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Abstract

This paper introduces a new method for automated composition of the first species coun-
terpoint. The method employs the dominance relation – a fundamental notion in the area of
multi-criteria analysis, never used so far to analyze counterpoints in the context of algorithmic
composition research. The dominance relation allows for analysis of a number of evaluation
criteria without making any assumptions on the importance of each criterion; this way ag-
gregations of criteria that would lead to loss of information are avoided. Seven criteria are
used in this work to evaluate counterpoints in large-scale computational experiments, and the
distributions of criteria values are demonstrated for a few types of cantus firmi including pop-
ular tunes, Gregorian chants, ascending or descending musical lines, and randomly generated
melodies. Mutual discordance of these criteria is also evaluated, revealing pairs of criteria that
correlate and others that are conflicting.

Keywords: counterpoint; algorithmic composition; computational musicology; multi-criteria
analysis; dominance relation

1 Introduction

Counterpoint is the art of composing a melodic line to some fixed melody – the cantus firmus,
so that these two lines played simultaneously obey a set of harmonic and melodic rules. Species
counterpoint, also called the strict counterpoint, was invented for educational purposes. The rules
of this counterpoint were thoroughly codified in 1725 by Johann Joseph Fux in Steps to Parnassus,
where he describes five species of counterpoints of increasing complexity (Fux, Mann, and Edmunds,
1965). In this paper we are concerned with the first species of counterpoint.

1.1 Algorithmic composition

Since the rules of counterpoint can be expressed formally, nowadays they can be employed in
algorithms and computer programs. A research area that focuses on development of algorithms
that are capable of creating musical compositions is called algorithmic composition (Papadopoulos
and Wiggins, 1999; Maurer, 1999). Programs for automatic composition employ various approaches
and techniques, such as fuzzy logic (Yilmaz and Telatar, 2010), expert systems (Ebcioğlu, 1990),
answer set programming (Boenn et al., 2011), learning from examples (Cope, 2004), probabilistic
logic (Aguilera et al., 2010) and Markov chains (Farbood and Schoner, 2001).

The final version of this paper appeared in Journal of Mathematics and Music 9(1):75–94, 2015.
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Automatic counterpoint composition is a popular direction of research in algorithmic composi-
tion because of the strictly defined rules that need to be obeyed. This facilitates implementations of
automatic composition systems. One of the approaches to automatic composition of counterpoint is
to introduce penalty (or reward) values for each broken (or satisfied) rule, and then aggregate these
values using an objective function. This way the quality of each counterpoint can be evaluated as
a single number. When considering penalties as positive values, the objective function should be
minimized so it is often called a loss function or a cost function. It can be defined as follows:

N∑
i=1

pi · ni (1)

where pi represents the penalty for breaking i-th rule, and ni is the number of times the i-th rule
was broken in a particular counterpoint. The task of finding the best possible solution to the
problem is therefore equivalent to finding the counterpoint which has the minimum value of the
cost function (i.e., the minimum weighted sum of penalties). The search for the counterpoint that
minimizes or maximizes the objective function can be done using various optimization methods
such as an exhaustive search, a best-first search (Schottstaedt, 1984), or metaheuristic algorithms
including genetic and evolutionary techniques (Weale and Seitzer, 2003; Acevedo, 2005; Jelonek and
Komosinski, 1999; Komosinski and Krawiec, 2000; Hapke and Komosinski, 2008).

The use of an additive function is known to have several drawbacks. First of all, it assumes
that one can somehow determine the pi values denoting the importance of each rule. The literature
does not explicitly specify the exact, quantitatively expressed significance of each rule – the only
information that is available is that some rules are more or less important than others:

However, to return to the above-mentioned octave, the batutta, I shall leave to your
discretion the use or avoidance of it; it is of little importance. (Fux, Mann, and Edmunds,
1965)

This means that the choice of pi values is to a great extent arbitrary. Another important drawback
of using the additive function is that breaking one very important rule is equivalent to breaking
several less important rules, cf. (Roy and Vincke, 1981). For example, if in a given counterpoint a
rule with penalty p1 = 3 is broken once, then such a counterpoint has the same value of the quality
function as another counterpoint in which a rule with penalty p2 = 1 is broken three times. In
reality however, these two counterpoints may be incomparable to each other, or it may be clear that
one of them sounds much better than the other. Aggregations of criteria lead to loss of information
and introduce trade-offs between criteria which are often undesirable and inconsistent with human
perception of the quality of counterpoints.

Aware of the weaknesses of an additive function used to determine quality of counterpoints and
motivated by interesting properties of the dominance relation discussed later, we propose a novel
method that uses the dominance relation in order to find the set of best counterpoints for a given
cantus firmus while preserving their diversity.

1.2 Computational musicology

Currently, techniques of computer science are often employed in order to solve musicological prob-
lems; this interdisciplinary field is known as computational musicology (Byrd and Crawford, 2002;
Camilleri, 1993). On the other hand, computer science has an impact on musicology, which opens
up new perspectives for musicological studies (Volk, Wiering, and van Kranenburg, 2011).

Examples of works in this area include developing tools for automatic harmonic analysis (de Haas
et al., 2011), analysis of chord progressions (Steedman, 1984), automatic music genre classifica-
tion (Tzanetakis and Cook, 2002), or simulation of perceiving music in an artificial society of
agents (Coutinho et al., 2005). Studies of counterpoint performed within computational musicology
include discovering patterns in polyphonic music (Conklin and Bergeron, 2010; Utgoff and Kirlin,
2006), analysis of counterpoints using Markov chains (Farbood and Schoner, 2001), a counterpoint
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Figure 1: Examples of three types of motions: (a) direct motion, (b) oblique motion, (c) contrary
motion.

grammar checker (Huang and Chew, 2005), and developing a mathematical theory of counter-
point (Mazzola et al., 2002; Junod and Mazzola, 2007).

Apart from implementing a computer program that uses the dominance relation to compose the
first-species counterpoint, the other goal of this research has been to analyze the “solution space”
(the full set) of counterpoints. Such analysis concerns relationships between the number of possible
counterpoints and the length of the cantus firmus, comparisons between different types of cantus
firmus (e.g., random or human-composed melodies), determining which evaluation criteria are easier
to fulfill, or checking how often pairs of these criteria clash.

Such experiments increase our understanding of the nature of all possible counterpoints and
relationships between the evaluation criteria, but also help us discover dependencies which can
change the way a counterpoint is composed. This is how developments in computer science may have
impact on our understanding of the art of counterpoint, and may stimulate research in musicology
by providing new data.

2 Principles of the counterpoint and their implementation

In this section, a few basic definitions are introduced, and the set of counterpoint rules that has
been used for all reported experiments is described. These notions are based on the counterpoint
textbook by J. J. Fux et al. (Fux, Mann, and Edmunds, 1965).

2.1 Definitions

An interval is the distance between two notes that are played either simultaneously or one after
another. Intervals can be divided into consonances, which are often described as pleasing to the
ear, and dissonances, which sound harsher.

Consonances are further divided into perfect consonances (which include the unison, the perfect
fifth, and the octave) and imperfect consonances (the major and minor third, the major and minor
sixth). Dissonances include the major and minor second, the perfect fourth, the diminished fifth, the
tritone, and the major and minor seventh. Note that nowadays the perfect fourth is also considered
to be a consonance, but in the days when the counterpoint was developed, that was not the case.
In this paper we follow the classical rules of the counterpoint and consider the perfect fourth to be
a dissonance.

Intervals can be vertical (harmonic) if two notes are played simultaneously, or horizontal (melodic)
if two notes are played one after another. Melodic intervals can be divided into skips and steps.
Steps occur when a minor or a major second is used as a horizontal interval, otherwise the interval
is a skip.

Motions denote the direction of melodies when one vertical interval is changed into another
interval. There are three types of motions (Fig. 1):

• Direct motion – when melodies in both parts ascend or descend in the same direction.

• Oblique motion – when the melody in one part ascends or descends, and in the other part the
previous note is repeated.
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• Contrary motion – when one part ascends and the other part descends.

The contrary and the oblique motions are the preferred ones in the counterpoint.
A church mode is a set of notes from which a single counterpoint melody can be composed. Six

church modes are used in the experiments reported here: Dorian, Phrygian, Lydian, Mixolydian,
Aeolian and Ionian. The first five of them are considered because they were used in the first-species
examples in the J. J. Fux et al. textbook (Fux, Mann, and Edmunds, 1965). The Ionian mode is
included because it is typical for popular melodies which are also examined in this work. For all
modes, the distance between the highest and the lowest note is an octave – the normal (perfect)
ambitus.

2.2 Rules of the first species counterpoint

The first species counterpoint, also called note against note, is comprised of two voices having notes
of equal length. The precise duration of these notes is insignificant, so we assume the whole notes.
In the computational experiments, the following set of rules is used while composing a counterpoint
to a given cantus firmus:

1. The only vertical intervals that can be used in the first species counterpoint are consonances
– no vertical dissonances are allowed.

2. The first and the last vertical interval should be a perfect consonance.

3. The mode used for the counterpoint part must be the same as used for the cantus firmus part,
except that it is transposed up or down by an octave.

4. Vertical perfect consonances should never be reached by a direct motion; moreover, direct
motion should be used as rarely as possible.

5. The next to last vertical interval in the counterpoint must be a major sixth if the cantus
firmus is in the lower part, otherwise it should be a minor third.

6. A single voice in a counterpoint should never jump by a tritone or by an interval larger than
the perfect fifth (excluding the octave and the minor sixth, the latter interval can only be
used if the voice ascends).

7. Imperfect consonances should be used as often as possible.

8. The same note should not be repeated too often.

9. A step is preferred to a skip.

10. It is inappropriate if two skips occur in a row and each is in the same direction.

The guidelines enumerated above are just a subset of all rules that can be used for the compo-
sition of the first species counterpoint. The choice of this particular subset is based on literature
suggestions stating which rules are more important than others (Fux, Mann, and Edmunds, 1965),
as well as on our arbitrary decisions. This choice provides a good starting point to perform multi-
criteria analyses. The approach presented in this article could also be employed for other possible
selections of criteria.

In order to simplify the problem, a one-octave distance is enforced between the octave intended
for the cantus firmus part and the octave for the counterpoint part. This means that if the ambitus
of the cantus firmus is around D2-D3, then the counterpoint would be composed within the D4-D5
octave – and vice versa. Thanks to that, the two parts never intertwine; intertwining would mean
that some counterpoint notes would be above the cantus firmus, and some of them would be below.

The reason for using this simplification is that overlapping melodies could have an excessive
influence on the results obtained. In this paper, different types of melodies are analyzed, one of
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which consists of successive ascending notes. For cantus firmi of this melody type, the phenomenon
described above would be very common, as the ambitus of successive notes exceeds one octave if the
number of notes is larger than 8. Thus, when comparing the characteristics of this cantus firmus
melody group with the other groups, the obtained differences could result from the fact that the
two melodies overlap and not from the innate characteristics of the groups of cantus firmi. As the
latter is to be examined in this work, the intertwining of the two melodies was prohibited.

2.3 Implementation of counterpoint rules and the dominance relation

Some of the rules enumerated above are implemented at the stage of generating counterpoints,
while others are implemented at the stage of evaluating counterpoints. The algorithm for automatic
composition consists of three modules:

1. Generator – generates all possible counterpoints for the given cantus firmus. The generated
counterpoints have to meet two rules: all notes must be selected from the given mode, and
all vertical intervals must be consonances. Additionally, the first and the last interval in the
counterpoint have to be perfect consonances.

2. Evaluator – evaluates each generated counterpoint using the following set of criteria. Each
criterion determines the number of times a specific situation occurs in the counterpoint.

(a) DirectMotion – direct motion.

(b) NoteRepetition – a repeated note.

(c) ImperfectConsonances – a vertical imperfect consonance.

(d) NumberOfSkips – a skip (an interval larger than major second).

(e) TwoSkipsInTheSameDirection – two skips one after the other and both in the same
direction.

(f) PerfectConsonancesByDirectMotion – a vertical perfect consonance is reached by a direct
motion.

(g) ForbiddenJumps – skips by a tritone or larger than a perfect fifth (except for minor
sixth, which is allowable in the upward direction).

3. Search Engine – finds all interesting (i.e., non-dominated) counterpoints.

After the evaluation of every generated counterpoint using each of the criteria described above,
the values of these criteria may be aggregated or not, depending on the goal. In this work we
avoid aggregation and thus avoid introducing trade-offs between these criteria. Since they are
often conflicting, we use the multi-criteria dominance relation to identify counterpoints that are
better than others in any aspect, and to reflect a human goal of finding interesting counterpoints.
Formally, we assume that a counterpoint c1 is better than c2 (i.e., dominates it), if c1 is not worse
(which means it is better or equally good) than c2 on all criteria, and c1 is strictly better than c2
on at least one of these criteria. A counterpoint c that is not dominated by any other counterpoint
in the set is called a non-dominated counterpoint, an efficient counterpoint, or a Pareto optimal
counterpoint (Ehrgott, 2006; Doumpos and Grigoroudis, 2013; Komosinski et al., 2014).

Note an interesting characteristic of the dominance relation defined above: introducing more
criteria will probably increase the number of non-dominated counterpoints as long as the criteria are
in conflict (i.e., when comparing two counterpoints, one counterpoint is better according to some
criterion and worse according to some other criterion). However, adding new criteria may also
reduce the set of non-dominated counterpoints, as new criteria may provide additional information
that will differentiate the quality of previously identical counterpoints. In any case, the dominance
relation allows for reducing the set of counterpoints and thus obtain a smaller set of interesting
ones without the need of introducing strong, arbitrary assumptions (like imposing some order or
hierarchy of criteria) and aggregation models (like a weighted sum of criteria values).
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3 Computational experiments

The algorithm described above was tested on a dataset consisting of 9 different types of cantus
firmus melodies:

• p – popular tunes (for example “Twinkle, Twinkle, Little Star”, “Pop! Goes the Weasel”, or
“Happy Birthday”).

• e – cantus firmi from the exercises taken from the J.J. Fux’s textbook (Fux, Mann, and
Edmunds, 1965).

• cf – melodies taken from an online database of Gregorian chants (Koláček et al., 2009).

• regs – cantus firmi consisting of a set of ascending or descending adjacent notes from the
given mode:

– regsup – consisting of adjacent ascending notes from the given mode, each a second
(major or minor) higher than the previous one, starting from the root note,

– regsdown – consisting of adjacent descending notes from the given mode, each a second
lower than the previous one, starting from the root note.

• regc – cantus firmi consisting of a set of ascending or descending chromatic notes:

– regcup – consisting of adjacent ascending notes, each a minor second higher than the
previous one, starting from the root note,

– regcdown – consisting of adjacent descending notes, each a minor second lower than
the previous one, starting from the root note.

• rand – randomly generated melodies of two types:

– randc – melodies using randomly selected notes from the chromatic scale,

– rands – melodies using randomly selected notes from the mode for which the cantus
firmus was selected.

Note that the counterpoint rules were originally designed to be used with melodies of types e
and cf. However, we still employ them for all the other melody groups in order to check if the
characteristics of the results obtained differ between the groups, e.g. if the results for the melodies
in the p group are different than the results for the cf and e groups.

Each type listed above formed a group which consisted of 6 cantus firmus melodies except for
the cf group, which consisted of 12 melodies. Each melody within a given group was in a different
mode (as for the cf group, each two melodies are in the same mode), except for the p group which
only consisted of cantus firmi in the Ionian mode.

Most of the original melodies from the p, e, cf groups consisted of 11 notes, and some of the
longer melodies were adapted to that length. Since we wanted to study the influence of the length
of cantus firmus on the number of counterpoints, truncated versions of the melodies were also
considered; a shortened version (to the length of n notes) of a melody consisted of n initial notes
of the original melody.

To sum up, the full set processed in computational experiments consisted of 60 cantus firmus
melodies in 9 different lengths, which gives a total number of 540 cantus firmus melodies. For these
melodies, counterpoints were composed above and below of the given cantus firmus. This gives a
total number of 1080 of counterpoint compositional tasks. In this paper, the notion of counterpoint
compositional tasks will be used to denote a task of composing a counterpoint in a given mode to
a given cantus firmus melody of a given length, in the given position (above or below) relatively
to the cantus firmus. Note that for a single cantus firmus melody, multiple, differing counterpoints
are generated, and each of them is evaluated according to the aforementioned criteria.
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Figure 2: The number of all generated counterpoints for different cantus firmus groups and different
lengths.

3.1 The number of generated and non-dominated counterpoints

The total number of counterpoints generated for each cantus firmus is shown in Fig. 2. Each mark
in the plot designates the number of generated counterpoints for a given counterpoint compositional
task. As illustrated, the number of generated counterpoints grows exponentially as the length of
the cantus firmus increases (note that the vertical scale is logarithmic). For melodies only 11 notes
long, the number of possible counterpoints is around 100,000–3,000,000.

The plot demonstrates some differences between the groups. First of all, more counterpoints
are generated for groups p, cf, e, regsup/down, and rands, than for groups regcup, regcdown,
and randc. The reason for this is that the cantus firmi from the first set consist only of notes
taken from the given mode, while the melodies from the second set use the chromatic scale (which
uses notes outside of the mode). For each note of the cantus firmus, the generator finds all possible
counterpoints that consist of consonances that belong to the given mode. If a particular cantus
firmus note is outside of the mode, the unison and the octave are also outside of this mode. What
is more, in such a case it is less probable that the perfect fifth consonance (that could also be used)
is in the mode. Therefore, the number of counterpoints for the groups that consist of chromatic
notes is decreased at the generation stage.

Another interesting observation is that the variance of the regsup, regsdown, regcup, and
regcdown groups is smaller than the variance of the other groups. This is because all cantus firmi
in each of these groups consist of the same notes in a similar order, i.e. the melodies are very similar
to each other, which in turn results in smaller variances visible in the plot.

To verify these observations, a statistical procedure was employed: the independent samples
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Figure 3: The results of a statistical test (p-values are shown) used to compare if the mean numbers
of all generated counterpoints for different groups of cantus firmi are statistically different. To
increase readability, a cut-off level is introduced for high p-values: 0.1 for individual charts, 0.2 for
the “Averaged” chart. The bars below the cut-off level are darker.
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Figure 4: The number of non-dominated counterpoints for different cantus firmus groups and dif-
ferent lengths.

t-test was used to compare the mean number of counterpoints in each pair of groups (Fig. 3). If
the samples did not comply with the assumptions of the t-test, i.e. the data were not normally
distributed (which was tested using the Shapiro test, pthreshold = 0.05) or the difference in size
of the groups was larger than 150%, the Mann-Whitney U test was used. The Levene’s test was
employed to check the homogeneity of variances of the groups.

Due to the complex nature of the statistical procedure, the individual p-values shown on the
charts do not have to be directly comparable. Similarly, the averaged p-values shown in the bottom
plot do not have a strict statistical interpretation, but they demonstrate prevailing patterns present
in individual plots for different numbers of notes. Where averaged p-value is nearly zero, it must be
low for all lengths of cantus firmi, which means that the difference between the number of generated
counterpoints for such a pair of cantus firmi groups was statistically significant. The plots with
averaged p-values confirm the observation that the mean number of generated counterpoints for
groups using chromatic notes is generally smaller than for the other groups.

Another observation is that the difference of generated counterpoints between the cf and the
rands group is statistically significant. Fig. 2 indicates the direction of this difference: there are
more generated counterpoints for group cf than for rands. It seems that the cf group has some
characteristics that allows for easier generation of counterpoints; this may be caused by the stepwise
nature of the melodies. Discovering the true nature of the cf group and describing it formally is an
interesting direction of further research.

For each cantus firmus, all pairs of generated counterpoints were compared using the multi-
criteria dominance relation described in Sect. 2.3 in order to find subsets of non-dominated counter-
points. This allowed for the reduction of the number of counterpoints as shown in Fig. 4. For short
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Figure 5: The results of a statistical test (p-values are shown) used to compare if the mean numbers
of all non-dominated counterpoints for different groups of cantus firmi are statistically different. To
increase readability, a cut-off level is introduced for high p-values: 0.1 for individual charts, 0.2 for
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cantus firmi, the set of non-dominated counterpoints is small enough to be analyzed by a human
expert, but for longer cantus firmi, the dominance relation used with the considered criteria may be
too weak to significantly reduce the set, as the trend is exponential. While it may be tempting to
try to reduce the set of counterpoints and find the single “best” counterpoint – or a small number of
them – it is natural that longer melodies allow for a larger number of non-dominated counterpoints;
diverse flavours of counterpoints are found in the non-dominated set, and the aggregation of criteria
can only be used if one needs to introduce a strict ordering among the counterpoints. However, one
has to be aware that the outcome of this ordering (i.e., the “best” counterpoint) will depend on the
details and the (arbitrary) parameters of the procedure that aggregates the criteria.

For longer melodies, generating all counterpoints and looking for non-dominated ones will not
be practical; in such cases multiple-criteria evaluation may be integrated with a heuristic or a
meta-heuristic approach. The optimization perspective includes a possibility to guide the search
for interesting counterpoints using either a single selected parameter as their characteristics, or
using multiple criteria simultaneously. The efficiency of heuristic search algorithms like multiple
random start local search, tabu search, simulated annealing, particle swarm, or evolutionary tech-
niques (Talbi, 2009; Gendreau and Potvin, 2010; Coello, Lamont, and van Veldhuizen, 2007) will
be increased with the appropriate definition of neighbourhood and a smooth fitness landscape, so
fitness-distance analyses will be highly recommended (Merz and Freisleben, 1999; Hoos and Stützle,
2005; Vanneschi et al., 2003).

The differences in the number of non-dominated counterpoints were also compared using the
previously described statistical procedure. As shown in Fig. 5, the statistical significance of these
differences is lower. However, one can still see that the human-composed cantus firmi from the e
group tend to have more non-dominated counterpoints than the randomly generated cantus firmi
from group randc.

We also investigated whether the number of possible counterpoints depends on the position of
the cantus firmus in the counterpoint compositional task – i.e., whether the counterpoint is built
above or below the cantus firmus. It turned out that for groups cf and e, there were slightly more
counterpoints generated above than below the cantus firmus. These minor differences are even
less pronounced when comparing the number of non-dominated counterpoints for both groups. A
similar analysis was performed to examine whether different church modes influence the number of
generated or non-dominated counterpoints. No clear differences were noticed – in this regard, the
difficulty of composing a counterpoint does not seem to depend on the mode that is used.

3.2 Imposing constraints on the most important properties of counter-
points

Not all of the criteria in our set are of equal importance. Most of them, like DirectMotion or Imper-
fectConsonances, are only suggestions stating that counterpoints with less direct motion or more
imperfect consonances are preferable. However, two rules in the set – PerfectConsonancesByDirect-
Motion and ForbiddenJumps – are more important than the others and should never be broken.
In order to improve the quality of non-dominated counterpoints, we filtered out the counterpoints
that break these two rules before employing the dominance relation.

Three situations were considered:

• 7 criteria – no filtering was done, thus all the criteria are used to determine the set of
non-dominated counterpoints;

• 6 criteria – all counterpoints that break the ForbiddenJumps rule are filtered out;

• 5 criteria – all counterpoints that break the ForbiddenJumps rule or the PerfectConsonances-
ByDirectMotion rule are filtered out.

Fig. 6 shows the number of non-dominated counterpoints in these three situations. When no fil-
tering is done, the number of non-dominated counterpoints is the highest, and imposing constraints
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Figure 6: The number of non-dominated counterpoints after filtering out the counterpoints that
break the ForbiddenJumps rule or both ForbiddenJumps and PerfectConsonancesByDirectMotion
rules. The values are shown for 300 (out of 1080) cantus firmi that generated the highest number
of non-dominated counterpoints when no filtering was done. Each column contains three bars
standing one in front of another: the black bar at the back shows the number of counterpoints
when no filtering is done, the grey bar in the middle shows the number of counterpoints when the
ones that break the ForbiddenJumps rule are filtered out, and the light grey bar in front shows the
number of counterpoints when counterpoints that break at least one rule are filtered out. Since the
bars overlap vertically, the bar lengths that are visible correspond to the loss of counterpoints when
a constraint is introduced.

reduces this set. For most cantus firmi, the filtering decreases the number of non-dominated coun-
terpoints only slightly. However, there exist some melodies for which filtering out the counterpoints
that break one or both criteria decreases the number of non-dominated counterpoints to zero. Note
that if the number of non-dominated counterpoints is zero, it must mean that all counterpoints
were filtered out by the one of the filters. In other words, for some cantus firmi it is impossible to
compose a counterpoint that would obey the two most important rules.

As an example, let us consider the situation shown in Fig. 7. The cantus firmus used was a
Dorian mode melody from the e group. The compositional task in this example was to build a
counterpoint above this melody using the Dorian mode and notes D4-D5. The part in the violin
key shows one of the non-dominated counterpoints found using our algorithm. Without filtering,
the number of non-dominated counterpoints for this cantus firmus was equal to 153. When the
ForbiddenJumps filter was used, the number of counterpoints dropped to 117, and after using
both the ForbiddenJumps and the PerfectConsonancesByDirectMotion filters, the number of non-
dominated counterpoints decreased to 112. As can be seen in Fig. 7, the characteristics of changes
in the number of non-dominated counterpoints is generally similar to the example described above:
for most of the cantus firmi, using filtering only slightly decreases the number of non-dominated
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counterpoints.
This experiment demonstrates that filtering out the counterpoints that break the Forbidden-

Jumps and the PerfectConsonancesByDirectMotion rules may be used as a way to decrease the
number of non-dominated counterpoints. However, in rare cases, such filtering can remove all the
counterpoints.
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3.3 Distribution of criteria values

Fig. 8 presents distributions of criteria values for different groups of cantus firmi. As one can see,
shapes of these distributions vary between different criteria and between different groups. The
minimized criteria with mostly small values in their distributions may be considered “easy”, be-
cause most counterpoints do not break such criteria too often – examples are ForbiddenJumps,
NoteRepetition, PerfectConsonancesByDirectMotion, and TwoSkipsInTheSameDirection. On the
other hand, if a distribution contains large values and very few (or none) of the counterpoints have
low values – as in the case of DirectMotion and NumberOfSkips – it means that it is difficult to min-
imize such a criterion. The ImperfectConsonances is the only maximized criterion in the considered
set, so its distributions need to be interpreted differently – higher values are preferred. Analo-
gously, this criterion may be considered “easy”, as it tends to have larger values. However, large
values in the DirectMotion and the NumberOfSkips criteria distributions should not be considered
as the main difficulties for counterpoint composition: their importance relative to the other criteria
is lower. These two rules can be broken occasionally and there are other much more important
criteria in our criteria set, such as ForbiddenJumps and the PerfectConsonacesByDirectMotion.

An interesting aspect of this analysis is revealing differences between distributions for different
melody groups. For example, the distributions of the ImperfectConsonances criterion tend to have
its mean much higher (and its variance smaller) for the regcup, regcdown, and randc cantus
firmus groups. This is caused by the reduced number of consonances available for these groups (the
reasons for this were described in Sect. 3.1). The reduced number of consonances in these groups
is also visible for the PerfectConsonancesByDirectMotion criterion.

Another clearly visible difference is the smaller variance in the DirectMotion distributions for
groups regsup, regsdown, regcup, and regcdown. The smaller variance for these groups means
that it is more difficult to create a counterpoint with the same (or the opposite) movements of
melodies for the cantus firmi from the aforementioned groups. This results in part from the fact
that if the melody of the cantus firmus goes continuously in the same direction, the melody of
the counterpoint has to preserve this direction, but at the same time all the intervals between the
counterpoint and the cantus firmus need to be consonances. What is more, the range of notes in
the counterpoint is limited to one octave. These constraints force the counterpoint to change the
direction of its movement, thus preventing it from having the same direction of movement (e.g.,
always up) as the cantus firmus.

In some plots, two distinct patterns of the counterpoints are visible – in particular, this is
demonstrated by the regsup group of cantus firmi. Let us consider the NoteRepetition criterion
for this group and regsup cantus firmus in Aeolian church mode built from the following notes:
A2, B2, C3, D3, E3, F3, G3, A3, B3, C3, D4. If we want to compose a counterpoint above the
cantus firmus, then the next-to-last note should be a major sixth (A) and the last note a perfect
consonance (A or D). An alternative situation occurs in the Lydian church mode – in that case, the
next-to-last note needs to be F#. This note is raised, which means that it will never be equal to
the last counterpoint note for this cantus firmus. The two distinct patterns correspond to the two
types of cantus firmi: those for which the next-to-last note needs to be raised and those for which
it should not be raised.

The characteristics of the distributions for cantus firmi shorter than 11 notes are similar to the
ones described above.
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Figure 9: Discordance of pairs of criteria (vertical axis in %) for selected counterpoints from different
groups.
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3.4 Discordance of criteria used to evaluate counterpoints

Given a set of counterpoints each one evaluated according to multiple criteria, it is possible to
estimate how often each pair of these criteria disagrees, i.e., indicates opposite preference for a pair
of counterpoints (one criterion indicates that counterpoint c1 is better than c2, while the other
criterion indicates that c2 is better than c1). To estimate discordance of each pair of criteria for a
given counterpoint, all n(n−1)/2 pairs of n counterpoints are compared and opposite preferences are
counted. Note that the situation where one criterion does not distinguish between two counterpoints
and the other criterion prefers one counterpoint over the other is not considered a conflict.

Results shown in Fig. 9 demonstrate that discordance is rather high which explains why the
number of non-dominated counterpoints is also high. One of the reasons for this is the fact that the
criteria are multi-valued, which provides more occasions for conflicts that increase the number of
non-dominated counterpoints. High discordance confirms that all the criteria are useful and each of
them provides unique information about the quality of counterpoints; no pair of criteria is in total
agreement.

The pairs of criteria for which the discordance is the lowest are NumberOfSkips and TwoSkipsInThe-
SameDirection, ImperfectConsonances and PerfectConsonancesByDirectMotion, and DirectMotion
and PerfectConsonancesByDirectMotion. The first pair is concordant because if a counterpoint has
a low number of skips, it also has a low number of skips in the same direction, and the direction
of preference for these two criteria is the same. On the other hand, if a counterpoint has a low
number of consonances or the direct motion is used very rarely, then the PerfectConsonancesBy-
DirectMotion criterion has a low value, which explains the concordance of the latter two pairs of
criteria.

The remaining pairs of criteria have higher discordances – an example of particularly high
disagreement is NoteRepetition and NumberOfSkips. In this case, such a high discordance results
from situations when there are no consonances within a step away from the previous note, and the
only solutions for selecting the next counterpoint note is either by repeating the previous note or
by jumping to a distant note. Each of these two solutions is preferred by a different criterion, hence
their high discordance.

3.5 Examples of non-dominated counterpoints

Fig. 10 presents two non-dominated counterpoints composed by the algorithm to the same cantus
firmus melody taken from the J. J. Fux’s textbook (Fux, Mann, and Edmunds, 1965) and one exam-
ple counterpoint presented in the book. The counterpoint rules described earlier are fulfilled: these
counterpoints consist only of consonances, the first and the last intervals are perfect consonances,
the next-to-last interval is a major sixth, and mainly steps are used. However, these counterpoints
are not perfect considering all the criteria: the main problem with the first counterpoint is the
direct motion between notes 2 and 4 and the large perfect fifth skip between notes 7 and 8. The
second counterpoint uses the direct motion even more often (three times – between notes 2 and 3,
4 and 5, and 5 and 6); on the other hand, it does not use any skips. The third counterpoint has
the same values as the first counterpoint for all criteria except for the DirectMotion. This means
that the third counterpoint was dominated by the first one. Table 1 summarizes criteria values for
all three counterpoints.

An important aspect of the first two counterpoints is that according to the multi-criteria analysis
approach presented in this work, they are incomparable, because each of them has its advantages
and disadvantages relative to the other. The second counterpoint uses direct motion and repeated
notes more often, which makes the first counterpoint better according to the DirectMotion criterion.
On the other hand, the first counterpoint contains a big interval jump between notes 7 and 8, which
makes the second counterpoint better regarding the criterion of jumps, as it does not contain any
jumps.

If the criteria values were aggregated (for example by employing the popular weighted sum
formula), one of these counterpoints could be lost, because the value of its quality function would
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Figure 10: Three sample counterpoints composed above a cantus firmus in the Dorian mode. The
first and the second counterpoints are non-dominated and were composed by our algorithm, while
the third one comes from the Steps to Parnassus book (Fux, Mann, and Edmunds, 1965).

be inferior. However, it is not obvious which of the two counterpoints is better and how should the
criteria be aggregated, therefore avoiding aggregations and leaving the final decision to a human is
a more justified approach. In the multiple-criteria decision analysis (MCDA) perspective, decisions
made by the decision maker regarding their preference of one counterpoint over the other would
provide important clues (the preferential information) on the importance of criteria to this particular
decision maker, and on their own subjective feeling as to which counterpoints are more interesting
than the others. This information could be automatically extracted from sample choices made
by a decision maker, and then employed to sort the full set of non-dominated counterpoints in
agreement with preferences learned from those expressed by a human. Such an approach would
be far more appropriate than using a weighted sum with arbitrarily adjusted weights. MCDA is
therefore an interesting and promising paradigm to be used in algorithmic composition, and its area
of application is not limited to counterpoint composition.
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Table 1: Evaluation criteria: the number of times a specific situation occurs in counterpoints from
Fig. 10.

17



4 Conclusions and further work

As demonstrated by the experiments reported in this article, the relation of multi-criteria domi-
nance provides valuable information and a useful perspective in evaluation of counterpoints. It is
a general tool that can be employed in the algorithmic composition research, allowing to model
the composition process without making any assumptions about the relative importance of each
evaluation criterion. This work presents results of an algorithm that is capable of composing the
first species counterpoint to the given cantus firmus using the dominance relation; the outcome of
running the algorithm is a set of best, but mutually incomparable, counterpoints for the particular
cantus firmus.

The numerical results obtained from the computational experiments allowed to quantitatively
examine the “solution space” of all possible counterpoints. Comparing counterpoints generated for
different types of cantus firmi revealed differences between the groups. The number of generated
counterpoints for cantus firmi which used chromatic notes was smaller than for the other groups:
if the notes that are outside of the mode are used in the cantus firmus, it is more difficult to find
consonances to use in counterpoints. This reduces the number of possible counterpoints, because
only consonances are allowed in the first species counterpoint. A smaller variance of the number
of counterpoints was noticed in groups regsup, regsdown, regcup, and regcdown, which comes
from the similarity of cantus firmi in these groups.

Another aspect that has been analysed are the relationships between the evaluation criteria;
the discordance between some criteria (e.g. NumberOfSkips and TwoSkipsInTheSameDirection)
turned out to be low, while for other criteria (e.g., NoteRepetition and NumberOfSkips) it is
high. The overall high discordance of criteria corresponds with a large number of non-dominated
counterpoints. For some cases this may be a challenge, because for some 11-note cantus firmi, the
number of non-dominated counterpoints reaches almost 700. This number makes it difficult for the
human expert to analyze all these interesting counterpoints – thus methods for further reduction
may be employed, some of which may be based on obtaining subjective, preferential information
from a human. For most cases however, the richness of the non-dominated set is an advantage as
it preserves diversity, and no counterpoint is lost that is best on at least one criterion.

One of the simplest techniques that can be used to reduce the set of non-dominated counterpoints
is filtering out the counterpoints which break the most important rules of counterpoint composition.
This technique gave diversified results for different counterpoints – it turned out that for some cantus
firmi it was impossible to compose a counterpoint that would obey the two most important rules.

Further work will focus on analyses of other counterpoint species, and on modifying the current
approach so that it is capable of composing counterpoints for longer melodies. Another interesting
area of research is an automated discovery of rules that were typically used by specific composers;
this can be done by analyses of counterpoints they composed. Results from such analyses may
have impact on the area of automatic composition, and they may also provide new knowledge in
musicology.
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