compensated by gain in evaluation of neighbours,
but results in no further significant improvement.

6.3 Experiments with a Memetic Algorithm

The evaluation of forbidden changes (FC) required an experiment with memetic
algorithm. This algorithm was run in 12 different configurations renderred by:

– two versions of embedded local search: greedy and steepest;
– two versions w.r.t. cache usage in local search: nc (no cache) and c∗ (cache,

but without 2opt);
– three variants of crossover: SPX, CECPX2 and CECPX2 with forbidden

changes (CECPX2-FC).

Each configuration was run 30 times. The stop criterion was the total number
of generations, equal to the average number of generations required for the MA
to converge. The algorithms running times are gathered in Table 3.

Table 3. Average times of computation (in seconds) for memetic algorithms, greedy
(above) and steepest (below)

SPX CECPX2 CECPX2-FC

instance nc c∗ nc c∗ nc c∗

c50 1.9 2.0 1.0 1.0 1.0 1.0
tai75d 13.9 13.9 12.6 12.4 12.7 12.5
tai100d 31.2 30.6 29.4 28.7 29.7 29.1

c120 67.2 57.0 67.5 56.3 68.9 56.6
tai150b 234.2 217.9 218.6 206.9 221.1 206.6

c199 352.7 317.9 373.0 343.9 376.6 341.7
tai385 4170.3 3695.7 5033.2 4377.3 4990.6 4387.5

SPX CECPX2 CECPX2-FC

instance nc c∗ nc c∗ nc c∗

c50 2.0 2.0 2.0 2.0 2.0 2.0
tai75d 15.7 14.4 12.3 11.3 12.3 11.2
tai100d 36.1 32.2 30.0 27.8 29.7 26.2

c120 61.4 49.8 56.7 47.9 56.9 47.7
tai150b 201.5 181.0 173.9 163.7 178.4 162.3

c199 318.5 277.3 301.0 274.2 297.3 261.9
tai385 3264.5 2767.5 2897.1 2623.0 2879.8 2584.6

106 M. Kubiak and P. Weso�lek

For greedy versions of local search embedded in the memetic algorithm the
configuration with operator SPX is the fastest, especially with cache (c∗), which
results in some small gain in computation time (approx. 10%). For the CECPX2
operator also the versions with cache are a bit faster (also approx. 10%). The
forbidden changes gain nothing, though.

The MAs with steepest local search are significantly faster than their greedy
counterparts. Similarily to the latter, cache usage intoduces a small speed-up. For
steepest configurations, CECPX2 is generally faster than SPX. The application
of forbidden changes gives in effect a tiny gain in computation time.

In summary, however, it has to be said that both of the applied techniques,
cache and forbidden changes, did not provide the expected acceleration in the
memetic algorithm.

7 Conclusions

The paper presented experiments with some acceleration techniques for local
search and memetic algorithm applied to the CVRP.

The obtained results indicate that the application of cache in the LS gives
no real gain; compared to results reported for other problems (e.g. the TSP)
there is no profitability in using cache. It seems that the main problem in the
cache for the CVRP is the cache management cost, which results from the need
to update the cache contents each time an improving move is performed (the
capacity constraint forces large parts of cache to be invalidated). The application
of forbidden moves in the MA also leads to no gain.

Comparing roughly the implementation cost it appears that cache design and
implementation is very expensive (especially the tests of correctness of cache
updates), which makes it an inefficient technique. The cost of implementation
of forbidden changes was, in contrast, surprisingly low. Perhaps this technique
requires some more attention from the authors and it may in future lead to some
improvement.

However, the comparison of results from this and the initial version of this
paper revealed that the running times of both LS and MA decreased 5–10 times
in the final version. It was the result of changes in parts of local search code
which affected all the configurations analysed in this paper. These were low-
level, implementation changes (e.g. method inlining, avoiding calls to copying
constructors by passing references, etc.) introduced after first code profiling.
These changes caused the gains from cache and forbidden changes to become
virtually invisible, although they were noticeable in first experiments. Perhaps
the implementation of cache operations was not as efficient as it could be. Further
implementation work should resolve this issue.

Finally, the authors are satisfied with acceleration of local search and memetic
algorithm achieved during preparation of this paper.

Acknowledgements. This work was supported by Polish Ministry of Science
and Higher Education through grant no 8T11F00426.

Accelerating Local Search in a Memetic Algorithm for the CVRP 107

References

1. Merz, P.: Advanced fitness landscape analysis and the performance of memetic
algorithms. Evolutionary Computation 12(3) (2004) 303–325

2. Jaszkiewicz, A.: Genetic local search for multiple-objective combinatorial optimi-
zation. European Journal of Operational Research 137(1) (2002) 50–71

3. Ishibuchi, H., Yoshida, T., Murata, T.: Balance between genetic search and local
search in memetic algorithms for multiobjective permutation flowshop scheduling.
IEEE Transactions on Evolutionary Computation 7(2) (2003) 204–223

4. Bentley, J.L.: Experiments on traveling salesman heuristics. In: Proceedings of the
first annual ACM-SIAM symposium on discrete algorithms. (1990) 91–99

5. Jaszkiewicz, A., Kominek, P.: Genetic local search with distance preserving recom-
bination operator for a vehicle routing problem. European Journal of Operational
Research 151(2) (2003) 352–364

6. Reeves, C.R.: Landscapes, operators and heuristic search. Annals of Operations
Research 86(1) (1999) 473–490

7. Kubiak, M.: Systematic construction of recombination operators for the vehicle
routing problem. Foundations of Computing and Decision Sciences 29(3) (2004)
205–226

8. Merz, P., Freisleben, B.: A genetic local search approach to the quadratic assign-
ment problem. In Bäck, T., ed.: Proceedings of the Seventh International Confer-
ence on Genetic Algorithms. (1997)

9. Jaszkiewicz, A.: Improving performance of genetic local search by changing local
search space topology. Foundations of Computing and Decision Sciences 24(2)
(1999) 77–84

10. Toth, P., Vigo, D.: The Vehicle Routing Problem. SIAM, Philadelphia (2002)
11. Hoos, H.H., Stutzle, T.: Stochastic Local Search: Foundations and Applications.

Morgan Kauffman (2004)
12. Kindervater, G.A.P., Savelsbergh, M.W.P.: Vehicle routing: handling edge ex-

changes. In Aarts, E., Lenstra, J.K., eds.: Local Search in Combinatorial Opti-
mization. John Wiley & Sons (1997) 337–360

13. Prins, C.: A simple and effective evolutionary algorithm for the vehicle routing
problem. In de Sousa, J.P., ed.: Proceedings of MIC 2001, the 4th Metaheuristics
International Conference. (2001) 143–147

14. Rochat, Y., Taillard, É.D.: Probabilistic diversification and intensification in local
search for vehicle routing. Journal of Heuristics 1(1) (1995) 147–167

	Introduction
	The Capacitated Vehicle Routing Problem
	Cache for Neighbourhood Operators
	The Idea of Caching Evaluations of Neighbours
	Cache Requirements

	Speeding-Up 2opt Feasibility Checks
	Forbidden Moves of Local Search After Recombination
	Computational Experiments
	Experiments with Local Search
	Local Search Execution Profiles
	Experiments with a Memetic Algorithm

	Conclusions

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 600
 /ColorImageDepth 8
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.01667
 /EncodeColorImages true
 /ColorImageFilter /FlateEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 600
 /GrayImageDepth 8
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.01667
 /EncodeGrayImages true
 /GrayImageFilter /FlateEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 2.00000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /SyntheticBoldness 1.000000
 /Description <<
 /DEU ()
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.000 842.000]
>> setpagedevice

