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Many species (groups of organisms) – at least two – influence each other’s evolutionary
processes.

Question: how does this affect the fitness function landscape?
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Fundamental issues in cooperative optimization
The example of the cooperative architecture discussed in this section is based on [PD00].

The implementation of this architecture is available in the DEAP
library: https://deap.readthedocs.io/en/master/examples/coev_coop.html.

The optimization of complex problems will be more effective if we can decompose them
into components.

As we know from previous lectures (cf. epistasis, hierarchical GA), unfortunately, the
effect of different parts of a solution on the value of the objective function is usually
strongly coupled.

In a traditional EA, individuals are evaluated completely independently – so there is no
room for them to cooperate with each other.

If we managed to decompose the problem (even manually, for example by splitting the
individual – the vector of variables – into individual variables), we would have to solve
the following problems: 1) the dependence of the fitness landscape from the point of
view of each component on the values of other cooperating components, 2) attributing
credit to components (credit assignment), 3) maintaining diversity within the population
of components.

Suppose we divide the solution into components that go into separate (genetically
independent) populations – so the genetic representation and operators in each
population may be completely different. How to evaluate the quality of each part?

https://deap.readthedocs.io/en/master/examples/coev_coop.html
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The architecture explored by Potter and De Jong
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Adaptation of the number of species

For a function with n variables, we can hand-decompose the task into n species.

For an agent (e.g. a robot) with a rule-based control system, we can
hand-decompose the set of rules into two species, each for a class of behaviors:
finding the target and waiting for the target to appear.
Considering a task in which the number of components can change dynamically, it
would be great if the algorithm itself could adjust the number of species and their
function (→“niches”...) in cooperation with other species. What could trigger the
addition of a new species and the removal of an existing one?

Adding a new species, for example initialized randomly: when the system is in
stagnation – no increase in the quality of the best individual.
Removing an existing species: for example when its contribution to cooperation
(the difference between the quality of individuals with and without it) is below a
specified threshold.
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[PD00] Experiment 1: binary string covering

Find a (match) set M of m binary vectors that match another (target) set T of t
binary vectors, m ≪ t.

Match strength of two vectors is the number of identical bits.
Match strength of M is the average of (for each vector in T find its best covering
match from M).
Thus M must contain frequent patterns in T – the match set must generalize.
How did the species that constitute M discover patterns deliberately hidden in T?

T1:
11111111111111111111111111111111################################
################################11111111111111111111111111111111

T2:
1111111111111111################################################
################1111111111111111################################
################################1111111111111111################
################################################1111111111111111

T3:
11111111########################################################
########11111111################################################
################11111111########################################
########################11111111################################
################################11111111########################
########################################11111111################
################################################11111111########
########################################################11111111
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[PD00] Experiment 1: binary string covering – coevolutionary run
Automatically determined number of species; vertical lines are the generations when a species
was added as a result of detected stagnation (22, 63, 138) or removed due to its small
contribution (oscillations starting from 176).
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[PD00] Experiment 2: classification of a tricky dataset

class A
class B



Cooperative
coevolution

Competitive
coevolution

References

[PD00] Experiment 2: classification of a tricky dataset
Cascade-correlation NN (cf. gradient boosting): a simple heuristics as a reference and coevolving species

https://en.wikipedia.org/wiki/Gradient_boosting
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[PD00] Experiment 2: classification of a tricky dataset
Cascade neural network results: the training heuristics
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[PD00] Experiment 2: classification of a tricky dataset
Cascade neural network results: cooperative coevolution
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Competitive coevolution – the desired behavior

A typical example: coevolution (optimization) of a strategy [Elf+21]. An individual
represents the knowledge reflected by a strategy (e.g., it may be the weights of the
criteria used to evaluate the situation on the board in a game). The evaluation of an
individual is obtained, for example, by playing many games against the other
individuals (each playing according to their own strategy).

Discussion: if we start such a process and wait long enough, do we get the master
strategy? If not, why not? (provide reasons – the list of possible problems).

Difficulties: we want an arms race (perpetual competition), but we may end up in an
MSS – Mediocre Stable State (stagnation – poor, lasting condition). Too strong an
opponent will not allow to distinguish between average and bad solution; too weak –
between average and good. The evaluation of each solution depends on the others (an
external, objective “teacher” solves this problem while eliminating the advantages of
coevolution). The evaluation of a strategy may not be transitive.
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Competitive coevolution – problems and remedies

Discussion of sample scenarios: GP (a population of expressions and a population
of tests), chess playing strategies, soccer, tennis and the intransitivity of
“betterness”, rock–paper–scissors, a local fencing school and diversity
(cf. exploiter agents in AlphaStar), nature.

Concepts: arms race, Red Queen∗, MSS.

Problems: the lack of or the loss of gradient, looping (cycles, non-transitive
relation of comparison that arises from evaluation), the lack of
monotonicity/progress [Mic09].

Remedies: competitive fitness sharing (increasing the value of those solutions that
win against tests (opponents) challenging for other solutions [RB95]), a specific
selection of the test set, maintaining hall of fame or sets of Pareto-nondominated
solutions and tests.

∗https://en.wikipedia.org/wiki/Red_Queen_hypothesis

https://en.wikipedia.org/wiki/AlphaStar_(software)#Algorithms
https://en.wikipedia.org/wiki/Red_Queen_hypothesis
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