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ABSTRACT
Problem decomposition is an important part of many state-of-the-

art Evolutionary Algorithms (EAs). The quality of the decomposi-

tion may be decisive for the EA effectiveness and efficiency. There-

fore, in this paper, we focus on the recent proposition of Linkage

Learning based on Local Optimization (3LO). 3LO is an empirical

linkage learning (ELL) technique and is proven never to report the

false linkage. False linkage is one of the possible linkage defects and
occurs when linkage marks two independent genes as a dependent.

Although thanks to the problem decomposition quality, the use of

3LO may lead to excellent results, its main disadvantage is its high

computational cost. This disadvantage makes 3LO not applicable

to state-of-the-art EAs that originally employed Statistical-based

Linkage Learning (SLL) and frequently update the linkage informa-

tion. Therefore, we propose the Direct Linkage Empirical Discovery

technique (DLED) that preserves 3LO advantages, reduces its costs,

and we prove that it is precise in recognizing the direct linkage.
The concept of direct linkage, which we identify in this paper, is

related to the quality of the decomposition of overlapping problems.

The results show that incorporating DLED in three significantly

different state-of-the-art EAs may lead to promising results.

CCS CONCEPTS
• Computing methodologies → Artificial intelligence;

KEYWORDS
Genetic Algorithms, Linkage Learning, Model Building, Empirical

linkage learning

ACM Reference Format:
Michal W. Przewozniczek, Marcin M. Komarnicki, and Bartosz Frej. 2021.

Direct linkage discovery with empirical linkage learning. In 2021 Genetic
and Evolutionary Computation Conference (GECCO ’21), July 10–14, 2021,
Lille, France. ACM, New York, NY, USA, 9 pages. https://doi.org/10.1145/

3449639.3459333

1 INTRODUCTION
NP-hard nature is a feature of many real-world problems [9, 10,

29]. Thus, optimizers that can find high-quality solutions to such
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problems are in need. EAs, including Genetic Algorithms (GAs),

were shown effective in solving various real-world problems of NP-

hard nature and are frequently employed for this purpose [1, 2, 12].

However, with the increase of problem size, the effectiveness of the

classical EAs usually decreases significantly [3, 7]. The employment

of problem-modeling techniques is one of the promising ways to

overcome this issue. Indeed, model-based EAs have been shown

to outperform the classical EAs in solving practical [24, 28] and

theoretical problems [15, 23]. The recent research concerning the

influence of problem decomposition on the EAs’ effectiveness shows

that the quality of the employedmodelmay be decisive for obtaining

high-quality results.

The recently proposed 3LO is a new proposition of ELL technique.

It is proven that it will never report the false linkage. However, its

computational cost makes it inapplicable to EAs that originally

employ SLL techniques and update their linkage model frequently

(usually at every iteration). Therefore, the objectives of this paper

are as follows. We propose DLED, a new ELL technique that is less

expensive than 3LO, i.e. requires a lower number of Fitness Func-

tions Evaluations (FFE). We introduce DLED into three different

state-of-the-art EAs. In this gropup, we consider two SLL-based

optimizers, namely, the Linkage Tree Gene-pool Optimal Mixing

Evolutionary Algorithm (LT-GOMEA) [4] and Parameter-less Pop-

ulation Pyramid (P3) [14]. The third considered EA is the 3LO

Algorithm (3LOa) that was designed to utilize the 3LO benefits. The

experiments performed on the set of problems of various features

(additively separable, overlapping, employing various deceptive

trap functions) show that the incorporation of DLED may lead to

high quality results. The results also show that using computation-

ally less expensive DLED instead of 3LO (in the case of 3LOa) does

not decrease the method effectiveness.

The rest of this paper is organized as follows. In Sections 2

and 3, we present SLL and SLL-using EAs. The idea of DLED is

presented in Section 4, while Section 5 describes its incorporation

into considered methods. Finally, the last section summarizes this

paper and presents the most important future work directions.

2 STATISTICAL-BASED LINKAGE LEARNING
Linkage, i.e., possible gene dependencies, may be obtained in many

various ways [8, 27, 33]. Many SLL-using EAs have been proposed

recently [6, 14, 17, 19, 22, 30]. In SLL, the model is built using

the statistical analysis of gene values in the population. Mutual

information (MI) is employed frequently (MI) [20] to measure the

dependency between two random variables 𝑋 and 𝑌 : 𝐼 (𝑋 ;𝑌 ) =∑
𝑥 ∈𝑋

∑
𝑦∈𝑌 𝑝 (𝑥,𝑦) log

2

𝑝 (𝑥,𝑦)
𝑝 (𝑥)𝑝 (𝑦) In terms of EAs, both variables

refer to genes, and the given probabilities are calculated based on

the existence of specific gene values in the population.
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MI of each gene pair is stored in the Dependency Structure Ma-

trix (DSM) derived from the organization theory [17]. The main

goal of linkage learning is to exploit the underlying problem struc-

ture. This structure consists of Building Blocks (BBs), i.e., groups of

interdependent genes. Therefore, DSM is then processed to obtain

a more complex structure that clusters larger groups, e.g., linkage

tree (LT) [27, 30] or incremental linkage set (ILS) [17]. LT is a hi-

erarchical structure that leaves are single gene indexes, and a root

is a group of all gene indexes. LT is created from bottom to top,

merging the most dependent nodes. In ILS, initially, the set contains

the start gene index, and then consecutively, the most dependent

vertices are incrementally added to it.

3 SLL-USING EAS
Exploiting the underlying problem structure by utilizing linkage

learning techniques is used bymodern EAs to make the search more

efficient and effective [4, 14, 17, 19, 27, 30]. In this section, we de-

scribe three state-of-the-art optimizers, namely LT-GOMEA [4, 30],

P3 [14], and Population-sizing Dependency Structure Matrix Ge-

netic Algorithm-II with Comparative Mixing (psDSMGA-II-CM) [5,

19]. All are parameter-less and employ SLL.

LT-GOMEA maintains many subpopulations of different sizes [4,

16]. For each subpopulation, separated LT is created and updates.

The nodes of LT (clusters of dependent genes) take part in Optimal

Mixing (OM) [32] that replaces crossover. In OM, the source indi-
vidual is updated by replacing its genes marked by a cluster with

the donor individual’s genes. If this replacement operation does not

decrease the source’s fitness, it is preserved or reverted otherwise.

When LT-GOMEA detects the lack of improvements during OM,

then the forced-improvements (FI) phase is executed. In FI, the best

individual found so far is used as a donor.

P3 uses the same SLL technique as LT-GOMEA and employs

LTs and OM. However, the population size in P3 is not fixed and

resembles a pyramid. The population is divided into subpopulations

called levels. A new individual is created and added to the pyramid

at every iteration. It is optimized with the First Improvement Hill

Climber (FIHC) [14] and climb the pyramid from bottom to top.

An individual is added to a higher level only if it was improved by

OM and has not been added to any level before. psDSMGA-II-CM

is a recent proposition that enhances DSMGA-II [17] by replacing

the restricted mixing operator with the comparative mixing (CM)

operator. CM filters ILS in order to obtain more diverse linkage.

Such filtering improves the method’s effectiveness.

4 DIRECT LINKAGE EMPIRICAL DISCOVERY
The recently proposed 3LO was proven never to report false linkage
[27]. Thus, it may propose linkage of significantly higher quality

than SLL. However, the price for 3LO advantages is its high compu-

tational cost. To discover linkage, 3LO optimizes a genotype of an

individual with FIHC. It compares the results of this optimization

with the results of the optimization of the same genotype with one

gene value disturbed. Since FIHC stops only when no improvement

is found during its whole iteration. Thus, the execution of FIHC

may be expensive. Let us consider the example that uses the order-k
bimodal deceptive functions of unitation defined as follows.

bimodal_trap(𝑢) =
{
𝑘/2 − |𝑢 − 𝑘/2| − 1 , 𝑢 ≠ 𝑘 ∧ 𝑢 ≠ 0

𝑘/2 , 𝑢 = 𝑘 ∨ 𝑢 = 0

(1)

where 𝑢 is unitation (the sum of binary gene values) and 𝑘 is the

function size.

In the proposed example, as the optimization problem, we em-

ploy the concatenation of three order-4 bimodal deceptive functions

(the values of the considered functions for the consecutive unita-

tions from 0 to 4 are: 2, 0, 1, 0, 2). The individual we discover the

linkage from is
−→𝑥 = [0010 0100 0011]. For this example, the FIHC

optimization order will be the reverse of the gene order. First, we

obtain 𝑜𝑝𝑡 (−→𝑥 ) = [0011 0101 0011], for which we require two FIHC

iterations (2𝑛 + 1 FFE). Then, we perturb the first gene and obtain

−−→
𝑥 (1) = [1011 0101 0011], after the first FIHC iteration (that costs

𝑛 + 1 FFE) we obtain 𝑜𝑝𝑡 (
−−→
𝑥 (1) ) = [1010 0101 0011], the second it-

eration of FIHC will not make any changes but will cost another

𝑛 + 1 FFE. In this case, computing linkage scraps for all the genes in
the genotype will consume 𝑛 · (𝑛 + 1) + 𝑛 + 1 = 𝑛2 + 2𝑛 + 2 = 170

FFE. Such operation is expensive, but each discovered linkage scrap,

e.g., 1 ∗ ∗1 ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ (all genes position marked with ’1’ are

considered dependent) for the first gene, will be a true part of an

existing building block (single deceptive function).

Let us now consider an overlapping problem. We employ the

same three order-4 bimodal deceptive functions, but the first func-

tion is defined on genes number 1-4, the second on genes 4-7, and

the third on genes 7-10. Thus, we may say that the functions over-

lap by 1 bit. We employ the same FIHC optimization order as in

the previous example and
−→𝑥 = [0110100010]. This linkage discov-

ery example is shown in Figure 1. First, we obtain 𝑜𝑝𝑡 (
−−→
𝑥 (1) ) (this

procedure improves the fitness of the second and the third block).

Then, we perturb the first gene and execute FIHC for the first time.

The difference to the optimization of
−→𝑥 is that the fourth gene will

be changed to ’1’ (this will decrease the value of the second block

by one but increase the value of the first block by two). During

the second iteration of FIHC, the same situation will take place

for the 7
𝑡ℎ

gene. The third FIHC iteration will optimize the 8
𝑡ℎ

gene. Finally, the fourth FIHC iteration will not make any changes.

The linkage discovery only for the first gene will cost 4𝑛 + 1 FFE,
which seems expensive. The proposed linkage scrap will identify

the dependency between genes {1,4,7,8}. This information is true.

However, it is intuitive to state that gene 1 is mostly dependent on

genes {2,3,4}, less dependent on genes {5,6,7}, and least dependent

(although still dependent) on genes {8,9,10}. Thus, it is desirable to

detect the direct dependencies rather, than all genes dependent on

the particular gene. Thus, as a direct linkage of gene g, we consider
those genes that belong to the same building block as g.

Therefore, the main motivation of this paper is to propose a new

linkage learning technique that will have the following features:

• Same as 3LO never reports the false linkage.
• Its computational cost will be low enough to apply it to

state-of-the-art methods - LT-GOMEA and P3.

• It will only discover the directly dependent genes.
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Figure 1: 3LO linkage discovery for problem with overlaps

To meet the above requirements, we propose the Direct Linkage

Empirical Discovery technique (DLED). DLED is presented in Pseu-

docode 1 and is dedicated to binary search spaces. However, it can

be easily extinguished to other discrete non-binary domains other

than permutation-based. Same as in 3LO, the linkage is discovered

from a particular individual and is discovered for a particular gene.

However, no greedy optimization is employed. In DLED, we intro-

duce a perturbation to the gene we discover the linkage for (line

4). However, to discover the dependencies between the considered

gene (𝑔𝑒𝑛𝑒𝑁𝑜) and the rest of the genotype, for each other gene

(𝑜𝑡ℎ𝑒𝑟𝑁𝑜), we check the fitness change that will be triggered by

flipping the other gene’s value (lines 11-14). If flipping the other

gene’s value improves the fitness of one genotype (original or per-

turbed) but does not improve the fitness of the other genotype, then

we find the other gene (𝑜𝑡ℎ𝑒𝑟𝑁𝑜) dependent on the gene (𝑔𝑒𝑛𝑒𝑁𝑜)

we discover the fitness for (lines 15-24). Note that after each depen-

dency check, the states of the original and perturbed genotype are

restored (lines 9-10).

The DLED procedure requires 2𝑛+2 FFE for linkage discovery for
a single gene. Thus, it requires 2𝑛2 + 2𝑛 FFE for the whole genotype.

This value seems similar to the cost of 3LO. However, for DLED,

this required number of FFE is an exact value and can not increase.

Pseudocode 1 Direct Linkage Empirical Discovery

1: function DLED(𝑔𝑒𝑛𝑒𝑁𝑜, 𝑖𝑛𝑑)

2: 𝑓 𝑖𝑡𝑂𝑟𝑖𝑔← Fitness(𝑖𝑛𝑑);

3: 𝑖𝑛𝑑𝑃𝑒𝑟𝑡 ← 𝑖𝑛𝑑 ;

4: 𝑖𝑛𝑑𝑃𝑒𝑟𝑡 [𝑔𝑒𝑛𝑒𝑁𝑜] ← FlipGene(𝑖𝑛𝑑𝑃𝑒𝑟𝑡 [𝑔𝑒𝑛𝑒𝑁𝑜]);
5: 𝑓 𝑖𝑡𝑃𝑒𝑟𝑡 ← Fitness(𝑖𝑛𝑑𝑃𝑒𝑟𝑡 );

6: 𝑑𝑒𝑝𝐺𝑒𝑛𝑒𝑠 ←< 𝑒𝑚𝑝𝑡𝑦 >

7: for each 𝑜𝑡ℎ𝑒𝑟𝑁𝑜 ∈ 𝑖𝑛𝑑 do
8: if 𝑜𝑡ℎ𝑒𝑟𝑁𝑜 ≠ 𝑔𝑒𝑛𝑒𝑁𝑜 then
9: 𝑖𝑛𝑑𝑀𝑜𝑑 ← 𝑖𝑛𝑑 ;

10: 𝑖𝑛𝑑𝑃𝑒𝑟𝑡𝑀𝑜𝑑 ← 𝑖𝑛𝑑𝑃𝑒𝑟𝑡 ;

11: 𝑖𝑛𝑑𝑀𝑜𝑑 [𝑜𝑡ℎ𝑒𝑟𝑁𝑜] ← Flip(𝑖𝑛𝑑 [𝑜𝑡ℎ𝑒𝑟𝑁𝑜]);
12: 𝑖𝑛𝑑𝑃𝑒𝑟𝑡𝑀𝑜𝑑 [𝑜𝑡ℎ𝑒𝑟𝑁𝑜] ← Flip(𝑖𝑛𝑑𝑃𝑒𝑟𝑡 [𝑜𝑡ℎ𝑒𝑟𝑁𝑜]);
13: 𝑓 𝑖𝑡𝑂𝑟𝑖𝑔𝑀𝑜𝑑 ← Fitness(𝑖𝑛𝑑𝑀𝑜𝑑);

14: 𝑓 𝑖𝑡𝑃𝑒𝑟𝑡𝑀𝑜𝑑 ← Fitness(𝑖𝑛𝑑𝑃𝑒𝑟𝑡𝑀𝑜𝑑);

15: if 𝑓 𝑖𝑡𝑂𝑟𝑖𝑔 < 𝑓 𝑖𝑡𝑂𝑟𝑖𝑔𝑀𝑜𝑑 then
16: 𝑛𝑒𝑤𝑉𝑎𝑙𝐵𝑒𝑡𝑡𝑒𝑟 ← 𝑡𝑟𝑢𝑒

17: else
18: 𝑛𝑒𝑤𝑉𝑎𝑙𝐵𝑒𝑡𝑡𝑒𝑟 ← 𝑓 𝑎𝑙𝑠𝑒

19: if 𝑓 𝑖𝑡𝑃𝑒𝑟𝑡 < 𝑓 𝑖𝑡𝑃𝑒𝑟𝑡𝑀𝑜𝑑 then
20: 𝑝𝑒𝑟𝑡𝑁𝑒𝑤𝑉𝑎𝑙𝐵𝑒𝑡𝑡𝑒𝑟 ← 𝑡𝑟𝑢𝑒

21: else
22: 𝑝𝑒𝑟𝑡𝑁𝑒𝑤𝑉𝑎𝑙𝐵𝑒𝑡𝑡𝑒𝑟 ← 𝑓 𝑎𝑙𝑠𝑒

23: if 𝑛𝑒𝑤𝑉𝑎𝑙𝐵𝑒𝑡𝑡𝑒𝑟 ≠ 𝑝𝑒𝑟𝑡𝑁𝑒𝑤𝑉𝑎𝑙𝐵𝑒𝑡𝑡𝑒𝑟 then
24: 𝑑𝑒𝑝𝐺𝑒𝑛𝑒𝑠 ← 𝑑𝑒𝑝𝐺𝑒𝑛𝑒𝑠 + 𝑜𝑡ℎ𝑒𝑟𝑁𝑜

25: return 𝑑𝑒𝑝𝐺𝑒𝑛𝑒𝑠;

Thus, the cost of linkage discovery presented in Figure 1 for DLED

will be 22 instead of 170 required by 3LO.

The other significant difference between DLED and 3LO is the

linkage obtained for overlapping problems. In DLED, we obtain only

those genes that are directly dependent on the gene we discover

the linkage for (𝑔𝑒𝑛𝑒𝑁𝑜). For instance, for the example considered

in Figure 1, the list of genes dependent on the first gene would be:

{2,3,4}. No dependence between the first gene and genes 5-10 can be

obtained, because in each dependency check operation, the value

of gene 4 remains the same. A formal argument is given below.

For
−→𝑥 = [𝑥1, ..., 𝑥𝑛] and 𝐼 = {𝑖1, ..., 𝑖𝑘 } ⊂ {1, ..., 𝑛} let us denote−→𝑥𝐼 = [𝑥𝑖1 , ..., 𝑥𝑖𝑘 ].

Definiton 1. For an additively separable problem with overlaps

described by a fitness function

𝑓 (−→𝑥 ) =
∑
𝑗

𝑓𝑗 (−→𝑥𝐼 𝑗 ), (2)

where 𝐼 𝑗 are (not necessarily disjoint) subsets of {1, ..., 𝑛}, we say
that genes 𝑥𝑙 and 𝑥𝑚 are:

• directly linked if 𝑙 and𝑚 belong to a common 𝐼 𝑗 ,

• linked if there is a sequence 𝑗0, ..., 𝑗𝑠 such that 𝑙 = 𝑗0,𝑚 = 𝑗𝑠
and 𝑥 𝑗𝑖 , 𝑥 𝑗𝑖+1 are directly linked for all 𝑖 = 0, ...𝑠 − 1; in

particular, if 𝑠 > 1 we will call 𝑥𝑙 and 𝑥𝑚 indirectly linked,
• not linked (independent) if none of the above holds.

Theorem 1. For an additively separable problem with overlaps
given by (2) DLED indicates only directly linked genes.
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Proof. Denote by

−−−−−−−→
𝑥 (𝑙1,...,𝑙𝑠 ) the vector which is equal to

−→𝑥 on

all coordinates except for 𝑙1, ..., 𝑙𝑠 , where the values are flipped from

0 to 1 or vice versa. DLED reports that genes 𝑥𝑙 and 𝑥𝑚 are linked

if 
𝑓 (−→𝑥 ) < 𝑓 (

−−−→
𝑥 (𝑚) )

𝑓 (
−−→
𝑥 (𝑙) ) ≥ 𝑓 (

−−−−→
𝑥 (𝑙,𝑚) )

or


𝑓 (−→𝑥 ) ≥ 𝑓 (

−−−→
𝑥 (𝑚) )

𝑓 (
−−→
𝑥 (𝑙) ) < 𝑓 (

−−−−→
𝑥 (𝑙,𝑚) )

(3)

Fix 𝑙,𝑚 ∈ {1, ..., 𝑛} and define J as the set of those 𝑗 ∈ {1, ..., 𝑛}
for which 𝑙 ∈ 𝐼 𝑗 . Assume that 𝑥𝑙 and 𝑥𝑚 are not directly linked. If

𝑗 ∈ J then 𝐼 𝑗 does not contain𝑚 and, consequently,
∑
𝑗 ∈J

𝑓𝑗 (−→𝑥𝐼 𝑗 ) =
∑
𝑗 ∈J

𝑓𝑗 (
−−−→
𝑥
(𝑚)
𝐼 𝑗
)∑

𝑗 ∈J
𝑓𝑗 (
−−→
𝑥
(𝑙)
𝐼 𝑗
) = ∑

𝑗 ∈J
𝑓𝑗 (
−−−−→
𝑥
(𝑙,𝑚)
𝐼 𝑗
)

. (4)

So the validity of (3) depends only on values of 𝑓𝑗 s for 𝑗 ∉ J . But for

sets 𝐼 𝑗 not containing 𝑙 we have
−→𝑥𝐼 𝑗 =

−−→
𝑥
(𝑙)
𝐼 𝑗

and

−−−→
𝑥
(𝑚)
𝐼 𝑗

=

−−−−→
𝑥
(𝑙,𝑚)
𝐼 𝑗

, and

consequently

∑
𝑗∉J 𝑓𝑗 (−→𝑥𝐼 𝑗 ) =

∑
𝑗∉J 𝑓𝑗 (

−−→
𝑥
(𝑙)
𝐼 𝑗
) and∑𝑗∉J 𝑓𝑗 (

−−−→
𝑥
(𝑚)
𝐼 𝑗
) =∑

𝑗∉J 𝑓𝑗 (
−−−−→
𝑥
(𝑙,𝑚)
𝐼 𝑗
). In order to obtain fitness comparison in (3), the

expressions from the first equality are added to left hand sides of

(4), while the values from the second one are added to the right

hand sides, hence, it is not possible to obtain mismatch in either of

conditions in (3). □

In 3LO, we assumed that all genes in a single linkage scrap are

dependent on each other. For instance, in the example presented

in Figure 1, we obtain the following linkage scrap: {1,4,7,8}. In 3LO,

we assume that all genes in a single linkage scrap are dependent

on each other (e.g., we assume that the fourth gene is dependent

on gene 8). In DLED, we do not make such an assumption. We only

consider that the genes obtained in a single DLED linkage discovery

operation are dependent on the gene 𝑔𝑒𝑛𝑒𝑁𝑜 . Therefore, the list of

genes obtained from a single DLED operation will be denoted as the

Directly Dependent Genes List (DDGL). For the sake of clarity, we

introduce the following notation for DDGL: {𝑥𝑖 → 𝑥𝑑1 , 𝑥𝑑2 , .., 𝑥𝑑𝑟 },
where 𝐷 = {𝑑1, .., 𝑑𝑟 } is a subset of {1, .., 𝑛} and 𝑖 ≠ 𝑑 𝑗∀𝑑 𝑗 . For
instance, the following DDGL {1→ 2, 3, 4} means that gene 1 was

found dependent on genes 2, 3, and 4.

To show the importance of the difference between linkage scraps
and DDGL, let us consider two DDGLs obtained for the individual

−→𝑥 presented in Figure 1. As stated before, if we execute DLED for

the first gene, we will obtain {1 → 2, 3, 4}. In this case, all genes

are dependent on each other (e.g., gene 2 is dependent on gene 4).

In figure 2, we present the DLED behavior for the fourth gene of

the same individual as in Figure 1. The gene values that improve

the fitness of 𝑖𝑛𝑑 and 𝑖𝑛𝑑𝑃𝑒𝑟𝑡 differ on positions {1,2,3,5,6,7}. There-

fore, DDGL will be {4 → 1, 2, 3, 5, 6, 7}. Gene 4 is indeed directly

dependent on all these genes. However, it is not true that genes

number 1 and 7 are directly dependent on each other. Note that

such a way of understanding gene dependencies is consistent with

the outcome of Differential Grouping 2 presented in [21].

Finally, the last difference between 3LO and DLED is that 3LO

depends on the FIHC optimization order (i.e., depending on the

Figure 2: DDGL discovery example

Table 1: The example of DSM obtained from DLED

1 2 3 4 5
1 X 2 1 0 0

2 2 X 2 0 0

3 1 2 X 1 0

4 0 0 1 X 1

5 0 0 0 1 X

optimization order, 3LO may return different linkage discovery

results). In contrary to 3LO, DLED is deterministic.

To obtainmasks for OM, the discovered DDGLs are used to create

a DSM-like matrix. Each cell of this matrix is equal to the number of

DDGLs that indicate that a particular pair of cells is dependent. For

instance, for a 5-bit problem and the following DDGLs {1→ 2, 3},
{2→ 1, 3}, {3→ 2, 4}, {4→ 5}, we will obtain the DSM presented

in Table 1. Using DSM created from DDGLs, we create an LT in

the same way as in LT-GOMEA and P3. However, each time we

generate an LT, we temporarily add a small random value to each

DSM entry. This operation prevents the eventual bias that may

influence linkage if more than one cell has the same value.

5 DLED INCORPORATION IN MODERN
EVOLUTIONARY ALGORITHMS

In the previous section, we have proposed DLED. It has signifi-

cant advantages over 3LO – it will only discover the direct gene

dependencies and is less computationally expensive. To check the

potential brought by DLED, we introduce it to LT-GOMEA [4] and

P3 [14]. Additionally, we also introduce DLED to the 3LOAlgorithm

(3LOa) [27] designed to utilize 3LO advantages.

LT-GOMEA employs the population-sizing scheme [16] and

maintains many subpopulations. In LT-GOMEA, a separate link-

age is maintained for each subpopulation, it is updated at every

iteration. DLED introduction, if possible, adjusts to this behavior.

LT-GOMEA-DLED general procedure is presented in Pseudocode

2. It employs a probability of DLED linkage generation that is ini-

tially set to one for all genes (lines 2-4). Whenever the popula-

tion sizing-scheme decides to add a new subpopulation, the DLED

linkage generation probabilities are reset (lines 11- 12). As in the
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Pseudocode 2 LT-GOMEA-DLED general procedure

1: 𝑆𝑢𝑏𝑃𝑜𝑝𝑠 ← CretateSubPop(1);

2: 𝑔𝑒𝑛𝑒𝑃𝑟𝑜𝑏 ← CreateTable(𝑃𝑟𝑜𝑏𝑙𝐿𝑒𝑛)

3: for each 𝑔𝑒𝑛𝑒 ∈ 𝑔𝑒𝑛𝑒𝑃𝑟𝑜𝑏 do
4: 𝑔𝑒𝑛𝑒𝑃𝑟𝑜𝑏 [𝑔𝑒𝑛𝑒] ← 1

5: while ¬𝑆𝑡𝑜𝑝𝐶𝑜𝑛𝑑𝑖𝑡𝑖𝑛 do
6: if add new subpop then
7: 𝑙𝑎𝑟𝑔𝑒𝑠𝑡𝑆𝑢𝑏𝑃𝑜𝑝 ← GetLargestSubPop(𝑆𝑢𝑏𝑃𝑜𝑝𝑠);

8: 𝑛𝑒𝑤𝑆𝑢𝑏𝑃𝑜𝑝 ← CretateLTGA(𝑙𝑎𝑟𝑔𝑒𝑠𝑡𝑆𝑢𝑏𝑃𝑜𝑝.𝑠𝑖𝑧𝑒 · 2);
9: ZeroDSM(𝑛𝑒𝑤𝑆𝑢𝑏𝑃𝑜𝑝.𝐷𝑆𝑀);

10: 𝑆𝑢𝑏𝑃𝑜𝑝𝑠 ← 𝑆𝑢𝑏𝑃𝑜𝑝𝑠 + 𝑛𝑒𝑤𝑆𝑢𝑏𝑃𝑜𝑝;

11: for each 𝑔𝑒𝑛𝑒 ∈ 𝑔𝑒𝑛𝑒𝑃𝑟𝑜𝑏 do
12: 𝑔𝑒𝑛𝑒𝑃𝑟𝑜𝑏 [𝑔𝑒𝑛𝑒] ← 1

13: 𝑟𝑢𝑛𝑀𝑒𝑆𝑢𝑏𝑃𝑜𝑝 ← SelectSubPoptoRun(𝑆𝑢𝑏𝑃𝑜𝑝𝑠);

14: for each 𝑔𝑒𝑛𝑒 ∈ 𝑔𝑒𝑛𝑒𝑃𝑟𝑜𝑏 do
15: if Random01() < 𝑔𝑒𝑛𝑒𝑃𝑟𝑜𝑏 [𝑔𝑒𝑛𝑒] then
16: 𝑔𝑒𝑛𝑒𝑃𝑟𝑜𝑏 [𝑔𝑒𝑛𝑒] ← 𝑔𝑒𝑛𝑒𝑃𝑟𝑜𝑏 [𝑔𝑒𝑛𝑒] · 0.5
17: 𝑖𝑛𝑑 ← RandomlyChooseInd(𝑟𝑢𝑛𝑀𝑒𝑆𝑢𝑏𝑃𝑜𝑝);

18: 𝑑𝑑𝑔𝑙 ← DLED(𝑔𝑒𝑛𝑒, 𝑖𝑛𝑑);

19: ApplyDDGLToDSM(𝑑𝑑𝑔𝑙, 𝑟𝑢𝑛𝑀𝑒𝑆𝑢𝑏𝑃𝑜𝑝.𝐷𝑆𝑀);

20: RunSubPopIteration(𝑟𝑢𝑛𝑀𝑒𝑆𝑢𝑏𝑃𝑜𝑝);

original LT-GOMEA, at each method iteration, LT-GOMEA-DLED

chooses one of the subpopulations (line 13). For this subpopulation

(𝑟𝑢𝑛𝑀𝑒𝑆𝑢𝑏𝑃𝑜𝑝), before executing its iteration, DLED is executed

in the following way. For each gene, the probability of linkage gen-

eration is checked (line 14). If linkage is generated for a particular

gene, then the linkage generation probability that refers to this gene

is halved (line 16). The individual for linkage discovery is chosen

randomly from 𝑟𝑢𝑛𝑀𝑒𝑆𝑢𝑏𝑃𝑜𝑝 subpopulation (line 17). DDGL is ex-

ecuted for the chosen individual and the considered gene (line 18).

After the appropriate DSM update, an iteration of 𝑟𝑢𝑛𝑀𝑒𝑆𝑢𝑏𝑃𝑜𝑝

subpopulation is executed in a standard way but uses the linkage

supported by DLED (line 20).

The information from each 𝑑𝑑𝑔𝑙 found is applied to DSM in a

way presented in the previous section (line 19). Additionally, if 𝑑𝑑𝑔𝑙

discovers a dependency between the pair of genes that was not

known before, the linkage discovery probabilities for these genes

are reset to one. For instance, let us consider DSM from Table 1,

𝑑𝑑𝑔𝑙 = {1→ 3, 5}, and𝑔𝑒𝑛𝑒𝑃𝑟𝑜𝑏 = {0.5, 0.25, 0.25, 1, 0.25}. For such
𝑑𝑑𝑔𝑙 , the values of cells 𝐷𝑆𝑀 [1, 3] and 𝐷𝑆𝑀 [3, 1] will be increased
from one to two. Concordantly, the values of cells 𝐷𝑆𝑀 [1, 5] and
𝐷𝑆𝑀 [5, 1] will be increased from zero to one. Thus, they introduce

a new dependency that was not known before. Therefore, the prob-

abilities of linkage generation for genes 1 and 5 will be reset to one.

After this operation, the linkage generation probabilities table will

be 𝑔𝑒𝑛𝑒𝑃𝑟𝑜𝑏 = {1, 0.25, 0.25, 1, 1}.
Updating linkage during the method run was found more effec-

tive than using the predetermined linkage learning models [31].

Additionally, frequent linkage modifications lead to using a diverse

linkage that was recommended in [27]. However, generating DLED

linkage for the whole genotype at each method iteration is not

a reasonable choice because DLED (although less expensive than

3LO) is still significantly more expensive than the SLL employed

by the original LT-GOMEA. The probabilities of linkage generation

for each gene were introduced to overcome this issue.

In P3, the population resembles a pyramid, and each of the pyra-

mid levels is a separate subpopulation. Therefore, the general proce-

dure of P3-DDGL is organized as follows. As for LT-GOMEA-DDGL,

we employ the 𝑔𝑒𝑛𝑒𝑃𝑟𝑜𝑏 table initialized in the same way at the

beginning of the method run. Whenever the new level is added

to the pyramid, the gene linkage generation probabilities are re-

set in the same way while adding the new LTGA subpopulation

in LT-GOMEA. DLED linkage generation procedure is executed

for each level before every P3-DLED iteration. Each pyramid level

maintains its separate linkage (each subpopulation in LT-GOMEA-

DLED maintains its separate linkage as well). After DLED updates,

an iteration of P3 is executed normally, but it uses the DLED-DSM.

In P3-DLED (same as in P3), the number of pyramid levels may

rise at the beginning of the run, and later on, new levels may be

added rarely or never. In such a situation, the probability of linkage

changes decreases significantly, which would be disadvantageous

for the method’s effectiveness. Therefore, in P3-DLED, the linkage

generation probabilities are reset whenever the number of individ-

uals stored in the pyramid doubles.

The last method we have introduced DLED into was 3LOa. 3LOa

was proposed to use 3LO benefits but limit the linkage generation

frequency due to 3LO costs. Thus, in 3LOa, linkage is generated only

when the new best individual is found. Therefore, in 3LOa-DLED,

we have simply replaced 3LO with DLED. Each time linkage is

generated, we execute the DLED procedure for the new best-found

individual and all available genes.

6 THE RESULTS
6.1 Test Problems and Experiments Setup
We consider the set of nine different problem types that differ in

their nature. These problems were also considered in [14, 19, 27].

Concatenation of deceptive functions [11] is a well-known bench-

mark. Deceptive functions are found hard because optimizers are

attracted by their local optima. Here, we use concatenations of

order-3 standard deceptive functions. They have one global and

one local optimum. We also consider their extension, step deceptive

functions [14], that extends their landscapes by adding plateaus of

size 𝑠 . In consequence, the number of local optima increases. We

employ order-3 and order-5 step deceptive functions. We set 𝑠 = 2

for both. Another chosen problem is bimodal functions concate-

nation [13]. The definition of order-𝑘 bimodal function is given in

formula (1). There are two global optima and

( 𝑘
𝑘/2

)
local optima in

each bimodal function. Here, we choose concatenations of order-10

bimodal functions and their noised version with even more local

optima. The values of noised bimodal deceptive function depending

on the unitation may be found in [18, 25, 27].

We also include the following problems of the overlapping na-

ture. We consider cyclic concatenations built from step order-5 and

bimodal order-10. The overlap is𝑚 = 3. An overlapping real-world

problem is the Ising Spin Glass (ISG). In ISG, a sample solution

represents spin values. The best value of ISG of size 𝑛 minimizes

the sum −∑𝑛
𝑖,𝑗=1 𝑥𝑖𝑥 𝑗 𝐽𝑖 𝑗 , where 𝐽𝑖 𝑗 is a coupling constant of the

𝑖th and the 𝑗th spins represented by 𝑥𝑖 and 𝑥 𝑗 respectively. The

structure of ISG is not as much overlapping as in Nearest Neighbor
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Table 2: Median population size necessary to find the opti-
mal solution

LT-GOMEA* P3**
DLED SLL rat. DLED SLL rat.

Dec.3 64 128 0.50 163 43 3.78
St.dec.3 1024 4096 0.25 4906 17371 0.28

St.dec.5 16384 32768 0.50 70553 127747 0.55

Bm.10 4096 32768 0.13 27180 142740 0.19

Bm.10n. 1024 65536 0.02 2441 179644 0.01

C.St.d.5 4.E+06 8.E+06 0.50 155594 468595 0.33

C.Bm.10 32768 65536 0.50 110614 447856 0.25

ISG 2048 512 4.00 7709 455 16.94
NK-land 1024 2048 0.50 3743 6209 0.60

Max3Sat 1024 1024 1.00 3979 4624 0.86

*the size of the largest subpopulation
**the size of the whole pyramid

NK-landscapes. In the chosen instances, each gene is dependent on

five consecutive genes. When a gene is located at the end of the

genotype, its neighbors are taken from the beginning. The last con-

sidered problem is Max3Sat. Max3Sat consists of clauses containing

three logical variables. Our goal is to find such gene values that

maximize the number of satisfied clauses.

In this paper, we consider LT-GOMEA and P3 in both versions

– the original (LT-GOMEA-SLL and P3-SLL) and the DLED-based.

Additionally, we employ 3LOa to check if 3LOa-DLED is compet-

itive with the original 3LOa that employs 3LO. Finally, we use

psDSMGA-II-CM [19] to check if the proposed DLED-based EAs

are competitive with other state-of-the-art EAs. Each experiment

is repeated 20 times. To verify the statistical significance of the

results differences, we employ the unpaired Wilcoxon test and a

significance level of 5%. Some of the considered EAs incorporate

fitness caching [26, 27]. Thus, the FFE-based stop condition may

be unfair. Therefore, each experiment was assigned 12 hours of

computation time on the PowerEdge R430 Dell server (Intel Xeon

E5-2670 2.3 GHz 64GB RAM). To ensure the fairness of the com-

parison, the number of computation processes was always one less

than the number of available CPU nodes. All experiments were

single-threaded, and no other resource-consuming processes were

running.

6.2 DLED Computation Costs and Quality
The objective of this paper is to introduce ELL into the state-of-the-

art SLL-using EAs. To this end, we have proposed DLED that is less

computationally expensive than 3LO. The introduction of DLED

into LT-GOMEA and P3 raises the following questions, which we

address in this section.

• How DLED influences LT-GOMEA and P3 run?

• Is DLED-linkage of higher quality than SLL-linkage?

• What is the cost of DLED linkage generation?

In Table 2, we present the maximum subpopulation size and the

total pyramid size at the end of the run for LT-GOMEA and P3,

respectively. We consider only those runs in which the optimal

solution was found. For most of the considered problems, DLED

Table 3: Median linkage quality in runs for which the opti-
mal solution was found

LT-GOMEA P3
n DLED SLL n DLED SLL

Dec.3 1998 1.00 0.34 1998 0.99 1.00

St.dec.3 1995 1.00 0.69 1995 1.00 0.92

St.dec.5 2002 1.00 1.00 1199 1.00 0.83

Bim.10 2000 1.00 1.00 1600 1.00 0.99

Bim.10 n. 2000 1.00 0.99 800 1.00 0.71

versions required a smaller population size to find the optimal so-

lution. If the optimal solution is found for the smaller population

size (both methods automatically adjust their population size dur-

ing the run), then it indicates that DLED proposes the linkage of

a higher quality for most of the considered problems. Note that

the 𝑑𝑙𝑒𝑑𝑀𝑎𝑥𝑃𝑜𝑝/𝑠𝑙𝑙𝑀𝑎𝑥𝑃𝑜𝑝 ratio presented in Table 2 for some

problems is below 0.25 As shown in the next section, for these prob-

lems, the DLED versions of LT-GOMEA and P3 may significantly

outperform their SLL-based predecessors. For two problems, the

situation is the opposite – the ratio is higher than 1 (up to almost

17 for ISG-based P3-DLED and P3-SLL comparison). For these prob-

lems, SLL-based EAs perform better. Such a situation is expected

for order-3 deceptive functions concatenation – in [25], SLL was

formally shown to propose a high-quality linkage for this kind of

problems quickly. According to ISG, the reasons why SLL seems

to be more suitable for decomposing this problem requires further

investigation.

In Table 3, we compare the linkage quality based on the Fill mea-

sure [25]. The highest Fill value is 1 and corresponds to the so-called

perfect linkage, while the linkage of the lowest possible quality is as-
signed 0. Since LT-GOMEA and P3 maintain many subpopulations,

and each subpopulation has its own linkage, we report the fill value

of the linkage that is of the highest quality from all available. The

comparison is limited to partially additively separable problems

because the employed measure is inappropriate for overlapping

problems. As presented in Table 3, SLL can propose linkage of high

quality for bimodal, bimodal noised, and step deceptive problems.

However, to obtain such high-quality linkage, it may require an

even 70-times larger population and a long optimization process

(the higher the quality of individuals is, the better SLL-linkage qual-

ity should be). In some cases (e.g., SLL-linkage quality for P3 and

bimodal noised problems), even a 12-hour run and the population

of over 3 · 106 individuals is not enough to discover linkage of a

quality that would be close to to the quality of DLED-linkage.

The results indicate that, for most of the considered problems,

DLED supports a high-quality linkage that allows for fast optimiza-

tion. In Table 4, we present FFE and computation time percentage

spent on DLED. Note that for all considered deceptive function

concatenations, this percentage is high. Except for one case, it is

higher than 50%. Moreover, for some considered problems, it is

close to 100%. Such a result seems intuitive and consistent with

observations presented in [25] – deceptive function concatenations

become easy to solve for a GA-like optimizer if linkage of high qual-

ity is supported. Additionally, the effectiveness of such optimizers

decreases quickly with the decrease of linkage quality [25].
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Table 4: DLED costs - FFE and time percentage spent on link-
age discovery

LT-GOMEA P3
n FFE Time n FFE Time

Dec.3 2000 0.99 0.99 2000 >0.99 0.96

St.dec.3 2000 0.95 0.94 2000 0.97 0.77

St.dec.5 2000 0.62 0.60 800 0.57 0.68
Bim.10 2000 0.76 0.75 1200 0.83 0.73

Bim.10 n. 2000 0.90 0.90 2000 0.39 0.76
Cyc.St.dec.5 150 <0.01 <0.01 100 <0.01 0.34
Cyc.Bim.10 2000 0.23 0.23 600 0.23 0.68
ISG 784 0.44 0.48 784 0.78 0.81

NK-land 600 0.82 0.80 600 0.93 0.89

Max3Sat 150 0.56 0.41 150 0.75 0.73

For the considered overlapping problems, the DLED discovery

cost differs significantly from below 1% (cycling order-5 step de-

ceptive functions concatenation) up to over 90 % (P3-DLED for NK

landscapes). For these problems, it is hard to justify why DLED is

improving (e.g. cycling bimodal functions concatenation) or decreas-

ing (ISG) the effectiveness of the method. This issue requires further

investigation. A promising research direction may be proposing

linkage quality measures for the overlapping problems and using

these measures to execute EAs using an artificial linkage of a given

quality.

For some problems, the DLED FFE-cost percentage differs sig-

nificantly from the time-cost one (e.g., P3-DLED solving the cyclic

problems). The reason for this situation is as follows. P3 employs

population-based fitness caching [26] – before it computes the fit-

ness of any individual, it first checks if such individual is a part of

its current population. If so, then P3 copies the fitness value from

the same, already rated, individual, and no FFE is spent. Despite its

simplicity, such optimization may lead to a significant reduction of

the computation costs. However, it may also lead to the following

situation. When DLED linkage discovery is triggered, the fitness

is computed for many genotypes similar to the one we discover

the linkage from. If P3 is stuck and the pyramid is large, likely, the

genotypes considered during DLED are already represented in the

pyramid. If so, then for each fitness check performed during DLED,

the computation time will be spent on checking if the genotype

exists in the pyramid, but no FFE will be spent (the same, already

rated genotype will be found in the pyramid). Thus, the compu-

tation time will increase, but FFE will not. In such situations, the

FFE-based stop condition does not seem reliable. More information

considering the influence of fitness caching on the computation

time and FFE-based stop condition reliability may be found in [26].

The above results and their analysis confirm that using the time-

based stop condition in the experiments considered in this paper is

justified.

6.3 Main Results
In Table 5, we present the comparison between the proposed DLED

and SLL based on LT-GOMEA and P3. We compare the percent-

age of optimal solutions found by DLED and SLL versions (or 3LO

version for 3LOa). We consider the largest problem size for which

Table 5: General comparison

LT-GOMEA P3 3LOa ref*
DLED/SLL DLED/SLL DLED/3LO SLL

Dec.3 5 / 2 (-)** 7 / 1 (-) 4 / 6 (+) 3

St.d.3 4 / 3 (-) 5 / 7*** (+) 1 / 2 (+) 6

St.d.5 2 / 3 (+) 7 / 7 (=) 7 / 1 (-) 7

Bm.10 3 / 4 (+) 7 / 7 (=) 2 / 1 (=) 7

Bm.10n. 3 / 7 (+) 4 / 7 (+) 1 / 2 (+) 7

C.St.d.5 2 / 7 (+) 7 / 7 (=) 7 / 7 (=) 1

C.Bm.10 1 / 7 (+) 7 / 7 (=) 7 / 7 (=) 7

ISG 7 / 2 (-) 6 / 1 (-) 5 / 4 (=) 3

NK-land 3 / 2 (-) 5 / 1 (-) 7 / 6 (-) 3

Max3Sat 6 / 5 (=) 3 / 1 (=) 7 / 7 (=) 4

Med.Rank. 3 / 3.5 6.5 / 7 6 / 5 5

Avg.Rank. 3.6 / 4.2 5.8 / 4.6 4.8 / 4.3 4.8

5+ / 3- / 1= 2+ / 3- / 5= 3+ / 2- / 5= N/A

*psDSMGA-II-CM
**the symbol in the brackets indicates if DLED version
is statistically better, worse or equal
***underline – the percentage of optimal solutions is below 50%

at least one of the competing versions has found the optimal solu-

tion in at least 50% of the runs. If the differences in the successful

runs percentage are not statistically significant, then we compare

FFE necessary to find an optimal solution. If these differences are

equal, then we find DELD and SLL versions equally effective for

the particular problem. We employ +/-/= signs to mark if DLED

was statistically better, worse, or equal than SLL/3LO. Such com-

parison does not take into consideration the size of the differences.

Therefore, in the same table, we propose a ranking that considers

the percentage of successful runs first and the median FFE until

finding the optimal solution if this percentage is equal and higher

than 50%. If the successful runs percentage is below 50% the method

is assigned the lowest possible rank. The results show that intro-

ducing DLED into LT-GOMEA and P3 is beneficial for many of

the considered problems. A similar situation takes place for 3LOa,

which shows that replacing 3LO with DLED, in general, preserves

3LOa-3LO advantages. LT-GOMEA-DLED obtains the best results,

while LT-GOMEA-SLL takes second place. The median ranking of

both 3LOa versions and pcDSMGA-II-CM is similar. Finally, both

P3 versions take two last places. Nevertheless, P3-DLED seems to

be able to solve a larger set of problems than P3-SLL. Therefore, it

outperforms its predecessor. However, this feature has its price –

P3-DLED is slower in solving problems, for which P3-SLL works

particularly fast.

In Section 4, we prove that DLED will only report the direct

linkage. This feature was not directly utilized by any of the EAs we

have introduced DLED in. Proposing the appropriate mechanisms

that do so is the future work. However, both, LT-GOMEA-DLED

and P3-DLED, perform significantly better for both considered

cycling trap problems. As shown in the example in Section 4, 3LO

may not be suitable for decomposing such problems. Thus, it is

reasonable to assume that a precise discovery of a directed linkage

only influences LT-GOMEA and P3 performance in solving the

cycling trap problems.
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Figure 3: FFE-based scalability on the considered problems (the results with at least 50% optimal solutions found)

In Figure 3, we present the scalability of the considered EAs.

Note that LT-GOMEA-DLED is the only method that has found the

optimal solution in at least 50% of the runs for all considered prob-

lems (see Table 5). LT-GOMEA-DLED performs significantly better

than LT-GOMEA-SLL for all problems using step order-5, bimodal,

and noised bimodal deceptive functions. For these problems, SLL

requires significantly more computation resources than DLED to

discover linkage of quality that is high enough. On the other hand,

for ISG and NK landscape problems, LT-GOMEA-DLED requires

more FFE due to the DLED costs.

The P3-based DLED and SLL comparison seems similar to the

one considering LT-GOMEA. P3-DLED performs better for prob-

lems using bimodal functions, while P3-SLL is a better choice for

order-3 standard deceptive function concatenations (to recall, SLL

decomposes this kind of problems quickly and precisely [25]). The

SLL version is also faster in solving ISG and NK fitness landscape

problems due to DLED linkage generation costs. The surprising

observation is that even equipped with the perfect or near-perfect

linkage, P3 cannot solve the longer deceptive functions concatena-

tions. This is caused by the fact that the population in P3 has an

unlimited size (see Figure 3d – P3-DLED is unable to solve bimodal

functions concatenations of the length larger than 1200 bits). The

individuals that were added to the pyramid will not be improved

any more. Thus, the lack of individual-improvement pressure sig-

nificantly slows down the convergence. On the other hand, the P3

framework seems to be particularly suitable for solving Max3Sat.

For most of the deceptive function concatenations, the most ef-

fective EAs are both versions of 3LOa. Such results are expected

because among all 3LOa employs a search through a limited num-

ber of dependent gene combinations. Thus, if the problem contains

additively separable parts that are precisely recognized, then the

3LOa procedure should find the optimal solution efficiently. Only

for the concatenation of order-5 step deceptive functions, the per-

formance of 3LOa-DLED is low. This seems to be caused by the

3LOa procedure that rarely discovers linkage (originally, it was ad-

justed to 3LO, which is more expensive than DLED). On the other

hand, both 3LOa versions fail to solve even the shortest test cases

of cyclic step deceptive functions concatenations.

7 CONCLUSION AND FUTUREWORK
The main objective of this paper was to introduce ELL into state-

of-the-art methods that were originally proposed with SLL tech-

niques. To obtain this objective, we have proposed DLED – the

new ELL technique faster than its predecessor. Since SLL-using

EAs frequently update the linkage, we have proposed a mecha-

nism defining the linkage discovery probability for each gene. The

experiments show that the proposed DLED-using EAs, especially

LT-GOMEA-DLED, are competitive with other state-of-the-art EAs.

DLED seems to be more suitable for solving problems built from

non-standard deceptive functions (additively separable and overlap-

ping). The results indicate that the hybridization of DLED and SLL

may lead to the further improvement of results quality. Another

important future research direction is proposing the linkage quality

measures for the overlapping problems. These measures shall help

in understanding the EA-based overlapping problems optimization

process (including the explanation why using DLED is sometimes

advantageous ofer using SLL and sometimes it is not). In this paper,

we prove that the proposed DLED will always discover a direct

linkage. Therefore, a promising research direction will be proposing

a new linkage representation that utilizes this feature.
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