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Motivation: Why Stochastic Local Search?

Stochastic local search is the method of choice for solving many

hard combinatorial problems.

Recent Progress & Successes:

• Ability of solving hard combinatorial problems

has increased significantly

– Solution of large propositional satisfiability problems

– Solution of large travelling salesman problems

• Good results in new application areas
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Reasons & Driving Forces:

• New algorithmic ideas

– Nature inspired algorithms

– New randomisation schemes

– Hybrid and mixed search strategies

• Increased flexibility and robustness

• Improved understanding of algorithmic behaviour

• Sophisticated data structures

• Significantly improved hardware
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Goals of the Tutorial

Provide answers to these questions:

• What is stochastic local search and how can it be used

to solve computationally hard problems?

• Which stochastic local search techniques are available

and what are their features?

• How should stochastic local search algorithms

be studied and analysed empirically?

• How are specific problems solved using stochastic search?
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Outline

• Introduction

• Part I: Combinatorial Problems and Search

[ Short Break ]

• Part II: Stochastic Local Search Methods

[ Short Break ]

• Part III: Stochastic Search Behaviour

[ Short Break ]

• Part IV: Applications

• Conclusions and Issues for Future Research
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Part I

Combinatorial Problems and Search
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Combinatorial Problems

Examples for combinatorial problems:

• finding shortest/cheapest round trips (TSP)

• finding models of propositional formulae (SAT)

• planning, scheduling, time-tabling

• resource allocation

• protein structure prediction

• genome sequence assembly
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Combinatorial problems ...

• involve finding a grouping, ordering, or assignment of a

discrete set of objects which satisfies certain constraints

• arise in many domains of computer science

and various application areas

• have high computational complexity (NP-hard)

• are solved in practice by searching an exponentially large

space of candidate / partial solutions
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Combinatorial Decision Problems:

For a given problem instance, decide whether a solution

(grouping, ordering, or assignment) exists which satisfies

the given constraints.
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The Propositional Satisfiability Problem (SAT)

Simple SAT instance (in CNF):

(a ∨ b) ∧ (¬a ∨ ¬b)

; satisfiable, two models:

a = true, b = false
a = false, b = true
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SAT Problem – decision variant:

For a given propositional formulaΦ,

decide whetherΦ has at least one model.

SAT Problem – search variant:

For a given propositional formulaΦ, if Φ is satisfiable,

find a model, otherwise declareΦ unsatisfiable.
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SAT ...

• is a pervasive problem in computer science

(Theory, AI, Hardware, ...)

• is computationally hard (NP-hard)

• can encode many other combinatorial problems

(NP-completeness)

• is one of the conceptually simplest combinatorial

decision problems

; facilitates development and evaluation of algorithmic ideas
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Combinatorial Optimisation Problems:

Objective function assigns a numerical value to each candidate

solution.

For a given problem instance, find a solution (grouping, ordering,

or assignment) with maximal (or minimal) value of the objective

function.
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The Traveling Salesperson Problem (TSP)

TSP – optimisation variant:

For a given weighted graphG = (V, E, w), find a Hamiltonian

cycle inG with minimal weight,

i.e., find the shortest round-trip visiting each vertex exactly once.

TSP – decision variant:

For a given weighted graphG = (V, E, w), decide whether a

Hamiltonian cycle with minimal weight≤ b exists inG.
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TSP instance: shortest round trip through 532 US cities
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TSP ...

• is one of the most prominent and widely studied

combinatorial optimisation problems in computer science

and operations research

• is computationally hard (NP-hard)

• is one of the conceptually simplest

combinatorial optimisation problems

; facilitates development and evaluation of algorithmic ideas
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Generalisations of combinatorial problems

• many combinatorial decision problems naturally generalise to

optimisation problems, e.g. SAT to MAX-SAT

• many combinatorial problems have practically relevant

dynamic variants (dynamic SAT, dynamic TSP, internet

routing, dynamic scheduling)

• often, algorithms for decision problems can be generalised to

optimisation and / or dynamic variants

• typically, good solutions to generalised problems require

additional heuristics.

Hoos / Sẗutzle Stochastic Local Search: Foundations and Applications (MA2) 16



Complexity Issues

Motivation:

Analyse inherent hardness of problems and inherent complexity

of algorithms.

Some basic concepts and results:

• complexity classes:P vs.NP

• NP-completeness,NP-hardness

• P 6= NP not known

• but: if there were an efficient (polynomial) algorithm for any

NP-complete problem, allNP problems could be solved

efficiently
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Complexity of combinatorial decision problems

• many combinatorial decision problems areNP-hard

• this is reflected in search spaces of size

exponential in problem size

• SAT is theclassical example of anNP-complete problem

• TSP (decision variant) isNP-complete

• but: not all combinatorial problems with large search spaces

are hard (cf. 2-SAT / Horn-SAT, shortest path, minimal

spanning tree)
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Complexity of combinatorial optimisation problems

• complexity of optimisation vs. decision variants

• approximation algorithms

• approximability / inapproximability

Some results for the TSP:

• general TSP: inapproximable for arbitrary constant bounds

on solution quality

• TSP with triangle inequality: polynomially approximable

to 1.5× optimal solution quality

• Euclidean TSP: polynomial approximation schema exists
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Are computationally hard problems really intractable?

• NP-hardness results apply to the worst case but do not imply

that all instances of a problem are hard to solve

• approximate solutions are often useful and easier to compute

• heuristics can often help to solve practically important

classes of instances in reasonable time

• randomisation can help to find good solutions

reasonably efficient with high probability

• parallelisation can help to increase size of

practically soluble instances
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Search Methods

Types of search methods:

systematic ←→ local search

deterministic ←→ stochastic

sequential ←→ parallel
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Local Search (LS) Algorithms

search spaceS

(SAT: set of all complete truth assignments

to propositional variables)

solution set S′ ⊆ S

(SAT: models of given formula)

neighbourhood relation N ⊆ S × S

(SAT: neighbouring variable assignments differ

in the truth value of exactly one variable)

evaluation function g : S 7→ R
+
0

(SAT: number of clauses unsatisfied

under given assignment)
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Local Search:

• start from initial position

• iteratively move from current position to neighbouring position

• use evaluation function for guidance

Two main classes:

• local search on partial solutions

• local search on complete solutions
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Local Search

c

s
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Construction Heuristics

• specific class of LS algorithms

• search space: space of partial solutions

• search steps: extend partial solutions, but never reduce them

• neighbourhood typically given by individual solution elements

• solution elements are often ranked according to a greedy

evaluation function
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Nearest Neighbour heuristic for the TSP:

• at any city, choose the closest yet unvisited city

– choose an arbitrary initial cityπ(1)

– at theith step choose cityπ(i + 1) to be the cityj

that minimisesd(π(i), j); j 6= π(k), 1 ≤ k ≤ i

• running time:O(n2)

• worst case performance:

NN(x)/OPT (x) ≤ 0.5(⌈log2 n⌉ + 1)

• other construction heuristics for TSP are available
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Nearest neighbour tour through 532 US cities

0

1000

2000

3000

4000

5000

6000

7000

0 1000 2000 3000 4000 5000 6000 7000 8000 9000

NN:att532

Hoos / Sẗutzle Stochastic Local Search: Foundations and Applications (MA2) 26



Construction Heuristics ...

• can be used iteratively to solve combinatorial problems

• provide only a limited number of different solutions

• can be combined with back-tracking to yield systematic search

algorithms (e.g., Davis-Putnam for SAT)

• are used within some state-of-the-art local search approaches

(e.g., Ant Colony Optimisation)
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Iterative Improvement (Greedy Search):

• initialise search at some point of search space

• in each step, move from the current search position

to a neighbouring position with better evaluation function

value
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Iterative Improvement for SAT

• initialisation: randomly chosen, complete truth assignment

• neighbourhood: variable assignments are neighbours iff they

differ in truth value of one variable

• neighbourhood size:O(n) wheren = number of variables

• evaluation function: number of clauses unsatisfied under given

assignment
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Iterative Improvement for the TSP

• initialisation: complete tour, e.g., obtained from

nearest neighbour heuristic

• k-exchange neighbourhood: solutions which differ by

at mostk edges

2-exchange

• neighbourhood size:O(nk) wheren = number of cities
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Stochastic Local Search

Typical problems with local search:

• getting stuck in local optima

• being misguided by evaluation/objective function
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Stochastic Local Search:

• randomise initialisation step

– random initial solutions

– randomised construction heuristics

• randomise search steps

such that suboptimal/worsening steps are allowed

; improved performance & robustness

• typically, degree of randomisation controlled by noise

parameter
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Pros:

• for many combinatorial problems more efficient

than systematic search

• easy to implement

• easy to parallelise

Cons:

• often incomplete (no guarantees for finding existing solutions)

• highly stochastic behaviour

• often difficult to analyse theoretically / empirically
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Simple SLS methods

Random Search (Blind Guessing):

In each step, randomly select one element of the search space.

(Uninformed) Random Walk:

In each step, randomly select one of the neighbouring positions of

the search space and move there.
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Randomised Iterative Improvement:

• initialise search at some point of search space

• search steps:

– with probabilityp, move from current search position

to a randomly selected neighbouring position

– otherwise, move from current search position

to neighbouring position with better evaluation function

value
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Part II

Stochastic Local Search Methods
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Stochastic Local Search Methods – Overview

Parameterised local search extensions:

– Simulated Annealing

– Tabu Search

Hybrid SLS strategies:

• Iterated Local Search

• Evolutionary Algorithms

• Ant Colony Optimization

; representation as Generalised Local Search Machines (GLSMs)
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Simulated Annealing

Combinatorial search technique inspired by the

physical process of annealing [Kirkpatrick et al. 1983, Cerny 1985]

Outline

• generate a neighbour solution / state

• probabilistically accept the solution / state

probability of acceptance depends on the objective function

(energy function) difference and an additional parameter

called temperature
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Solution generation

• typically returns a random neighbouring solution

Acceptance criterion

• Metropolis acceptance criterion

– better solutions are always accepted

– worse solutions are accepted with probability

∼ exp

(

g(s) − g(s′)

T

)

Annealing

• parameterT , called temperature, is slowly decreased
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Generic choices for annealing schedule

• initial temperatureT0

(example: based on statistics of evaluation function)

• cooling schedule — how to change temperature over time

(example: geometric cooling,Tn+1 = α · Tn, n = 0, 1, . . .)

• number of iterations at each temperature

(example: multiple of the neighbourhood size)

• stopping criterion

(example: no improved solution found for a

number of temperature values)
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Example application to the TSP [Johnson & McGeoch 1997]

• baseline implementation:

– start with random initial solution

– use 2-exchange neighborhood

– simple annealing schedule

; relatively poor performance

• improvements:

– look-up table for acceptance probabilities

– neighbourhood pruning

– low-temperature starts
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Simulated Annealing . . .

• is historically important

• is easy to implement

• has interesting theoretical properties (convergence),

but these are of very limited practical relevance

• achieves good performance often at the cost of

substantial run-times
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Tabu Search

Combinatorial search technique which heavily relies on the use of

an explicit memory of the search process [Glover 1989, 1990]

• systematic use of memory to guide search process

• memory typically contains only specific attributes of

previously seen solutions

• simple tabu search strategies exploit only short term memory

• more complex tabu search strategies exploit long term memory
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Simple tabu search algorithm – exploiting short term memory

• in each step, move to best neighbouring solution

although it may be worse than current one

• to avoid cycles, tabu search tries to avoid revisiting

previously seen solutions

• avoid storing complete solutions by basing the memory on

attributes of recently seen solutions

• tabu solution attributes are often defined via local search moves

• tabu list stores attributes of thetl most recently visited

solutions; parametertl is calledtabu list lengthor tabu tenure

• solutions which contain tabu attributes are forbidden
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• problem: previously unseen solutions may be tabu

; use ofaspiration criteriato override tabu status

• stopping criteria:

– all neighboring solutions are tabu

– maximum number of iterations exceeded

– number of iterations without improvement

• appropriate choice of tabu tenure critical for performance

; Robust Tabu Search[Taillard 1991], Reactive Tabu Search

[Battiti & Tecchiolli 1994–1997]
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Example: Tabu Search for SAT / MAX-SAT

[Hansen & Jaumard 1990; Selman & Kautz 1994]

Neighborhood: assignments which differ in exactly

one variable instantiation

Tabu attributes: variables

Tabu criterion: flipping a variable is forbidden

for a given number of iterations

Aspiration criterion: if flipping a tabu variable leads to

a better solution, the variable’s tabu status is overridden
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Tabu search — use of long term memory

Long term memory: often based on some measure of frequency,

e.g., the frequency of local search moves

Intensification strategies: intensify the search in specific regions

of the search space

• recoverelitesolutions and restart search around such

solutions

• lock some solution attributes, e.g., in the TSP, edges

contained in several elite solutions may be locked
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Diversification Strategies: drive the search towards previously

unexplored search space regions

• introduce solution attributes which are not very frequently

used, e.g., by penalizing frequently used solution attributes

• restarting mechanisms which bias construction heuristics
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Tabu Search . . .

• performs often astonishingly well even when using only

short term memory strategies

• can perform considerably better if additional intensification

and diversification strategies are used

• can be enhanced with several additional strategies

(e.g., strategic oscillation, path relinking, ejection chains,. . .)

• often achieves very good performance, but may require

time-intensive fine-tuning
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Hybrid stochastic search techniques

Note: Many of the best-performing SLS algorithms are

combinationsof various simple search strategies.

E.g.: greedy hillclimbing + Random Walk, Ant Colony

Optimisation + 3-opt, . . .

; conceptual separation of simple search strategies and

(higher-level) search control
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GLSMs – Generalised Local Search Machines

• search control = non-deterministic finite state machine

• simple search strategies = states

• change of search strategy = transitions between states

State transition types:

• deterministic: DET

• conditional: COND(C)

• unconditional probabilistic: PROB(p)

• conditional probabilistic: CPROB(C,p)
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The GLSM model ...

• allows adequate and uniform represention of local search

algorithms

• facilitates design, implementation, and analysis

of hybrid algorithms

• provides the conceptual basis for some of the best known

SLS algorithms for various domains (e.g., SAT [Hoos 1999])
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GLSM representation of Randomised Best Improvement
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Iterated Local Search (ILS)

Iterative application of local search to modifications of previously

visited local minima

• basic idea: build a chain of local minima

• the search space is reduced to the space of local minima

• simple, but powerful way to improve local search algorithms
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GLSM representation of Iterated Local Search
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Issues for Iterated Local Search applications

• choice of initial solution

• choice of solution modification

— Too strong: close to random restart

— Too weak: insufficient for escaping from local minima

• choice of local search

— effectiveness versus speed

• choice of acceptance criterion

— strength of bias towards best found solutions

Hoos / Sẗutzle Stochastic Local Search: Foundations and Applications (MA2) 55



ILS for the TSP

• local search: 2-opt, 3-opt, Lin-Kernighan, Helsgaun LK

• solution modification: non-sequential 4-opt move

(double-bridge move)

• acceptance criterion: apply solution modification to best

solution since start of the algorithm; other acceptance criteria

may perform better for long run times

Results

• some of the best algorithms for the TSP are based on ILS
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Iterated Local Search . . .

• is based on a simple principle

• is easy to implement (basic versions)

• has few parameters

• is highly effective

Related idea:

• Variable Neighbourhood Search
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Evolutionary Algorithms

Combinatorial search technique inspired by the evolution of

biological species.

• population of individual solutions represented as strings

• individuals within population are evaluated based on their

“fitness” (evaluation function value)

• population is manipulated viaevolutionary operators

– mutation

– crossover

– selection
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Several types of evolutionary algorithms:

• Genetic algorithms [Holland 1975; Goldberg 1989]

• Evolution strategies [Rechenberg 1973; Schwefel 1981]

• Evolutionary Programming [Fogel et al. 1966]

• Genetic Programming [Koza 1992]

For combinatorial optimization, genetic algorithms are the most

widely used and most effective variant type
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GLSM representation of a basic Genetic Algorithm
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Important issues for Evolutionary Algorithms

• solution representation

– binary vs. problem specific representation

• fitness evaluation of solutions

– often defined by objective function of the problem

• crossover operator

– parent selection scheme

– problem specific vs. general purpose crossover

– passing of meaningful information from parents to

offspring

• mutation operator

– background operator vs. driving the search

Hoos / Sẗutzle Stochastic Local Search: Foundations and Applications (MA2) 61



• selection scheme

– prefer better solutions for survival

– elitist strategies

– maintenance of population diversity

• local search

– often useful for improving performance

– population based search in the space of local optima

; memetic algorithms

• stopping criteria

– fixed number of generations

– convergence of population
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Evolutionary Algorithms . . .

• use populations, which leads to increased search space

exploration

• allow for a large number of different implementation choices

• typically reach best performance when using operators that are

based on problem characteristics

• achieve good performance on a wide range of problems
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Ant Colony Optimisation

Combinatorial search technique inspired by the foraging

behaviour of real ants: [Dorigo et al. 1991, 1996]

• population of simple agents (“ants”) communicates indirectly

via similated “pheromone trails”

• ants follow a local stochastic policy to construct solutions

• the solution construction is probabilistically biased by

pheromone trail information, heuristic information,

and the partial solution of each ant

• Pheromone trails are modified during the algorithm’s

execution to reflect the search experience
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GLSM representation of Ant Colony Optimization
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Key ideas:

• Definesolution componentsfor the problem to be solved

• Ants construct solutions by iteratively adding

solution components

• Possibly improve solutions by applying local search

• Reinforce solution components of better solutions

more strongly

Hoos / Sẗutzle Stochastic Local Search: Foundations and Applications (MA2) 66



Construction Process in Ant Colony Optimisation
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g

τij,ηij
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Example: ACO for the TSP – tour construction

• Solution components are edges of given graph

• ηij = 1/dij : Heuristic information, indicates the

utility of going from city i to city j

• τij(t): Intensity of the pheromone trail in

iterationt on edge(i, j)

• Probabilistic selection of the next city according to:

pij(t) ∼ (τij(t))
α · (ηij)

β if city j not yet visited
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Example: ACO for the TSP – Update of pheromone trails

• Parameter0 < ρ < 1, 1 − ρ represents pheromone evaporation

• Update of the pheromone trails according to:

τij(t) = ρ · τij(t − 1) +

m
∑

k=1

∆τk
ij

• ∆τk
ij = 1/Lk if edge(i, j) is used by antk on its tour

whereLk = tour length of antk; m = number of ants

(Several improved extensions have been proposed.)
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Ant Colony Optimisation . . .

• has been successfully applied to static and dynamic

combinatorial problems

• has shown very good performance on a range of problems

including (abstract) protein folding problems

[Shmygelska & Hoos 2002–2004]

New book:

M. Dorigo and T. Sẗutzle.Ant Colony Optimization. MIT Press,

2004.
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Characteristics of Various SLS Methods

Feature SA TS ILS GA ACO

Single trajectory + + − − −

Population − − − + +

Memory − + ∃ ∃ ∃

Multiple neighborhoods − − + ∃ −

Sol. construction − − − − +

Nature-inspired + − − + +

+: feature present,∃: partially present,−: not present
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Part III

Analysing and Characterising
Stochastic Search Behaviour
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Analysing Stochastic Search Behaviour

Many SLS algorithms ...

• perform well in practice

• are incomplete, i.e., cannot be guaranteed to find

(optimal) solutions

• are hard to analyse theoretically

; empirical methods are used to analyse and characterise

SLS behaviour.
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Aspects of stochastic search performance:

• variability due to randomisation

• robustness w.r.t. parameter settings

• robustness across different instance types

• scaling with problem size
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Insights into algorithmic performance...

• help assessing suitability for applications

• provide basis for comparing algorithms

• characterise algorithm behaviour

• facilitate improvements of algorithms
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RTD-based empirical methodology:

• run algorithm multiple times on given problem instance(s)

• estimate empirical run-time distributions (RTDs)

• get simple descriptive statistics (mean, stddev, percentiles, ...)

from RTD data

• approximate empirical RTDs with known distribution

functions

• check statistical significance using goodness-of-fit test

[Hoos & Sẗutzle 1998]
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Raw run-time data (each spike one run)
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RTD graph and approximation with exponential distribution
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Hoos / Sẗutzle Stochastic Local Search: Foundations and Applications (MA2) 76



This methodology facilitates ...

• precise characterisations of run-time behaviour

• prognoses for arbitrary cutoff times

• empirical analysis of asymptotic behaviour

• fair and accurate comparison of algorithms

• cleanly separating different sources of randomness

(SLS algorithm / random generation of problem instances)

Hoos / Sẗutzle Stochastic Local Search: Foundations and Applications (MA2) 77



Asymptotic run-time behaviour of SLS algorithms

• complete

— for each problem instanceP there is a time boundtmax(P )

for the time required to find a solution

• probabilistic approximate completeness (PAC property)

— for each soluble problem instance a solution is found

with probability→ 1 as run-time→ ∞.

• essential incompleteness

— for some soluble problem instances, the probability

for finding a solution is strictly smaller 1 for run-time→ ∞.
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Some results [Hoos 1999]:

• Until recently, some of the most prominent and

best-performing SLS algorithms for SAT were

essentially incomplete.

• In practice, essential incompleteness often causes stagnation

behaviour which drastically affects the performance of the

algorithm.

• By a simple and generic modification, (Random Walk

Extension) these algorithms can be made PAC in a robust

manner.

• The algorithms thus obtained are among the best-performing

SLS algorithms for SAT known to date.
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Comparative performance analysis on single problem instance:

• measure RTDs

• check for probabilistic domination (crossing RTDs)

• use statistical tests to assess significance of

performance differences (e.g., Mann-Whitney U-test)
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Performance comparison for ACO and ILS algorithm for TSP
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Comparative performance analysis for ensembles of instances:

• check for uniformity of RTDs

• partition ensemble according to probabilistic domination

• analyse correlation for (reasonably stable) RTD statistics

• use statistical tests to assess significance of

performance differences across ensemble

(e.g., Wilcoxon matched pairs signed-rank test)
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Peformance correlation for ACO and ILS algorithm for TSP
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RTD-based analysis of randomised optimisation algorithms:

• additionally, solution quality has to be considered

• introduce bounds on the desired solution quality

; qualified RTDs

• bounds can be chosen w.r.t. best-known or optimal solutions,

lower bounds of the optimal solution cost etc.

• estimate run-time distributions for several bounds on the

solution quality
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Qualified RTDs for TSP instance att532 with ILS
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SQD-based methodology:

• run algorithm multiple times on given problem instance(s)

• estimate empirical solution quality distributions (SQDs) for

different run-times

• get simple descriptive statistics (mean, stddev, percentiles, ...)

from SQD data

• approximate empirical SQD with known distribution functions

• check statistical significance using goodness-of-fit test
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SQD analysis for Graph Partitioning (GP)

BA

[Martin et al. 1999] studied best performing SLS algorithms for GP

on ensemble of randomly generated graphs.
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Results:

• SQD distributions approach a limiting Gaussian shape,

both for individual graphs and across ensembles.

• For increasing instance size SQD distributions become

increasingly peaked.

; solution quality becomes dominating factor when

comparing SLS algorithms on large instances.

• Similar results also for the TSP.
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Using SQDs for estimating optimum solution qualities

Consider sample ofk feasible solutions and letx be the extreme

value from the sample.

; for largek, the distribution ofx approaches a Weibull

distribution with position parameterµ, whereµ is optimal

solution quality [Dannenbring 1977]

Estimation procedure:

• generatem independent samples ofx

• estimate parameters of Weibull distribution

• obtain confidence interval for optimum value
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Search Space Analysis

Intuition:

• SLS algorithm moves in asearch landscapeinduced by

the given problem instance and aspects of algorithm

• search landscape can be imagined as a mountainous

region with peaks, basins, valleys, saddles, . . .

• goal of search process is to find lowest point in this landscape

(for minimization problems)

; connection between SLS behaviour and landscape structure
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Search landscape is defined by:

• the set of all possible solutions (search space)

• an evaluation function that assigns to every solution a solution

quality value

• a neighbourhood relation, which induces a distance measure

between solutions

Hoos / Sẗutzle Stochastic Local Search: Foundations and Applications (MA2) 91



Distance between solutions:

• defined as the minimum number of search steps needed

to reach one solution from the other

• often surrogate distance metrics are used

(e.g., for the TSP, distance between tours measured by

number of edges contained in one tour, but not the other)
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Important aspects of search landscapes:

• number of local optima

• ruggedness

• distribution of local minima and their relative location to the

global minima

• size, topology, and location of plateaus and basins

• connections between plateaus and basins
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Two widely used types of search space analysis:

• analysis of search space ruggedness

• analysis of (linear) correlation between solution fitness and

distance to global optima (fitness-distance correlation)

e.g., [Boese 1994, 1996; Jones & Forrest 1995]
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Measures for landscape ruggedness:

• autocorrelation function [Weinberger 1990; Stadler 1995]

• correlation length [Stadler 1995]

• autocorrelation coefficient [Angel & Zissimopoulos 1998,

1999]
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Measure for fitness-distance correlation:

• correlation coefficient

ρ(F, D) =
Cov(F, D)

√

Var(F ) ·
√

Var(D)

• graphical visualization through plots of fitness–distance

relationship
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Fitness–distance relationship in TSP instance rat783
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Hoos / Sẗutzle Stochastic Local Search: Foundations and Applications (MA2) 97



Some results for the TSP:

instance ∆avg avgd−opt avgd−opt/n ρls

lin318.tsp 3.56 67.25 0.211 0.469

rat783.tsp 4.85 204.24 0.261 0.624

pcb1173.tsp 5.91 274.34 0.234 0.585

pr2392.tsp 5.71 552.49 0.231 0.538

∆avg: Percentage deviation from optimum

avgd−opt: Average distance from optimum

ρls: Correlation coefficient
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Advanced Search Space Analysis

• Idea: collapse states on the same plateau or in the same basin

into “macro states” and illustrate connections between

these regions

; Plateau Connection Graphs (PCG),

Basin Partition Trees (BPT)

• Analysing PCG or BPT properties and structure can give

deeper insights into SLS behaviour and problem hardness

than global measures, such as FDC or ACC.

• But: PCG and BPT analysis is computationally expensive and

requires enumeration of large parts of the search space.
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(Partial) Plateau Connection Graph for hard random 3-SAT instance
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(Partial) Plateau Connection Graph for easy random 3-SAT instance
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Paramaterisation and Tuning

• performance of stochastic search algorithms depends

very strongly on appropriate parameterisation and tuning

• tuning can be very time-intensive

• limited understanding of how performance depends on

parameter settings

• many stochastic search algorithms leave

important implementation choices to the user

• experience with stochastic search algorithms is required

to obtain best performance
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Difficulties with parameterisation

• SLS algorithms are often highly stochastic

; empirical analysis more difficult

• algorithm parameters are not independent

• seemingly small implementation choices can have significant

effects on algorithm behaviour and performance

Possible remedies

• use of adequate empirical methodology (statistical techniques)

for analysing behaviour

• automatic parameter adjustment during search

; reactive search
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Parallelising Stochastic Search

• randomised algorithms allow extremely easy and scalable

parallelisation: multiple independent tries

• effectiveness depends on run-time behaviour of underlying

algorithms

• under certain conditions, optimal speedup can be obtained
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Analysis of the distribution type of RTDs for various

well-performing SLS algorithms for a number of problem classes

; Result [Hoos & Stützle 1998]:

For optimal parameterisations and applied to hard problem

instances, many state-of-the-art SLS algorithms show

exponential run-time distributions (EPAC property).
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Goodness of fit for hard Random-3-SAT instances

0

100

200

300

400

500

600

100 1000 10000 100000

0.05 acceptance
0.01 acceptance

Hoos / Sẗutzle Stochastic Local Search: Foundations and Applications (MA2) 105



EPAC property implies:

• search is “memory-less”

; “random restart” is ineffective

• optimal speedup can be achieved through

“multiple independent tries” parallelisation

(very easy to implement, almost no communication overhead,

arbitrarily scalable)

• interpretation of SLS behaviour as “random picking”

from “virtual search space” (whose size can be computed

from RTD data)
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Simulated Annealing

– course-grained parallelisation: independent parallel runs

– fine-grained parallelisation: parallel evaluation of moves

Tabu Search

– exponential run-time distributions (QAP)

– cooperative approaches [Crainic et al.]

ACO algorithms

– course-grained parallelisation more successful

than fine-grained

Evolutionary Algorithms

– fine-grained and coarse-grained parallel implementations
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Part IV

Applications
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Applications of Stochastic Search

Some recent successful applications:

• SAT [e.g., Selman et al. 1992–1997; Hoos et. al. 1994–2004]

• MAX-SAT [e.g., Hansen and Jaumard 1990; Hoos et al. 2003-2004]

• TSP [e.g., Johnson & McGeoch 1997–2002; Stützle & Hoos

1997–2004]

• Scheduling [e.g., Congram et al. 2002, den Besten, Stützle, Dorigo

2001]

• Time-Tabling [e.g., Rossi-Doria et al. 2003; Chiarandini et al. 2003]

• Protein Folding (HP model) [e.g., Shmygelska, Hoos,

Aguirre-Hernandez 2002–2004]
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Propositional Satisfiability (SAT)

Progress in SAT solving:

classic SAT solvers:based on ‘Davis-Putnam’ algorithm

(systematic search based on back-tracking)

1990–1992:successful application of SLS algorithms for solving

hard SAT instances [Selman et al.; Gu]

1993–1994:new, hybrid SLS strategies with improved

performance and robustness [Selman et al.; Gent & Walsh]

1996–1997:improvements in SLS algorithms [McAllester et al.];

randomised systematic search methods [Gomes et al.]
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1998–2000:further improvements in SLS algorithms,

based on GLSM model [Hoos & Stützle]

2001–2004:high-performance dynamic local search algorithms

[Schuurmans et al., Hoos et al.], self-tuning /adaptive

WalkSAT [Kautz et al., Hoos]
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SLS algorithms for SAT

• search space:set of all complete variable assignments

• solutions: models of the given formula

• two assignments areneighbours if they differ in the value

of exactly one variable

• evaluation function is the number of clauses unsatisfied

under a given assignment
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• search initialisation: randomly chosen assignment

• search steps:algorithm dependent, use random choices

and/or tie-breaking rules

• most algorithms use random restart if no solution has

been found after a fixed number of search steps
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The GSAT Algorithm [Selman, Mitchell, Levesque 1992]

• in each search step, flip the variable which gives

the maximal increase (or minimal decrease)

in the number of unsatisfied claused

• ties are broken randomly

• if no model found aftermaxStepssteps, restart from

randomly chosen assignment
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The GWSAT Algorithm [Selman, Kautz, Cohen 1994]

• search initialisation: randomly chosen assignment

• Random Walk step: randomly choose and flip a variable

occurring in a currently unsatisfied clause

• GWSAT steps: choose probabilistically between a GSAT step

and a Random Walk step with ‘walk probability’ (noise)wp
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The WalkSAT algorithm family [McAllester et al. 1997]

• search initialisation: randomly chosen assignment

• search steps:

1. randomly select a currently unsatisfied clause

2. select a literal from this clause according to a heuristich

• if no model found aftermaxStepssteps, restart from randomly

chosen assignment
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Some WalkSAT algorithms

SKC: Select variable such that minimal number of currently

satisfied clauses become unsatisfied by flipping;

if ‘zero-damage’ possible, always go for it; otherwise,

with probabilitywp variable is randomly selected

Tabu: Select variable that maximises increase in total number

of satisfied clauses when flipped; use constant length tabu-list

for flipped variables and random tie-breaking
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Novelty: Order variables according to increase in total number

of satisfied clauses when flipped; if best variable in

this ordering is not most recently flipped, always go for it;

otherwise, select second-best with probabilitywp

R-Rovelty: Similar to Novelty, but more complex decision

between the variable with best and second-best score
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Some properties of these algorithms

[Hoos & Stützle 1998-1999; Hoos 1999]:

• SKC, Tabu, Novelty, and R-Novelty: exponential run-time

distributions when applied to hard SAT instances and using

optimal (or greater-than-optimal) noise settings

; optimal parallelisation

• Tabu, Novelty, and R-Novelty: essentially incomplete,

i.e., can get stuck in non-solution areas of search space
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Novelty+ and R-Novelty+ [Hoos 1998]:

• extend Novelty, R-Novelty with (unconditional) Random Walk

— simple generic modification of the corresponding GLSM

• resulting algorithms are probabilistically approximately

complete

• significantly improved performance & robustness

These algorithms are amongst the best-performing SLS algorithms

for SAT known today. (A self-tuning variant of Novelty+ won the

random instance category of the SAT Solver Competition 2004!)
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GLSM representations of Novelty vs. Novelty+
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Essential Incompleteness vs. PAC behaviour

of Novelty vs. Novelty+
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Some other stochastic search approaches for SAT:

• simulated annealing [Spears 1993; Beringer et al. 1994]

• genetic algorithms [Frank 1994]

• GRASP [Feo & Resende 1996]

• simple learning strategies for SLS [Selman & Kautz 1993;

Frank 1997; Boyan & Moore 1998]

• Discrete Lagrangian Methods [Wah et al. 1997–2000]

• SDF, ESG [Schuurmans et al. 2000–2001]

• SAPS, RSAPS [Hoos et al. 2002–2003]

• Satz-Rand, RELSAT-Rand [Gomes et al. 1998]
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Maximum Satisfiability (MAX-SAT)

• Generalisation of SAT for CNF formulae

• PrototypicalNP-hard combinatorial optimisation problem

• Widely studied in algorithmics, artificial intelligence,

computational theory, operations research

• conceptually simple

; facilitates development and analysis of general algorithmic

techniques for combinatorial problem solving

• close relationship with SAT facilitates study of differences in

the structure of typical decision and optimisation problems
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Example: A Simple MAX-SAT Instance

F := (¬x1)

∧ (¬x2 ∨ x1)

∧ (¬x1 ∨ ¬x2 ∨ ¬x3)

∧ (x1 ∨ x2)

∧ (¬x4 ∨ x3)

∧ (¬x5 ∨ x3)

• minimum number of unsatisfied clauses?1

(e.g., x1 := x2 := x3 := x4 := x5 := ⊥)
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Example: A Simple Weighted MAX-SAT Instance

F := (¬x1) w = 2

∧ (¬x2 ∨ x1) w = 1

∧ (¬x1 ∨ ¬x2 ∨ ¬x3) w = 7

∧ (x1 ∨ x2) w = 3

∧ (¬x4 ∨ x3) w = 7

∧ (¬x5 ∨ x3) w = 7

• minimum total weight of unsatisfied clauses?1

(e.g., x1 := ⊥, x2 := x3 := x4 := x5 := ⊤)
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Unweighted MAX-SAT:

Given: Propositional formulaF in conjunctive normal form (CNF)

Goal: Find truth assignmenta∗ that minimises the number of

unsatisfied clauses inF , i.e.,

a∗ ∈ argmina∈Assign(F ) #CU(F, a),

whereCU(F, a) := set of unsatisfied clauses inF undera.
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Weighted MAX-SAT:

Given: Propositional formulaF in conjunctive normal form (CNF),

weightsw(c) for each clausec in F

Goal: Find truth assignmenta∗ that minimises thetotal weight

of unsatisfied clauses inF , i.e.,

a∗ ∈ argmina∈Assign(F )

∑

c∈CU(F,a) w(c),

whereCU(F, a) := set of unsatisfied clauses inF undera.
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Note: instances of other combinatorial problems can be

encoded into and solved as MAX-SAT,e.g.:

• (Weighted) Set Covering

• Most Probable Explanation Finding in Bayes Nets

• Spin Glass Ground State Determination
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State-of-the-art SLS algorithms for MAX-SAT fall into

three categories:

• WalkSAT algorithms (Novelty+/wcs+we)

• Iterated local search algorithms (IRoTS)

• Dynamic local search algorithms (GLSSAT, SAPS)

SLS algorithms for MAX-SAT also play a major role

as components in high-performance branch & bound algorithms

for MAX-SAT [Alsinet et al., 2003]
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Weighted WalkSAT / Novelty+ [Hoos, Smyth, Sẗutzle, 2003]:

weighted evaluation (we):Evaluate variable flips using
∑

c∈CU w(c) instead of
∑

c∈CU 1 = #CU

weighted clause selection (wcs):Select unsatisfied clauses

with probability proportional to their weight

(roulette wheel selection)

; Three weighted variants of each WalkSAT algorithms:

wcs, we, wcs+we
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Performance of Novelty+/wcs+we on Structured Instances

Test-set GLSSAT2 Novelty+/wcs+we

t = 0.1s t = 1s t = 10s t = 0.1s t = 1s t = 10s

scp4 1.33 0.02 0.01 0.02 0.01 0.00

gcp-yi 11.24 0.22 0.15 0.12 0.05 0.01

lgcmp75 8.1 · 106 49.3 0.20 3.27 0.09 0.00

lgcmp100 1.1 · 106 248.82 0.25 10.02 1.39 0.51

Performance measure = median relative solution quality forfixed cut-off times
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Novelty+/wcs+we vs. GLSSAT: Solution Quality Over Time
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Note:

• Different algorithms define state-of-the-art for various types of

MAX-SAT instances

• Some types of MAX-SAT instances are solved very well by

straightforward generalisations of high-performance, others

require different SLS methods.
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Scheduling

Scheduling: allocation of limited resources to tasks over time

Resources:examples are machines in a workshop,

runways at airport,. . .

Tasks: examples are operations in a production process,

take-offs and landings at an airport,. . .

Objectives: usually depending on the tasks completion time,

shipping dates to be met,. . .
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Airport example

Resources: runways available for starts and landings

Tasks: a number offlightswith

• processing times

• time windows for allowable take-off and landing times

• minimium time distance between successive take-offs and

landings

• weight indicating importance

Objectives: minimize the total weighted delay over all flights
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The Single Machine Total Weighted Tardiness Problem

Often, a single machine is the bottleneck in production

environment.

Given (for each job):

• due datedj

• weight (importance)wj

• processing timepj

Objective: minimise sum of weighted tardiness

(tardiness = surtime a job is completed after its due date)

The SMTWTP isNP-hard.
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Local search algorithms for SMTWTP

• initialisation: several con-

struction heuristics available

• search space:all possible task

sequences

• neighbourhoods: transpose,

exchange, insert

A B C D E F

A C B D E F

φ

φ'

A B C D E F

A E C D B F

φ

transpose neighbourhood

φ'

A B C D E F

A C D B E F

φ

exchange neighbourhood

insert neighbourhood

φ'
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Variable Neighbourhood Search

Observation: local optimum w.r.t. one neighbourhood need not be

a local optimum for another neighbourhood relation

Idea: systematically change neighbourhood during local search

process [Mladenovic & Hansen 1995–2003]

Tests: effectiveness of concatenating interchange and insert

neighbourhood with different construction heuristics

Instances:125 randomly generated benchmark instances with 100

jobs; results are averaged over the benchmark instances
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constr. no local search interchange insert

heuristic ∆avg nopt tavg ∆avg nopt tavg ∆avg nopt tavg

EDD 135 24 0.001 0.62 33 0.140 1.19 38 0.64

MDD 61 24 0.002 0.65 38 0.078 1.31 36 0.77

AU 21 21 0.008 0.92 28 0.040 0.56 42 0.26

constr. interchange+insert insert+interchange

heuristic ∆avg nopt tavg ∆avg nopt tavg

EDD 0.24 46 0.20 0.47 48 0.67

MDD 0.40 46 0.14 0.44 42 0.79

AU 0.59 46 0.10 0.21 49 0.27

∆avg: avg. deviation from best known,nopt: # of best known candidate solutions

foundtavg: avg. computation in seconds on Pentium II 266MHz
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Results:

• concatenated local search significantly more effective

• final solution quality depends strongly on

initial candidate solution

• other local search extension:

Dynasearch [Congram, Potts, van de Velde 2002]

• further improvements can be achieved by using

hybrid SLS methods, e.g. ILS algorithms
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ILS for SMTWTP

• local search:several possibilities examined, best results with

interchange+insert

• perturbation:variable number of

random left-insert moves

• acceptance criterion:Apply candidate solution modification to

best candidate solution since start of the algorithm
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Summary results for ILS

• finds best-known candidate solutions on all known benchmark

instances in reasonable time (few CPU seconds up to some

minutes)

• reasons for good performance were identified by

search space analysis (FDC)

• most other high-performance algorithms for SMTWTP are

ILS-based (Iterated Dynasearch)
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Timetabling

Timetabling concerns the placement of a set of events to time slots

and resources.

• highly application-relevant research area

• many research efforts (PATAT conference series,. . .)

• wide class of resource allocation problems

– employee timetabling, academic timetabling, transportation

timetables (railways, buses),. . .
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Academic timetabling

• classes of problems

– school timetabling

– course timetabling

– examination timetabling

• wide variety of models and constraints

• SLS based approaches are becoming

increasingly important
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Example: A course timetabling problem

• problem

– given is a set of events visited by a set of students

– goal: assign events to time-slots and rooms subject to

hard constraints and optimisation criteria

• hardconstraints

– no student attends more than one event at the same time

– room is big enough and satisfies all features required by

the event

– at any time-slot, there is at most one event in a room
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• optimisation criteria defined bysoftconstraints

– student should not have an event in last slot of a day

– student should not have more than two events in a row

– student should have only a single class per day

• soft constraint violations are penalised

• optimisation objective:

– find a feasible solution with minimum number of soft

constraint violations
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• models real-world problem at Napier University, Edinburgh

• was tackled in the Metaheuristics Network

• was part of theInternational Timetabling Competition

• various SLS methods tested on this problem

– Ant Colony Optimisation

– Iterated Local Search

– Simulated Annealing

– Tabu Search

– Evolutionary Algorithms

• all SLS methods were implemented by the expert labs and

extensively tested on a set of benchmark instances
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• implementations were done in two phases

• first phase

– all labs were given the same local search procedure

– all labs were given one month of development time

– then all algorithms had to be submitted and were evaluated

• experimental tests run across various instance sizes

• the computational results were extensively analysed with

non-parametric statistical tests
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small size instance

100 events, 80 students, 5 rooms, 5 features; 500 trials run per instance
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medium size instance

400 events, 200 students, 10 rooms, 5 features; 50 trials runper instance
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large size instance

400 events, 400 students, 10 rooms, 10 features; 20 trials run per instance
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• main observations

– SA very good for optimising soft constraint violations but

poor for hard constraints

– tabu search based approaches good for solving hard

constraints but poor for soft constraints

• new SLS algorithm developed based on results of first phase

– various SLS techniques (TS, SA, VNS) in dependence of

problem solving stage (hard, soft constraints, etc.)

– configuration of hybrid technique using semi-automatic

statistical procedures

• this new SLS algorithm was the (unofficial) winner of the

International Timetabling Competition!
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Conclusions and Future Research
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Conclusions

• Stochastic search is one of the most efficient approaches

for solving combinatorial problems in practice

• Studying stochastic search algorithms for conceptually simple

domains, such as SAT or TSP, facilitates development,

analysis, and understanding of algorithms

• Advanced empirical methodology helps to characterise

and exploit stochastic search behaviour based on

computational experiments

• Lots of potential application areas, lots of interesting

research questions
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Future Work

• further advance understanding of stochastic search behaviour

(; search space analysis, new theoretical & empirical results)

• further improvements in stochastic search algorithms

(; hybrid algorithms, adaptive algorithms)

• application to real-world problems

(e.g., intelligent systems, e-commerce, bioinformatics;

dynamic, stochastic, multi-objective problems)
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Take-Home Message:

• Stochastic search is one of the most successful

and most widely used methods for solving

combinatorial problems (but certainly no panacea)

• Many open problems, significant research

and practical potential

• SLS research is fun!
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Want to learn more about Stochastic Local Search?

• New book:

Holger H. Hoos & Thomas Stützle:

Stochastic Local Search: Foundations and Applications

Morgan Kaufmann Publishers, Summer 2004.

• New website:

www.stochastic-local-search.net
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