
Biologically-inspired algorithms and models
1. Evolutionary algorithms and their mechanisms

Maciej Komosinski

Introduction

Evolutionary
algorithms

Selection

Evaluation

Crossover

Mutation

Parameters

References

Reminder from earlier studies (and, possibly, a supplement) #1

What are the differences between random search and random walk?

What two variants of the local search algorithm do you know?

Is it known that one of them is better (ultimately produces better results – this
question concerns quality, not running time)?

What are the ways of intensification and diversification in Tabu Search and
Simulated Annealing?

Introduction

Evolutionary
algorithms

Selection

Evaluation

Crossover

Mutation

Parameters

References

Reminder from earlier studies (and, possibly, a supplement) #2

What crossover operators do you know in evolutionary/genetic algorithms?

What selection techniques in evolutionary algorithms do you know?

What methods do you know of increasing the diversity of solutions during
evolution?

What is the difference between the steady state and the generational replacement
architectures?

What ways do you know to deal with constraints?

Introduction

Evolutionary
algorithms

Selection

Evaluation

Crossover

Mutation

Parameters

References

Two scenarios of using optimization algorithms

Applications of optimization algorithms can be roughly divided into interactive ones
(on-line) and batch ones (off-line).

In the off-line approach, we are interested in the best solution found during the entire
running time of the algorithm. In the interactive (“on-line”) approach, we are
interested in making a given optimization algorithm yield results as good as possible all
the time. To evaluate the behavior of the optimization algorithm in the on-line and
off-line scenarios, De Jong proposed specific indicators [Gol02, pp. 107, 110]; come up
with the two simple ones.

Introduction

Evolutionary
algorithms

Selection

Evaluation

Crossover

Mutation

Parameters

References

Variants of evolutionary algorithms

Genetic algorithms (GA)

Evolutionary strategies (ES)

Evolutionary programming (EP)

Genetic programming (GP)

Classifier systems (CFS) and genetics-based machine learning (GBML)

Coevolutionary architectures

...

GA: John Holland (1973, 1975), David Goldberg (1989)
EP: Lawrence Fogel (1963), David Fogel (1992)
ES: Ingo Rechenberg (1973), Thomas Bäck (1996)
GP: John Koza (1992)

Introduction

Evolutionary
algorithms

Selection

Evaluation

Crossover

Mutation

Parameters

References

Reminder: algorithm structure and parameters

Main loop:

t := 0
initialize P(t)
evaluate P(t)
while (not stopping-condition)
{

t := t + 1
select P(t) from P(t − 1)
modify P(t)
evaluate P(t)

}

Introduction

Evolutionary
algorithms

Selection

Evaluation

Crossover

Mutation

Parameters

References

Reminder: algorithm structure and parameters

Parameters:

population size POPSIZE

probability of crossing-over PXOVER

probability of mutation PMUT

choosing the stopping criterion

choosing the selection mechanism (positive and possibly negative)

adjusting parameter values of the selection mechanism

Introduction

Evolutionary
algorithms

Selection

Evaluation

Crossover

Mutation

Parameters

References

The role of selection

What is selection needed for in an evolutionary algorithm?

What would happen if selection were purely random?

What would happen if selection were deterministic and gave every individual an
equal chance?

Can the strength of the selection pressure be expressed as a number?

Introduction

Evolutionary
algorithms

Selection

Evaluation

Crossover

Mutation

Parameters

References

The role of nondeterminism in algorithmics

Discussion on the types of nondeterminism and the role of nondeterminism in
algorithms and in computer science.

Introduction

Evolutionary
algorithms

Selection

Evaluation

Crossover

Mutation

Parameters

References

The role of nondeterminism in algorithmics

Discussion on the types of nondeterminism and the role of nondeterminism in
algorithms and in computer science.

Consider four generators of random sequences: one that is based on consecutive
numbers and modulo, poor pseudo-random, good pseudo-random, and truly random.

https://en.wikipedia.org/wiki/Linear_congruential_generator
https://en.wikipedia.org/wiki/Well_equidistributed_long-period_linear

Introduction

Evolutionary
algorithms

Selection

Evaluation

Crossover

Mutation

Parameters

References

The role of nondeterminism in algorithmics

Discussion on the types of nondeterminism and the role of nondeterminism in
algorithms and in computer science.

Consider four generators of random sequences: one that is based on consecutive
numbers and modulo, poor pseudo-random, good pseudo-random, and truly random.

https://en.wikipedia.org/wiki/Linear_congruential_generator
https://en.wikipedia.org/wiki/Well_equidistributed_long-period_linear

Introduction

Evolutionary
algorithms

Selection

Evaluation

Crossover

Mutation

Parameters

References

The role of nondeterminism in algorithmics

Discussion on the types of nondeterminism and the role of nondeterminism in
algorithms and in computer science.

Consider four generators of random sequences: one that is based on consecutive
numbers and modulo, poor pseudo-random, good pseudo-random, and truly random.

an example of supplementation (e.g., 4 substances every 2 days each, interactions
are unknown)

an example of giving gifts

an example of signal dithering (audio, video, . . .) and rounding

and finally, an example of an algorithm. . .

https://en.wikipedia.org/wiki/Linear_congruential_generator
https://en.wikipedia.org/wiki/Well_equidistributed_long-period_linear
https://en.wikipedia.org/wiki/Dither
https://en.wikipedia.org/wiki/Rounding#Stochastic_rounding

Introduction

Evolutionary
algorithms

Selection

Evaluation

Crossover

Mutation

Parameters

References

The role of nondeterminism in algorithmics – conclusions

Discussion on the types of nondeterminism and the role of nondeterminism in
algorithms and in computer science.

Consider four generators of random sequences: one that is based on consecutive
numbers and modulo, poor pseudo-random, good pseudo-random, and truly random.

you are inventing some algorithm, for example an optimization algorithm (or some
other). What would prompt you to use the random() function in it?

examples: Greedy and Steepest with multiple neighbors with the same quality,
the induction of decision trees with multiple attributes with equal entropy, . . .
try to completely “determinize” SA. Will there be any negative consequences?

in what situations is “unrestricted”, full randomness beneficial?

when is true randomness preferable to good pseudo-randomness?

and finally: should he get this funding and why??

Introduction

Evolutionary
algorithms

Selection

Evaluation

Crossover

Mutation

Parameters

References

The role of nondeterminism in algorithmics – conclusions

Discussion on the types of nondeterminism and the role of nondeterminism in
algorithms and in computer science.

Consider four generators of random sequences: one that is based on consecutive
numbers and modulo, poor pseudo-random, good pseudo-random, and truly random.

you are inventing some algorithm, for example an optimization algorithm (or some
other). What would prompt you to use the random() function in it?

examples: Greedy and Steepest with multiple neighbors with the same quality,
the induction of decision trees with multiple attributes with equal entropy, . . .
try to completely “determinize” SA. Will there be any negative consequences?

in what situations is “unrestricted”, full randomness beneficial?

when is true randomness preferable to good pseudo-randomness?

and finally: should he get this funding and why??

Introduction

Evolutionary
algorithms

Selection

Evaluation

Crossover

Mutation

Parameters

References

The role of nondeterminism in algorithmics – conclusions

Discussion on the types of nondeterminism and the role of nondeterminism in
algorithms and in computer science.

Consider four generators of random sequences: one that is based on consecutive
numbers and modulo, poor pseudo-random, good pseudo-random, and truly random.

you are inventing some algorithm, for example an optimization algorithm (or some
other). What would prompt you to use the random() function in it?
examples: Greedy and Steepest with multiple neighbors with the same quality,
the induction of decision trees with multiple attributes with equal entropy, . . .

try to completely “determinize” SA. Will there be any negative consequences?

in what situations is “unrestricted”, full randomness beneficial?

when is true randomness preferable to good pseudo-randomness?

and finally: should he get this funding and why??

Introduction

Evolutionary
algorithms

Selection

Evaluation

Crossover

Mutation

Parameters

References

The role of nondeterminism in algorithmics – conclusions

Discussion on the types of nondeterminism and the role of nondeterminism in
algorithms and in computer science.

Consider four generators of random sequences: one that is based on consecutive
numbers and modulo, poor pseudo-random, good pseudo-random, and truly random.

you are inventing some algorithm, for example an optimization algorithm (or some
other). What would prompt you to use the random() function in it?
examples: Greedy and Steepest with multiple neighbors with the same quality,
the induction of decision trees with multiple attributes with equal entropy, . . .
try to completely “determinize” SA. Will there be any negative consequences?

in what situations is “unrestricted”, full randomness beneficial?

when is true randomness preferable to good pseudo-randomness?

and finally: should he get this funding and why??

Introduction

Evolutionary
algorithms

Selection

Evaluation

Crossover

Mutation

Parameters

References

The role of nondeterminism in algorithmics – conclusions

Discussion on the types of nondeterminism and the role of nondeterminism in
algorithms and in computer science.

Consider four generators of random sequences: one that is based on consecutive
numbers and modulo, poor pseudo-random, good pseudo-random, and truly random.

you are inventing some algorithm, for example an optimization algorithm (or some
other). What would prompt you to use the random() function in it?
examples: Greedy and Steepest with multiple neighbors with the same quality,
the induction of decision trees with multiple attributes with equal entropy, . . .
try to completely “determinize” SA. Will there be any negative consequences?

in what situations is “unrestricted”, full randomness beneficial?

when is true randomness preferable to good pseudo-randomness?

and finally: should he get this funding and why??

Introduction

Evolutionary
algorithms

Selection

Evaluation

Crossover

Mutation

Parameters

References

The role of nondeterminism in algorithmics – conclusions

Discussion on the types of nondeterminism and the role of nondeterminism in
algorithms and in computer science.

Consider four generators of random sequences: one that is based on consecutive
numbers and modulo, poor pseudo-random, good pseudo-random, and truly random.

you are inventing some algorithm, for example an optimization algorithm (or some
other). What would prompt you to use the random() function in it?
examples: Greedy and Steepest with multiple neighbors with the same quality,
the induction of decision trees with multiple attributes with equal entropy, . . .
try to completely “determinize” SA. Will there be any negative consequences?

in what situations is “unrestricted”, full randomness beneficial?

when is true randomness preferable to good pseudo-randomness?

and finally: should he get this funding and why??

Introduction

Evolutionary
algorithms

Selection

Evaluation

Crossover

Mutation

Parameters

References

The role of nondeterminism in algorithmics – conclusions

Discussion on the types of nondeterminism and the role of nondeterminism in
algorithms and in computer science.

Consider four generators of random sequences: one that is based on consecutive
numbers and modulo, poor pseudo-random, good pseudo-random, and truly random.

you are inventing some algorithm, for example an optimization algorithm (or some
other). What would prompt you to use the random() function in it?
examples: Greedy and Steepest with multiple neighbors with the same quality,
the induction of decision trees with multiple attributes with equal entropy, . . .
try to completely “determinize” SA. Will there be any negative consequences?

in what situations is “unrestricted”, full randomness beneficial?

when is true randomness preferable to good pseudo-randomness?

and finally: should he get this funding and why??

Introduction

Evolutionary
algorithms

Selection

Evaluation

Crossover

Mutation

Parameters

References

Selection – popular techniques

fi – the fitness of i-th individual (i = 1..POPSIZE)
ei – the number of its expected copies in the new (consecutive) population,
ei = POPSIZE · fi/

∑
fj

Fitness proportionate random selection with replacement, commonly called the
roulette wheel technique: individuals are assigned fields on the roulette wheel, the
sizes of which are proportional to their fitness fi . Then the roulette wheel is spun
POPSIZE times, selecting the drawn individual. The same principle, but better
properties: stochastic universal sampling method∗.

Stochastic remainder selection without replacement: each individual gets as many
copies in the new population as the integer part of its ei . The remaining free
places are filled by randomly deciding, for each individual with the probability
being the fractional part of its ei , whether it should go to the new population.
Example: 4 individuals, f = [1,3,5,6].

Selection according to random tournaments (parameter: k – tournament size). A
more careful variant of this technique ensures that each individual participates in
the same number of tournaments.

∗https://en.wikipedia.org/wiki/Stochastic_universal_sampling

https://en.wikipedia.org/wiki/Stochastic_universal_sampling

Introduction

Evolutionary
algorithms

Selection

Evaluation

Crossover

Mutation

Parameters

References

Selection – other techniques

Deterministic remainder-based selection: each individual gets as many copies in
the new population as the integer part of its ei , and the remaining free places in
the population are filled in order of decreasing fractional parts of individual ei .

Stochastic remainder selection with replacement: each individual gets as many
copies in the new population as the integer part of its expected number of copies
(ei). The remaining places are filled according to the roulette principle
proportionally to the fractional part of ei .

Ordinal selection: individuals are assigned integer ranks that correspond to their
position in ranking, from best to worst. The selection is based on the probability
function that depends not on raw fitness values, but on individual positions in the
ranking. Various probability functions are used – linear and non-linear, and the
parameters of these functions allow one to adjust selective pressure.

Exercise: classify these 6 techniques into two categories – depending on how they use
the values of the fitness function.

Introduction

Evolutionary
algorithms

Selection

Evaluation

Crossover

Mutation

Parameters

References

Selection – additional properties

Elitism (elitist model): fulfills the expectation that the selection process should
not cause the loss of the best individual found so far. If such an individual does
not find its way to the next population in a natural way (resulting from the
selection method used), it is included in it and thus the information about the
best solution so far is always preserved.

Crowding factor model: similar to nature, where species filling the ecological niche
must fight for limited resources – in the crowding model, new individuals replace
old individuals (from the previous population) taking into account their
similarities, i.e., new individuals take the place of the old individuals most similar
to them. The crowding factor (a parameter) affects the way individuals are
replaced [DJ75; Mah92].

Introduction

Evolutionary
algorithms

Selection

Evaluation

Crossover

Mutation

Parameters

References

Meta-schemes of selection

In the following selection methods, parts of the population (subpopulations) can be
independently processed – these methods can therefore also act as a distribution and
parallelization scheme for evolution.

Island model: a population is split into subpopulations in which the chosen
selection scheme operates (for example tournament, roulette or other). Evolution
proceeds on each island independently, with periodic migration of some genotypes
between islands. What effects does this have?

Convection selection: unlike in the traditional island model, the division into
subpopulations follows the similarity of the value of the objective function of
solutions. What effects does this have?

Introduction

Evolutionary
algorithms

Selection

Evaluation

Crossover

Mutation

Parameters

References

Meta-schemes of selection

In the following selection methods, parts of the population (subpopulations) can be
independently processed – these methods can therefore also act as a distribution and
parallelization scheme for evolution.

Island model: a population is split into subpopulations in which the chosen
selection scheme operates (for example tournament, roulette or other). Evolution
proceeds on each island independently, with periodic migration of some genotypes
between islands. This model increases exploration capabilities.

Convection selection: unlike in the traditional island model, the division into
subpopulations follows the similarity of the value of the objective function of
solutions. Convection selection improves the exploration ability of an EA by
properly balancing selective pressure [KU17; KM18]. The way this selection
method works is illustrated in animations here.
Discussion: how will this meta-scheme perform in EqualNumber and EqualWidth
variants [KM18, Fig. 3] when the selection in subpopulations is random
(e.g., tournament size = 1), compared to the island model and to the standard,
single-population EA with random selection?

http://www.cs.put.poznan.pl/mkomosinski/convection.html

Introduction

Evolutionary
algorithms

Selection

Evaluation

Crossover

Mutation

Parameters

References

Negative selection

Sometimes (depending on the adopted GA architecture), in addition to using a positive
selection, it is also necessary to employ a negative selection.

Its role is to make room in the population for new genotypes – negative selection
decides which genotypes to remove from the population. Similar mechanisms as for the
positive selection can be used; two examples of naive methods are deleting the worst
genotype and a random one.

Introduction

Evolutionary
algorithms

Selection

Evaluation

Crossover

Mutation

Parameters

References

You ran an evolutionary algorithm with roulette selection
and got this outcome:

Question 1: Is it a good moment to stop optimization?

Question 2. Is it correct to conclude from this run that the diminishing (and eventually
zero) improvements are due to the fact that it is becoming increasingly difficult to find
better solutions in the surroundings of the population?

Introduction

Evolutionary
algorithms

Selection

Evaluation

Crossover

Mutation

Parameters

References

Answering question 1: the future is unknown!

What other criteria (apart from stabilized fitness) can be used to develop a better
stopping condition and avoid the situation above?

Introduction

Evolutionary
algorithms

Selection

Evaluation

Crossover

Mutation

Parameters

References

Answering question 1: the future is unknown!

Measures of solution diversity in the population and the relationship with selection
pressure and with the potential for operators to change solutions. Possibly also some
knowledge (even a cursory one) of the fitness landscape.

Introduction

Evolutionary
algorithms

Selection

Evaluation

Crossover

Mutation

Parameters

References

Scaling

Discussion: where does the need for scaling come from? Analysis of the behavior of
roulette selection at the beginning of evolution and in later stages (cf. previous plot).

Linear scaling: f ′ = af + b. The coefficients a and b are adjusted so that the
fitness f ′ of the best individual is a given multiple (for example 2×) of the fitness
of the “average” individual. After scaling, negative fitness values may appear –
you can then reset them to zero or perform another linear transformation.

Power law scaling: f ′ = f k . The coefficient k depends on the specific
optimization task, and thus this method is not particularly useful.

σ-truncation scaling (truncation at the level dependent on the standard deviation).
Fitness values depend not only on the values of the original fitness of individuals,
but also on the distribution of fitness in the population. The average fitness of the
population µ and the standard deviation of the fitness in the population σ are
determined, and the fitness (in the case of maximization) becomes
f ′ = f − (µ− c · σ). Negative values of f ′ are replaced by zero. The coefficient c
determines the selection pressure: the larger the c , the lower the pressure.

Introduction

Evolutionary
algorithms

Selection

Evaluation

Crossover

Mutation

Parameters

References

σ-truncation scaling – example

For example 10 individuals with fitness 57, 57, 58, 58, 59, 59, 61, 62, 62, 65.
The average, µ, is 59.8, and the standard deviation σ = 2.6.

f c f (c)
0

10

20

30

40

50

60

fit
ne

ss

Figure: Scaling plot (truncation at the level dependent on the standard deviation) for
coefficient c = 3.

Introduction

Evolutionary
algorithms

Selection

Evaluation

Crossover

Mutation

Parameters

References

A calculation exercise

Before scaling, the probability of selecting the i-th individual, pi , is the quotient of the
individual’s fitness value (fi) and the total fitness of all individuals (j = 1..n).

pi =
fi∑n
j=1 fj

=
fi
nµ

How much will p′i be if f
′
i = fi − (µ− cσ)?

Express p′i as a function of pi and of other possibly easily interpretable expressions.

Introduction

Evolutionary
algorithms

Selection

Evaluation

Crossover

Mutation

Parameters

References

A calculation exercise – solution

p′i =
fi − µ

ncσ
+
1
n

=
µ

cσ

(
pi −
1
n

)
+
1
n

Interpret the above formula and relate it to the preceding scaling plot. What is 1n?
Consider the situation where µ is small and σ is large (the beginning of evolution) and
the opposite, when evolution is already at an advanced stage.

Introduction

Evolutionary
algorithms

Selection

Evaluation

Crossover

Mutation

Parameters

References

The rationale behind fitness scaling

The scaling mechanism helps keep the selection pressure constant throughout the
entire course of evolution, regardless of the properties of the function being optimized.
Controlling the selection pressure is very important – without it, efficient optimization
is impossible.

Employing scaling is reasonable if the selection method that is used. . .

depends on the
ratios of fitness values (and, for example, tournament and ranking selection do not).

Introduction

Evolutionary
algorithms

Selection

Evaluation

Crossover

Mutation

Parameters

References

The rationale behind fitness scaling

The scaling mechanism helps keep the selection pressure constant throughout the
entire course of evolution, regardless of the properties of the function being optimized.
Controlling the selection pressure is very important – without it, efficient optimization
is impossible.

Employing scaling is reasonable if the selection method that is used depends on the
ratios of fitness values (and, for example, tournament and ranking selection do not).

Introduction

Evolutionary
algorithms

Selection

Evaluation

Crossover

Mutation

Parameters

References

Average fitness as the “neutral point” of the population
Is the average the best option?

Another (better than σ-truncation?) scaling function: the probability of selecting an
individual,

p′i =
1

1+ exp(fi−M
σ)

fi – the fitness value of an individual,
M – the median value of fitness of all individuals in the population,
σ – the standard deviation of fitness values in the population.

For maximization, reverse the sign of the argument of exp().

Minimal influence of extremely good/poor individuals (throughout the entire course of
evolution), so the problem of premature convergence is eliminated. Minimal – because of
the median (the extreme individual will only cause a moderate increase in σ).

Effective separation of moderately fit individuals into two groups (above and below the
median).

At the beginning of evolution – usually large σ, so a low diversity of p′
i of individuals. At

the end – convergence thus small σ, so better individuals promoted much more strongly.

Introduction

Evolutionary
algorithms

Selection

Evaluation

Crossover

Mutation

Parameters

References

Average fitness as the “neutral point” of the population
Is the average the best option?

Another (better than σ-truncation?) scaling function: the probability of selecting an
individual,

p′i =
1

1+ exp(fi−M
σ)

fi – the fitness value of an individual,
M – the median value of fitness of all individuals in the population,
σ – the standard deviation of fitness values in the population.

For maximization, reverse the sign of the argument of exp().

Minimal influence of extremely good/poor individuals (throughout the entire course of
evolution), so the problem of premature convergence is eliminated. Minimal – because of
the median (the extreme individual will only cause a moderate increase in σ).

Effective separation of moderately fit individuals into two groups (above and below the
median).

At the beginning of evolution – usually large σ, so a low diversity of p′
i of individuals. At

the end – convergence thus small σ, so better individuals promoted much more strongly.

Introduction

Evolutionary
algorithms

Selection

Evaluation

Crossover

Mutation

Parameters

References

Sample fitness distribution in a population during evolution

See [KU17, the top plot in Fig. 9].

How can you explain stable horizontal lines (groups of individuals with similar, specific
values of the objective function) over a long period of time? Try to offer at least two
possible reasons.

Introduction

Evolutionary
algorithms

Selection

Evaluation

Crossover

Mutation

Parameters

References

Crossover

Discussion: is crossover required in an evolutionary algorithm?

Reminder: single-point, multiple-point, uniform, . . .

Discussion: is EA without crossover the same as multiple independently run LS?

Introduction

Evolutionary
algorithms

Selection

Evaluation

Crossover

Mutation

Parameters

References

Crossover

Discussion: is crossover required in an evolutionary algorithm?

Reminder: single-point, multiple-point, uniform, . . .

Discussion: is EA without crossover the same as multiple independently run LS?

Introduction

Evolutionary
algorithms

Selection

Evaluation

Crossover

Mutation

Parameters

References

Crossover – advanced techniques

Shuffle crossover: an additional mechanism [ECS89] used for some types of
crossover. It involves randomly reordering the locations of bits in the parent
sequences (in both of them identically), performing the crossover, and restoring
the original bit order in the descendants (think about why such a procedure is
used and for which crossover operators it makes sense?)

Adaptive crossover: the genotype, in addition to the bit values of the solution, can
store the information about crossover cut points. Poor solutions disappear (along
with the information about crossover points), while good solutions (and the
information about beneficial crossover points) persist and improve. In this way,
cut points are undergoing evolution along with the population of solutions. An
extension of this idea is recording the fitness (quality) of various genetic operators
and selecting an operator taking into account its fitness.

Crossover with multiple ancestors: the recombination concerns genes drawn from
the gene pool of selected parents, including the case of the so-called “orgies”, in
which the descendant solution may have more than two parents (consider what
effect the number of parents has?)

https://www.framsticks.com/files/varia/frams_adaptive_mut_rate_for_max_height.png

Introduction

Evolutionary
algorithms

Selection

Evaluation

Crossover

Mutation

Parameters

References

Mutation

Discussion: is mutation required in an evolutionary algorithm?

As a general rule, it is advantageous for an individual after mutation to be similar to its
parent, and for each mutation to result in changes of similar magnitude. Is this the
case when we use the standard binary encoding of numbers? No. Mutations will occur
sometimes in the less significant bits, sometimes in the more significant bits, causing
sometimes small changes, sometimes huge ones.

Do you recall any special code that could help here? A code related to neighboring
sequences differing in the value of only one bit. Would such a code help here?

Introduction

Evolutionary
algorithms

Selection

Evaluation

Crossover

Mutation

Parameters

References

Mutation

Discussion: is mutation required in an evolutionary algorithm?

As a general rule, it is advantageous for an individual after mutation to be similar to its
parent, and for each mutation to result in changes of similar magnitude. Is this the
case when we use the standard binary encoding of numbers? No. Mutations will occur
sometimes in the less significant bits, sometimes in the more significant bits, causing
sometimes small changes, sometimes huge ones.

Do you recall any special code that could help here? A code related to neighboring
sequences differing in the value of only one bit. Would such a code help here?

Introduction

Evolutionary
algorithms

Selection

Evaluation

Crossover

Mutation

Parameters

References

Mutation – smart encoding?

If we use the Gray code, in which adjacent numbers differ by only one bit (the
Hamming distance), then the adjacent numbers will always be reachable by a single
mutation. But will this really help?

0

20

40

60

80

100

0 20 40 60 80 100
Parental trait

M
ea

n
de

st
in

at
io

n

Flat

Binary

Gray

Figure: Severe discontinuities of the mutation operator have a continuous influence (a bias)
on evolution [Bul99, p. 69]. Flat: mutation is simply randomly drawing a gene value from the
allowed range. The Gray code does not eliminate the disadvantages of mutating encoded
numeric values.

Discussion: which encoding would satisfy the requirement that each mutation changed
the encoded value by ±1?

https://en.wikipedia.org/wiki/Gray_code

Introduction

Evolutionary
algorithms

Selection

Evaluation

Crossover

Mutation

Parameters

References

Mutation – smart encoding?

If we use the Gray code, in which adjacent numbers differ by only one bit (the
Hamming distance), then the adjacent numbers will always be reachable by a single
mutation. But will this really help?

0

20

40

60

80

100

0 20 40 60 80 100
Parental trait

M
ea

n
de

st
in

at
io

n

Flat

Binary

Gray

Figure: Severe discontinuities of the mutation operator have a continuous influence (a bias)
on evolution [Bul99, p. 69]. Flat: mutation is simply randomly drawing a gene value from the
allowed range. The Gray code does not eliminate the disadvantages of mutating encoded
numeric values.

Discussion: which encoding would satisfy the requirement that each mutation changed
the encoded value by ±1?

https://en.wikipedia.org/wiki/Gray_code

Introduction

Evolutionary
algorithms

Selection

Evaluation

Crossover

Mutation

Parameters

References

Parameterization

The introduction of various improvements and extensions to GAs (for example:
adaptive mutation probabilities) sometimes requires new parameters. On the other
hand, some of these modifications enable automatic tuning of parameter values. The
new parameters are often more easily interpretable and/or their impact on the
algorithm performance and achieved results becomes more predictable.

Discussion: suppose you have some concrete optimization problem. What parameter
values do you set and what mechanisms do you choose to use? What criteria do you
use to set these particular values and not others?

Introduction

Evolutionary
algorithms

Selection

Evaluation

Crossover

Mutation

Parameters

References

Parameterization – population size

The size of the population affects primarily the inertia of the algorithm. With larger
populations, the algorithm reacts more slowly, so for on-line applications, relatively
small populations are recommended. Large populations, especially in the beginning of
evolution, need more time to reach good solutions. On the other hand, for off-line
applications, large populations are advantageous because they carry more information
and allow for a more thorough search of the solution space. At the same time, a large
number of individuals reduces the risk of getting stuck in a local optimum. However, it
is necessary to adjust the size of the population so that it manages to converge to the
region of good solutions in the available time.

Introduction

Evolutionary
algorithms

Selection

Evaluation

Crossover

Mutation

Parameters

References

Parameterization – mutation, selection, stopping condition

The probability of mutation accounts for the number of random changes in the bits of
individuals. This probability is recommended to be the inverse of the number of
decision variables (if the decision variables are binary, how many genes are expected to
be mutated in each generation?). Sometimes one can encounter the probability of
mutation that is the inverse of the number of individuals in the population (how many
genes are expected to be mutated in each generation?)

A selection technique that has better properties than roulette is stochastic remainder
selection (described earlier) with or without replacement, or tournament techniques.
The recommended scaling mechanism is the truncation at the level dependent on the
standard deviation, possibly accompanied by linear scaling.

A good stopping criterion for off-line applications is the number of generations without
improvement (although without introducing a threshold for the minimum difference,
the algorithm may run for too long due to repeated, insignificantly small
improvements). One can also monitor the average similarity in the population and stop
the optimization when the diversity is lost.

Introduction

Evolutionary
algorithms

Selection

Evaluation

Crossover

Mutation

Parameters

References

References I

[Bul99] Seth Bullock. “Are artificial mutation biases unnatural?” In: European Conference on Artificial Life.
Springer. 1999, pp. 64–73. doi: 10.1007/3-540-48304-7_11. url:
https://eprints.soton.ac.uk/261452/1/10.1.1.40.2753.pdf.

[DJ75] Kenneth Alan De Jong. “Analysis of the behavior of a class of genetic adaptive systems”. PhD thesis.
University of Michigan, 1975. url:
https://deepblue.lib.umich.edu/bitstream/handle/2027.42/4507/bab6360.0001.001.pdf.

[ECS89] Larry J. Eshelman, Rich Caruana, and J. David Schaffer. “Biases in the crossover landscape”. In:
Proceedings of the 3rd International Conference on Genetic Algorithms. Ed. by J. David Schaffer.
Morgan Kaufmann, 1989, pp. 10–19.

[Gol02] David Edward Goldberg. Genetic Algorithms in Search, Optimization, and Machine Learning.
Addison-Wesley, 2002.

[KM18] Maciej Komosinski and Konrad Miazga. “Comparison of the tournament-based convection selection
with the island model in evolutionary algorithms”. In: Journal of Computational Science 32 (2018),
pp. 106–114. issn: 1877-7503. doi: 10.1016/j.jocs.2018.10.001. url:
http://www.framsticks.com/files/common/ConvectionSelectionVsIslandModel.pdf.

[KU17] Maciej Komosinski and Szymon Ulatowski. “Multithreaded computing in evolutionary design and in
artificial life simulations”. In: The Journal of Supercomputing 73.5 (2017), pp. 2214–2228. issn:
1573-0484. doi: 10.1007/s11227-016-1923-4. url:
http://www.framsticks.com/files/common/MultithreadedEvolutionaryDesign.pdf.

[Mah92] Samir W. Mahfoud. “Crowding and preselection revisited”. In: Parallel problem solving from nature.
Ed. by R. Männer and B. Manderick. Vol. 2. Elsevier, 1992, pp. 27–36. url:
http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.52.3943&rep=rep1&type=pdf.

https://doi.org/10.1007/3-540-48304-7_11
https://eprints.soton.ac.uk/261452/1/10.1.1.40.2753.pdf
https://deepblue.lib.umich.edu/bitstream/handle/2027.42/4507/bab6360.0001.001.pdf
https://doi.org/10.1016/j.jocs.2018.10.001
http://www.framsticks.com/files/common/ConvectionSelectionVsIslandModel.pdf
https://doi.org/10.1007/s11227-016-1923-4
http://www.framsticks.com/files/common/MultithreadedEvolutionaryDesign.pdf
http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.52.3943&rep=rep1&type=pdf

	Introduction
	Evolutionary algorithms
	Selection
	Evaluation
	Crossover
	Mutation
	Parameters
	References

