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Messy genetic algorithms

The “messy” approach is intended to improve the properties of the genetic algorithm
through a more effective use and processing of schemata. The same purpose is pursued
by the inversion operator, which will be covered in the next presentation on
nature-inspired mechanisms. A messy genetic algorithm [Gol+93] uses a specific
representation of individuals: genotypes are of variable length, composed of pairs
(label, value). The label represents the meaning of a gene – as in the inversion
operator, the label can be the initial number of the gene.

Incomplete (underspecified) genotypes, i.e., genotypes that do not specify the values of
all genes, are allowed. A genotype may also contain redundant or even contradictory
genes.
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Messy genetic algorithm: operation

Three genetic operators are used: cutting, splicing, and mutation. The cutting
operator cuts a string of bits with some probability, at a random point. The splicing
operator merges two genotypes with some probability. Mutation is identical to a simple
mutation.

Tournament selection is used. The optimization process consists of two phases
(possibly repeatedly performed): the selection of building blocks and the application of
operators. The population size is variable during the course of the algorithm.

Redundant (overspecified) genotypes can be easily handled by considering the first
encountered value of a given gene in the genotype, but other methods exist – such as
averaging all the values of a gene or using some kind of voting to determine which
value to choose. Underspecified genotypes, unless they are acceptable in a given
optimization problem, are resolved by filling in the missing genes with the best known
value of a given gene from an earlier phase of the algorithm.

Messy genetic algorithms used for deceptive problems performed several times better
than classical genetic algorithms with point crossover.
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Efficient optimization – the building block hypothesis revisited

Epistasis: the interaction of genes (variables, traits) affects fitness → we bind them
into groups (linkage).

Discussion: is there some way to “detect” epistasis of parts of a solution?

Linkage in optimization: not to be confused with biological genetic linkage.

https://en.wikipedia.org/wiki/Genetic_linkage
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Detecting dependencies: empirical and statistical techniques

The prospect of automatic decomposition of the optimization problem is very
attractive – what remains is the matter of methods and their efficiency, so this issue is
actively researched.

Methods for detecting dependencies between genes are sometimes divided into

Empirical (such as DLED: Direct Linkage Empirical Discovery): they sample and
evaluate the complete neighborhood of a particular individual, so they acquire
complete information about (in)dependence in its local neighborhood and for its
particular set of gene values.

Statistical (such as H-GA or the GOMEA family of methods): they statistically
estimate the independence of genes based on individuals in the population and
their evaluations.

Based on this information, we discover if and how the problem can be decomposed –
which can take place just as the algorithm is running [PKF21, Sect. 5]. The algorithm
can thus appropriately manage subpopulations optimizing potentially independent
subproblems, adapt the crossover operator, the mutation operator, etc.
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Epistasis estimation and decomposition – the DLED technique

Suppose we have an individual whose genotype consists of at most five elements. We
represent the existence of each element by one bit (for example, four out of five
elements would be e.g. the 10111 individual).

Interdependencies between genes are more pronounced in local optima. Therefore, if
we so desire, individuals that are local optima can be subjected to analysis – for
example, they can be optimized beforehand using the Greedy method (with a random
order of neighbors–genes) by swapping individual 1→ 0 and 0→ 1.

We perform the DLED-type decomposition on the analyzed genotype of the
individual [PKF21]:

1 For each gene A, we introduce a perturbation (change its value to the opposite).
2 We check all the other genes, how for gene A after perturbation, the value of
another gene B affects fitness if it remains unchanged and if it is changed.

3 The decision about dependency is binary and follows from satisfying the
condition(s) listed on the next slide.



Messy GA

Gene linkage
learning
Epistasis – DLED

Epistasis – a continuous
example

Hierarchical GA

Gene-pool optimal mixing

Evolutionary
strategies

Differential
evolution

Evolutionary
programming
Real numbers

Genotype→ phenotype
mapping

Genetic
programming

References

Epistasis estimation and decomposition – the DLED technique

Suppose we have an individual whose genotype consists of at most five elements. We
represent the existence of each element by one bit (for example, four out of five
elements would be e.g. the 10111 individual).

Interdependencies between genes are more pronounced in local optima. Therefore, if
we so desire, individuals that are local optima can be subjected to analysis – for
example, they can be optimized beforehand using the Greedy method (with a random
order of neighbors–genes) by swapping individual 1→ 0 and 0→ 1.

We perform the DLED-type decomposition on the analyzed genotype of the
individual [PKF21]:

1 For each gene A, we introduce a perturbation (change its value to the opposite).
2 We check all the other genes, how for gene A after perturbation, the value of
another gene B affects fitness if it remains unchanged and if it is changed.

3 The decision about dependency is binary and follows from satisfying the
condition(s) listed on the next slide.



Messy GA

Gene linkage
learning
Epistasis – DLED

Epistasis – a continuous
example

Hierarchical GA

Gene-pool optimal mixing

Evolutionary
strategies

Differential
evolution

Evolutionary
programming
Real numbers

Genotype→ phenotype
mapping

Genetic
programming

References

The DLED technique: conditions for the dependence of genes

The conditions from [PTK23]:
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Epistasis estimation and decomposition – a specific example
Changes in fitness after pairs of genes are turned off in a sample individual
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Epistasis estimation and decomposition – a specific example
Changes in fitness after pairs of genes are turned off; the diagonal shows the effect of turning off one gene
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Epistasis estimation and decomposition – a specific example
Subtracting values on the diagonal from the rows: how to interpret the result?
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Epistasis estimation and decomposition – a specific example
Additivity of the influence or lack thereof
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Epistasis estimation and decomposition
What should constitute rows and columns (in this example it was
“turning off genes”, but is that always the most appropriate action?)
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How to use this information in the algorithm during optimization?

optimize independent subsets of genes separately → decrease computational
complexity
design crossover and mutation to preserve beneficial epistatic interactions → treat
co-adapted epistatic groups of genes as units → respect and effectively propagate
“building blocks” of good solutions [GT12; TB13]
example: the Optimal Mixing (OM) operator in GOMEA. Selects a parent and a
donor from the population, and then produces an offspring by transferring from
the donor to the parent the alleles of interdependent (cooperating) genes. Only
accepts the offspring if it is at least as good as the parent – details on the
subsequent slides.

How to employ an analogous approach to detect third-order interdependencies?
(between triplets of genes?)
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Epistasis estimation and decomposition – a specific example
The subject of this analysis: genotype, phenotype, and fitness

Genotype: /*9*/UDDDLFBFBRFBBFBFBR

Fitness: elevation of the center of mass of the structure
(0.47 for the original genotype – a good genotype, but not locally optimal).
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Hierarchical genetic algorithm

As with messy genetic algorithms, the motivation for the development of H-GA was
the desire to automatically discover the degree of interdependence of solution parts in
order to decompose the problem. By sampling specially constructed solutions, the
dependence or independence of genes and groups of genes can be determined with
some probability, and then independent optimization can be performed for the detected
independent groups (modules) [JTW04].

To thoroughly investigate the independence of two genes from the rest of the solution,
it would be necessary to generate a set of solutions in which all possible pairs of values
of these two genes were surrounded by all possible values of the remaining genes
(which would constitute “the context”). Then one would need to evaluate all these
solutions and determine the relationship between the values of the genes and the value
of the objective function. This would be very computationally expensive, and yet it
would only be a test for one pair of genes! This is why sampling is used – it allows to
estimate the potential independence for all subsets of genes in a solution (cf. GOMEA:
Gene-pool Optimal Mixing EA [Thi18]).
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Optimal mixing of genes: GOMEA [Thi18; Dus+24]

Let’s modify an EA to become less chaotic, more systematic and deliberate.

(*) For simplicity (contrary to the problem just discussed), let’s consider a problem
with a constant number of genes that have fixed roles, e.g., f (x1, x2, ..., xn).

1 Generate the initial population of solutions randomly.

2 Learn linkage: construct a linkage model containing information about subsets of
variables that are considered epistatic (interdependent). Discover mutual dependencies
by calculating mutual information measures.

3 Introduce variation via a Gene-pool Optimal Mixing (GOM) operator – for each parent
individual in the population:

1 Create its copy (offspring).
2 Choose a random subset of dependent variables from the linkage model (from 2 ).
3 Select a random donor individual from the population.
4 Copy the donor’s values of dependent variables (from 3 . 2 ) into the offspring.
5 Evaluate the offspring’s fitness after each partial modification.
6 If offspring’s fitness is equal or better than parent’s, replace the parent solution.

4 Go to 2 (repeat until convergence).

https://en.wikipedia.org/wiki/Mutual_information
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Optimal mixing of genes: GOMEA – remarks

What is missing from the traditional EA?

Analogies to local optimization! (step 3.6).

Could iteratively improve one offspring, iterating through different subsets of
dependent variables and donors (steps 3.2–3.5, only accepting improving
donations).

No mutation in the original formulation – relies on diversity in the initial
population.

The GOM operator resembles (replaces) crossover.

If the number of genes is variable or they do not have fixed roles (our assumption
(*): how would we execute step 2 without it?), then one can use a weaker
generalization → Compatible Substitutions Optimization [KM25].
Better results than the traditional EA (reminder: what does “better” mean in
optimization).
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Evolutionary strategies: origins

Evolutionary strategies (ES) were developed for some time independently from GAs as
methods for numerical optimization. Many aspects distinguish them from GAs; what is
common is the use of evolutionary mechanisms during optimization.

ES – natural origin: one of the first applications (1964) was evolutionary design, i.e.,
the engineering of structures (we will talk about this problem later and will experiment
in lab classes). In order to minimize the water flow drag and optimize pipe shapes, to
evaluate a design or a pipeline, it was not simulated, but actually built [Rec84,
see figure on p. 123]; changes in design corresponded to “mutations”. It was therefore
a real-world procedure that executed an optimization algorithm.
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Evolutionary strategies: initially, two-membered

Early evolutionary strategies used only the mutation operator, which modified the only
individual that was processed. Unlike in genetic algorithms, the individual was a pair
consisting of a vector of variable values and a vector of standard deviations (which was
constant throughout the process of evolution). Mutation consisted of changing each
variable in the vector of values by a random factor generated according to the normal
distribution with the corresponding standard deviation (specified in the vector of
standard deviations). The individual after mutation replaced its ancestor only if it was
better than it and feasible.

Such a strategy has been named two-membered (because at any given time, there
exists one descendant and one ancestor) and is denoted (1+1)-ES. Its operation is
similar to Local Search.
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Evolutionary strategies: population and crossover

An improvement of the two-membered strategy is the multi-membered strategy, in
which, as in GAs, a population of individuals exists. In addition, a uniform crossover is
introduced, but it is not applied to all individuals, only to two of them – so that a
single offspring is produced that replaces the worst individual (one new individual –
thus analogously to the steady-state evolutionary algorithms).

Another improvement was the use of crossover many times in one step (many
descendants were created), followed by the selection of POPSIZE individuals from the
ancestors and descendants (the so-called plus-selection). Another approach selects
individuals for the next generation only from the group of descendants (the so-called
comma-selection), which is advantageous in problems with a moving optimum.
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Evolutionary strategies: a special notation

A general and concise notation of the ES architecture is (µ/ρ, λ)-ES or (µ/ρ+ λ)-ES,
where µ denotes the number of parents, ρ ≤ µ is the number of parents from which
offspring are produced, λ is the number of offspring, the comma symbol is used to
specify selection only from the set of descendants, and the plus symbol – from both
the set of parents and the set of descendants.
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Evolutionary strategies: mutation and crossover

An improved mutation operator is used, which modifies not only the value of the
variable, but also the standard deviation of these changes, which is also subject to
evolution. In addition to the variable values and standard deviations, information about
the preferred deviation angle during the search process can be introduced into the
representation of the individual, this way improving the rate of convergence of
evolutionary strategies. A variable is then represented by its value, standard deviation
and deviation angle, and all these quantities are subject to evolution allowing for
self-adaptation and enabling precise local fine-tuning.

Arithmetic crossover (the weighted average of parents) can also be used.

θ

σ1

σ2

Figure: Mutation
parameters in evolutionary
strategies.
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Evolutionary strategies: mutation covariance matrix

The evolutionary strategy that is known for its effectiveness is the strategy that
adaptats the mutation covariance matrix, CMA-ES,∗ whose implementation is available
for example in the DEAP library.∗∗ This strategy is also suitable for ill-conditioned
problems.

The CMA-ES method has many parameters, and there are many alternative
mechanisms for each step of the method. Default values can be used, as well as
multiple run policies that free the user from having to specify values for any parameters.

∗https://en.wikipedia.org/wiki/CMA-ES
∗∗https://deap.readthedocs.io/en/master/examples/cmaes.html

https://en.wikipedia.org/wiki/Condition_number
https://en.wikipedia.org/wiki/CMA-ES
https://deap.readthedocs.io/en/master/examples/cmaes.html
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Evolutionary strategies: the main idea behind CMA-ES

initialize the center of the population,

sample solutions from a multivariate (n) normal distribution (specified by a single
parameter – isometric, or n parameters – scaling parallel to the axes, or(
n
2

)
parameters that is the covariance matrix – allows for rotation),

evaluate all solutions,

move the center of the population: set it in the location of the average weighted
by the (ranking) fitness of the best individuals. Using ranking enables insensitivity
to minor disturbances in the fitness value (“roughness” of the landscape) and its
curvature – the degree of convexity,

the dispersion of new (sampled) individuals is proportional to the speed at which
the center of the population moves: slower movement → less dispersion,
update the covariance matrix to slightly stretch the multivariate normal
distribution in the direction of the movement of the population center. By doing
so, we will continue to follow the approximated gradient of the expected fitness of
solutions.
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Differential evolution (pol. ewolucja różnicowa)

A characteristic aspect of differential evolution is differential mutation [SP97]. In each
iteration of evolution, for each individual o from the population of N individuals,
repeat:

randomly select n distinct individuals from N individuals, pick the base individual
β and the difference individual δ (for n = 3, β can be picked randomly, and δ can
be the difference of the two remaining individuals),

create a temporary (“donor”) individual ω = β + F δ (F – constant),

crossover ω with o,

decide if the crossover outcome should replace the original o or not (selection).

DE is known for its simplicity, small number of parameters (sample implementation)
and fast convergence. It does not require specifying a separate, independent probability
distribution for mutation – mutation results from the state of the population. DE
variants are competitive to other algorithms in annual optimization competitions.

Creating a temporary individual, ω: compare the simplex crossover discussed later.

https://docs.scipy.org/doc/scipy/reference/generated/scipy.optimize.differential_evolution.html
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Evolutionary programming (pol. programowanie ewolucyjne)

Three main differences between EP and GAs:

1 The representation of the solution does not have to be binary – it follows naturally
from the problem.

2 Mutation changes parts of the solution, with small changes being more frequent
and large changes – less frequent.

3 Crossover may be absent.

Nowadays, “evolutionary programming” is a rarely used name. Instead we speak about
an evolutionary algorithm – which generally means an algorithm adapted to the
problem at hand. The degree of its adaptation varies; most often customizations
involve the representation and operators.

Many representations of individuals are used: a set, list, permutation∗, tree, undirected
graph, directed graph, matrix, logical expressions, rules (as in genetic-based machine
learning, LCS/GBML), neural networks, automata, grammar expressions (e.g. stored as
RPN), expressions structured as trees, programs (as in GP discussed later), . . .

∗Crossover for permutations: OX, PMX, ERO, others: https://hrcak.srce.hr/file/163313

https://en.wikipedia.org/wiki/Learning_classifier_system
https://en.wikipedia.org/wiki/Reverse_Polish_notation
https://mat.uab.cat/~alseda/MasterOpt/GeneticOperations.pdf
https://web.archive.org/web/20240330135151/https://www.rubicite.com/Tutorials/GeneticAlgorithms/CrossoverOperators/PMXCrossoverOperator.aspx
https://en.wikipedia.org/wiki/Edge_recombination_operator
https://hrcak.srce.hr/file/163313
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Real numbers representation – operators

It is very common in EAs (and in optimization in general!) to use the representation of
continuous values. Genes encode real numbers in the format that is standard on
processors (variable precision depending on the absolute value of the number).

Question: what crossover and mutation operators (in addition to the usual ones, such
as gene exchange or multi-point) can be proposed for a vector of numbers? When
proposing operators, keep in mind the purpose of crossover and mutation.
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Real numbers representation – crossover

Crossover: for example, the average of the parents, or a weighted average to get two
different offspring. The weighted average is an arithmetic crossover – the offspring are
a linear combination of the parents: d1 = r1 · a+ r2 · (1− a), d2 = . . .

The weight a can be a drawn randomly on each execution.



Messy GA

Gene linkage
learning
Epistasis – DLED

Epistasis – a continuous
example

Hierarchical GA

Gene-pool optimal mixing

Evolutionary
strategies

Differential
evolution

Evolutionary
programming
Real numbers

Genotype→ phenotype
mapping

Genetic
programming

References

Simplex crossover

We calculate the centroid c of the parents p.

A variant without accessing the fitness of solutions – SPX [TYH99]: we randomly
pick an offspring from the (expanded) space of linear combinations of the parents
(the parents get offset from c by ε – the expanding rate).

A variant involving fitness: we create an offspring o as an offset from the worst
individual/parent further through the point c .

p1 o
p2

c
p3

p4
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Real numbers representation – mutation

uniform random (Flat) – set the gene to a random value from the allowed range

creep – change the gene by a value drawn from some distribution (e.g., normal or
uniform – e.g., −3..+3, etc.)

In order to achieve independence from the “axes” (i.e., to avoid the mutation being
only parallel to the axes – only affecting individual parameters, which would be
disadvantageous if the objective function were, for example, a rotated version of the
function that directly depended on the parameters), all genes are mutated at once (and
then we use the normal distribution of the random change rather than the uniform
distribution – figure out why).

To ensure that such a mutation of n elements of the vector at once will move the
current solution by the same distance in the n-dimensional space as a mutation of only
one dimension would move, by what value should each of the n random values of the
change in the n-dimensional vector be divided (normalized)?

What should we do if the value of a gene after mutation falls out of the allowed range?
What methods can be proposed to solve this problem? [Bul99; Bul01]
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Real numbers representation – mutation
Methods of handling mutants out of the allowed range

Absorb: Illegal mutant values are truncated to the nearest boundary – the
well-known trick with max(min()).

Repeat: Mutant values are repeatedly generated, until a legal value is obtained.

Replace: Any offspring for which illegal trait values are generated is replaced by a
new offspring, re-choosing parents.

Ignore: Mutation events which transgress legal bounds are ignored. Rather than
inherit an illegal mutant value, offspring inherit the parental value.

Reflect: Mutant values lying a distance of d above (or below) the legal range are
replaced by vales a distance of d below (or above) the nearest boundary.

Wrap: The trait is treated as if it were periodic. The edges of its legal range
“wrap” around. Mutant values are calculated modulo the trait’s range.

Does it matter which method we will choose? Yes! [discussion of desirable mutation
characteristics and selection of the winner method].
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Real numbers representation – mutation
The performance of methods that deal with invalid mutants

Experimental results: how often did certain values of a gene occur after mutation and
“repair” by various methods? The ancestor had an equal chance of each value.
Horizontal axis – the range of gene variability, vertical axis – the frequency of offspring
values in subintervals:

Absorb Repeat

0

0,1

0,2

0

0,1

0,2

Ignore, Reflect, Wrap,
Replace Flat – similar to:

0

0,1

0,2

0

0,1

0,2



Messy GA

Gene linkage
learning
Epistasis – DLED

Epistasis – a continuous
example

Hierarchical GA

Gene-pool optimal mixing

Evolutionary
strategies

Differential
evolution

Evolutionary
programming
Real numbers

Genotype→ phenotype
mapping

Genetic
programming

References

Real numbers representation – mutation
The need for a more thorough analysis of the behavior of repair mechanisms

The fact that in the Ignore, Reflect, Wrap methods, the same distribution was
obtained as in Flat does not mean that these methods perform in the same way.
Actually, the principle of their operation is quite different. Example: the Ignore
method. Near the boundaries of the range, more mutations will be invalid and ignored.
Since they will be ignored, values close to the boundaries will also occur less often
overall. When they eventually occur, they will rarely result in a valid mutation. . .

Consequently, the fact that the distribution is the same does not yet guarantee that
effective (i.e., actually changing the value of the gene) mutations in particular
subintervals occur with the same frequency. Hence, in addition to the frequency
distribution of gene values for different methods, it is also necessary to compare other
parameters – e.g., how many numbers are moved from each subinterval (before
mutation) to every other one (after mutation), what is the relationship between such
pairs, etc. In this regard, the Ignore, Reflect, Wrap methods are different, and none
of them performs like Flat.
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Real numbers representation – mutation
The impact of the repair mechanism on the optimization process

We considered here a straightforward type of mutation and simple mechanisms, yet
these small elements have a big impact on the evolutionary process. For example,
Absorb guides (introduces bias to) the genetic drift continuously towards the extreme
values of the allowed ranges. Without being aware of it, one can conclude that such
values are optimal and evolution favors them – meanwhile, it is a continuous influence
of mutation.
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Reminder from earlier studies (and, possibly, a supplement)

Having several ideas for crossover operators, how do we know which one is
probably going to perform better?

How to intentionally develop (design) effective crossover operators?

What is the characteristic of DPX – distance-preserving crossover?

How does the expertise from the above questions translate to the mutation
operator?

What is global convexity and how to identify it?

What does the FDC measure evaluate?

Devise different distance (dissimilarity) measures of solutions: D1, D2,
D3, . . . based on different features/properties of solutions that influence fitness

Determine FD1C, FD2C, . . . and find the measure that maximizes FDC for
a given F

Design crossover (DPX) and mutation (neighborhood) operators respecting the
selected measure D.
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Quantitative evaluation of similarity/distance between solutions

The measure of similarity of solutions has numerous applications – among others, it is
useful for:

testing ideas for the crossover operator – different properties of solutions and
FDCs,

performing crowding model selection – discussed earlier,

estimating diversity in the population and assessing convergence,

analyzing population structure; analyzing clusters in a set of solutions,

maintaining “species” during evolution – these methods will be discussed later,

and wherever there is a need to determine the difference between two solutions, such
as in the already presented: differential evolution and simplex crossover.

If solutions have a simple representation (consider a few examples), then ideas for
similarity measures may come to mind naturally. For complex representations (consider
a few examples), the concepts of edit distance∗ and earth mover’s distance∗∗ may be
useful.

∗https://en.wikipedia.org/wiki/Edit_distance
∗∗https://en.wikipedia.org/wiki/Earth_mover%27s_distance

https://en.wikipedia.org/wiki/Edit_distance
https://en.wikipedia.org/wiki/Earth_mover%27s_distance
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Embryogeny

Embryogeny: mapping genotype → phenotype. For simple representations and
uniform, homogeneous spaces like the full space of bits, numbers or permutations, a
trivial direct 1:1 mapping is the first (default) idea.

But is such a mapping the best choice?

Recall RGB ↔ HSL, signal ↔ spectrum, water tap ↔ , . . .
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Embryogeny – what for?

Consider in which situations the genotype → phenotype mapping should (or must?) be
more sophisticated. What properties of the mapping should be provided by the
procedure that maps the genotype space into the phenotype space?
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Embryogeny – what for?

Consider in which situations the genotype → phenotype mapping should (or must?) be
more sophisticated. What properties of the mapping should be provided by the
procedure that maps the genotype space into the phenotype space?
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Embryogeny – what for?

Consider in which situations the genotype → phenotype mapping should (or must?) be
more sophisticated. What properties of the mapping should be provided by the
procedure that maps the genotype space into the phenotype space?

Now think about the nature and the biological genotype → phenotype mapping. How
it works and is it advantageous? Could this mapping be implemented better?

https://en.wikipedia.org/wiki/Evolvability#Evolution_of_evolvability
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Embryogeny – what for?

Consider in which situations the genotype → phenotype mapping should (or must?) be
more sophisticated. What properties of the mapping should be provided by the
procedure that maps the genotype space into the phenotype space?

Now think about the nature and the biological genotype → phenotype mapping. How
it works and is it advantageous? Could this mapping be implemented better?

If the phenotype space is different from the genotype space (which is often the case –
imagine the optimization of any highly complicated solution, for example a bridge, a
car, a robot, . . . ), then a procedure is needed to “map” one space to another. In
biology, this process is called embryogenesis (the development from the genotype to
the embryo stage, i.e., building a body). But even for identical spaces, indirect
mapping can be beneficial.

https://en.wikipedia.org/wiki/Evolvability#Evolution_of_evolvability
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Embryogeny – choices and their consequences [Rot06]

redundancy: many genotypes → one phenotype
synonymous: genotypes that produce the same phenotype are neighbors

uniform: each phenotype is produced by the same number of genotypes
non-uniform: the opposite is true

non-synonymous: bad for optimization

scaling of alleles: how uniformly alleles affect fitness
locality: similarity (closeness) in genotypes correlated with similarity in their
corresponding phenotypes
high: good! the mapping does not make the problem more difficult
low: adds difficulty to the problem

The above properties can be estimated numerically.
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Embryogeny – properties and benefits

Possible reasons to use a non-trivial mapping [Ben99]:

reduction of the search space (recursive, hierarchical etc.),

better enumeration of the search space (resulting in a topology that increases
FDC),

more complex solutions in the phenotype space (“growing instructions” in
genotype),

improved constraint handling (mapping every genotype into a valid phenotype),

and:

compression: simple genotypes define complex phenotypes,

repetition: genotypes can describe symmetry, segmentation, subroutines, etc.,

adaptation: phenotypes can be grown “adaptively” (to satisfy constraints, or to
correct errors).
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Embryogeny – challenges

experience is required to manually define an embryogeny that provides
abovementioned benefits,

it is hard to automatically evolve embryogeny (specific operators needed because
of genetic and phenetic bloat, epistasis and excessive disruption of child solutions
by genetic operators or poor inheritance of information).

In most applications, embryogeny is a set of fixed rules designed by a human that map
genotypes into their meanings (external embryogeny). For more information, see a
later lecture on automated (evolutionary) design.
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Embryogeny – illustration
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Embryogenesis – description of the illustration

The diagram on the previous slide shows the relationship between the genetic space,
the phenetic space, and the fitness landscape.

Note that different embryogenies (and thus different sets of phenotypes, phenotypic
topologies and fitness landscapes) may be the result of:

1 different representations and their dedicated operators (two are shown),
2 different interpretations (three are shown) of genes within one representation,
3 the same representation and the same interpretation of genes, but different
mutation/neighborhood operators (not shown).
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Genetic programming (pol. programowanie genetyczne)

Genetic programming∗ is used to optimize expressions and programs. A characteristic
property is a tree structure that represents solutions – so programs can be encoded,
although a less popular linear representation also exists.∗∗

min

add x

max neg

add cos y

y 0 y

Figure: Expression min(add(max(add(y, 0), cos(y)), neg(y)), x)) which is min(max(y
+ 0, cos(y)) + (-y), x) which is min(x, max(y, cos(y)) - y).

∗Free book:
http://www0.cs.ucl.ac.uk/staff/W.Langdon/ftp/papers/poli08_fieldguide.pdf

∗∗https://en.wikipedia.org/wiki/Linear_genetic_programming

http://www0.cs.ucl.ac.uk/staff/W.Langdon/ftp/papers/poli08_fieldguide.pdf
https://en.wikipedia.org/wiki/Linear_genetic_programming
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Genetic programming – tree structure

Expressions existing in a population consist of elements that belong to the set of
functions F (tree nodes) and the set of terminals T (tree leaves). These sets can be
composed as needed and adapted to the problem being solved. The solution space
consists of all combinations of expressions composed of members of both sets.

Set of functions Set of terminals
Type Examples Type Examples

Arithmetic +, *, / Variables x⃗, y, x172
Math sin, cos, exp Constants 3, 0.45, π
Logic AND, OR, NOT Procedures rand, go left, read proximity
Conditional IF-THEN-ELSE
Looping FOR, REPEAT

“Procedures” can be functions or actions without arguments.
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Genetic programming – an example of using the DEAP library

from deap import gp
# https :// deap.readthedocs.io/en/master/tutorials/advanced/gp.
html

# https :// deap.readthedocs.io/en/master/examples/gp_symbreg.html

pset = gp.PrimitiveSet("MAIN", 2) # two arguments (x and y)
pset.addPrimitive(operator.add , 2)
pset.addPrimitive(operator.sub , 2)
pset.addPrimitive(operator.mul , 2)
pset.addPrimitive(operator.neg , 1)
pset.addPrimitive(min , 2)
pset.addPrimitive(max , 2)
pset.addPrimitive(math.cos , 1)
pset.addPrimitive(math.sin , 1)
pset.addEphemeralConstant("rand101", lambda: random.randint
(-1,1))

pset.renameArguments(ARG0=’x’)
pset.renameArguments(ARG1=’y’)
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Genetic programming – desirable properties

Two properties of the F and T sets are desirable:

1 closure – each function works for any values and types of arguments returned by
any function or terminal,

2 sufficiency – elements available in both sets allow one to construct a solution to
the problem.
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Genetic programming – closure

Consider how the closure property can be ensured.

The closure property can be achieved by protecting functions (e.g. always calculating
the absolute value of the square root argument) or penalizing invalid expressions
(lowering their fitness value). Or set the CPU/program/operating system flags so that
all operations do not cause exceptions... (a story as an example: a long numerical
simulation under Linux and the difference of the same simulation under Windows).

def protectedDiv(left , right):
try:
return left / right

except ZeroDivisionError:
return 1

pset.addPrimitive(protectedDiv , 2)



Messy GA

Gene linkage
learning
Epistasis – DLED

Epistasis – a continuous
example

Hierarchical GA

Gene-pool optimal mixing

Evolutionary
strategies

Differential
evolution

Evolutionary
programming
Real numbers

Genotype→ phenotype
mapping

Genetic
programming

References

Genetic programming – closure

Consider how the closure property can be ensured.

The closure property can be achieved by protecting functions (e.g. always calculating
the absolute value of the square root argument) or penalizing invalid expressions
(lowering their fitness value). Or set the CPU/program/operating system flags so that
all operations do not cause exceptions... (a story as an example: a long numerical
simulation under Linux and the difference of the same simulation under Windows).

def protectedDiv(left , right):
try:
return left / right

except ZeroDivisionError:
return 1

pset.addPrimitive(protectedDiv , 2)
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Genetic programming – sufficiency

If we don’t provide sufficiency, GP will try to find the (best) approximation of the
solution using available means.
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Basic methods of creating the initial population

Full: randomly pick nodes from F if the depth is below the selected threshold,
otherwise from T. All trees will have the same depth – examples in Fig. 3.

Grow: randomly pick nodes from F ∪ T if the depth is below the selected
threshold, otherwise from T. The trees will have different depth and shape –
examples in Fig. 4.

Ramped half-and-half: generate half of the population using the full method, and
another half using the grow method – this ensures diversity in the initial
population.
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Basic methods of creating the initial population

Full: randomly pick nodes from F if the depth is below the selected threshold,
otherwise from T. All trees will have the same depth – examples in Fig. 3.

Grow: randomly pick nodes from F ∪ T if the depth is below the selected
threshold, otherwise from T. The trees will have different depth and shape –
examples in Fig. 4.

Ramped half-and-half: generate half of the population using the full method, and
another half using the grow method – this ensures diversity in the initial
population.
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Generating individuals using the Full method

sin

5

add

neg cos

sin neg

4 4

max

protectedDiv cos

add sub cos

x 0 x 3 x

cos

mul

sin add

x y x

protectedDiv

neg cos

x y

Figure: Five individuals generated using the Full method, gp.genFull(pset,1,3) (DEAP
requires two parameters, not one) for T={x, y, 0, 1, 2, 3, 4, 5}.
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Generating individuals using the Grow method

sin

y

sin

add

4 4

mul

mul add

x add neg min

4 0 x 3 1

max

mul y

cos sub

0 0 y

sin

x

Figure: Five individuals generated using the Grow method, gp.genGrow(pset,1,3), for
T={x, y, 0, 1, 2, 3, 4, 5}. In the DEAP’s genGrow() method there is no point in setting the
min depth and max depth arguments to the same value, because then the generated trees will
have all the leaves at the same depth – as if the trees were generated using the genFull()
method.
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Crossing over

Crossing over in GP is usually implemented as swapping randomly selected subtrees of
parent trees.

toolbox.register("mate", gp.cxOnePoint)

max

sub sin

sin x x

add

y 1

sub

add neg

y y y

max

sub sin

sin x neg

add y

y 1

sub

add x

y y

Figure: Crossing over in GP. Top: parents generated by the gp.genGrow(pset,2,4) method.
Bottom: offspring generated using the gp.cxOnePoint(parent1,parent2) method.
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Crossing over

Crossing over in GP is usually implemented as swapping randomly selected subtrees of
parent trees.

toolbox.register("mate", gp.cxOnePoint)

max

sub sin

sin x x

add

y 1

sub

add neg

y y y

max

sub sin

sin x neg

add y

y 1

sub

add x

y y

Figure: Crossing over in GP. Top: parents generated by the gp.genGrow(pset,2,4) method.
Bottom: offspring generated using the gp.cxOnePoint(parent1,parent2) method.
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Mutation

A standard mutation is implemented as selecting a random location in the original tree
and replacing the subtree with a newly generated one using one of the methods
described above.

toolbox.register("expr_mut", gp.genFull , min_=0, max_ =2)
toolbox.register("mutate", gp.mutUniform , expr=toolbox.expr_mut ,

pset=pset)

sin

max

sin neg

protDiv x

y y

sin

max

sin neg

protDiv x

sub y

add min

x x 1 5

Figure: Left: original solution generated by the gp.genGrow(pset,2,5) method. Right: a
mutant created using the gp.mutUniform(parent, toolbox.expr mut, pset=pset)
method, with earlier toolbox.register("expr mut", gp.genFull, min =0, max =2).
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Mutation
A standard mutation is implemented as selecting a random location in the original tree
and replacing the subtree with a newly generated one using one of the methods
described above.

toolbox.register("expr_mut", gp.genFull , min_=0, max_ =2)
toolbox.register("mutate", gp.mutUniform , expr=toolbox.expr_mut ,

pset=pset)

sin

max

sin neg

protDiv x

y y

sin

max

sin neg

protDiv x

sub y

add min

x x 1 5

Figure: Left: original solution generated by the gp.genGrow(pset,2,5) method. Right: a
mutant created using the gp.mutUniform(parent, toolbox.expr mut, pset=pset)
method, with earlier toolbox.register("expr mut", gp.genFull, min =0, max =2).
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Bloating of solutions

To protect against uncontrolled bloating of expressions, penalties for the size of
expressions can be included in fitness, or limits of the depth of the tree can be
introduced.

toolbox.decorate("mate", gp.staticLimit(key=operator.attrgetter(
"height"), max_value =13))

toolbox.decorate("mutate", gp.staticLimit(key=operator.
attrgetter("height"), max_value =11))

Since expressions or programs generated by GP are random in their character, it would
be difficult to run them directly in the operating system – it is safer to interpret or
evaluate them in a virtual environment (e.g. in a virtual machine or “sandbox”). The
evaluation of the quality of a solution requires most often its calculation or its
application in many situations (different argument values, different robot locations,
etc.).

# Exception: MemoryError - Error in tree evaluation: Python
cannot evaluate a tree higher than 90.
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toolbox.decorate("mate", gp.staticLimit(key=operator.attrgetter(
"height"), max_value =13))

toolbox.decorate("mutate", gp.staticLimit(key=operator.
attrgetter("height"), max_value =11))

Since expressions or programs generated by GP are random in their character, it would
be difficult to run them directly in the operating system – it is safer to interpret or
evaluate them in a virtual environment (e.g. in a virtual machine or “sandbox”). The
evaluation of the quality of a solution requires most often its calculation or its
application in many situations (different argument values, different robot locations,
etc.).

# Exception: MemoryError - Error in tree evaluation: Python
cannot evaluate a tree higher than 90.



Messy GA

Gene linkage
learning
Epistasis – DLED

Epistasis – a continuous
example

Hierarchical GA

Gene-pool optimal mixing

Evolutionary
strategies

Differential
evolution

Evolutionary
programming
Real numbers

Genotype→ phenotype
mapping

Genetic
programming

References

Selection

While the standard selection methods discussed earlier can be used, Lexicase selection
often delivers better results. In this method, we do not aggregate the errors of each
solution on all tests into a single value. Instead, to select one individual from the
population, we first randomize the order of the tests, and then select those individuals
that scored the best in the population on the first test (from this randomized order). If
there is more than one equally best individual, we also compare their performance on
the second test, then possibly the third, and so on.

Discussion: how does this approach differ from selection methods used in evolutionary
multi-criteria optimization such as NSGA or SPEA?
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The effectiveness of GP

Discussion: fitness landscape, global convexity and optimization efficiency in GP.
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Symbolic regression

Symbolic regression is a typical application of GP where we are looking for a function
that describes (fits) as precisely as possible the given points. While in traditional
regression methods the form of the function sought is fixed (we only look for
coefficients), in GP it is easy to manipulate the form of the function and even look for
certain classes of functions or for any functions – hence this regression method is called
symbolic.

The form of the expression that we look for is controlled by the appropriate selection of
elements in the set of functions F and the set of terminal symbols T, and by imposing
potential restrictions on the tree depth, the number of occurrences of functions from
the F set, etc.
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Symbolic regression – looking for f (x) = x2 − x

Sample experiment #1: Find the expression that best describes the set of points
belonging to the function f (x) = x2 − x . Remember that in practice this function is
unknown and we want to discover it! Available to GP are functions that can be seen in
the example source codes above, i.e., x , also operators
neg,+,−, ∗, /,max,min, sin, cos, and additionally, constants −1, 0, 1.
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Symbolic regression – an example of using the DEAP library

def target_function(x):
return x**2 - x # in a real application , this is what we
look for!

def eval_expr(individual , points):
# transform the tree expression into a callable function
func = toolbox.compile(expr=individual)
# evaluate the mean squared error between the expression and
the target function
sqerrors = ((func(x) - target_function(x))**2 for x in points
)
return math.fsum(sqerrors) / len(points),

toolbox.register("evaluate", eval_expr , points =[x/10. for x in
range (-10,11)])
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Looking for f (x) = x2 − x . First generation

1.00 0.75 0.50 0.25 0.00 0.25 0.50 0.75 1.00

0.0

0.5

1.0

1.5

2.0 Target
Best expression

Figure: The best solution in the first generation (i.e., in a randomly generated population).

mul(min(0, x), neg(1))
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Looking for f (x) = x2 − x . Last generation
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Best expression

Figure: The best solution once the evolution finished.

sub(x, add(min(min(min(0, x), mul(0, add(0, max(1, 0)))),
add(x, max(x, mul(add(0, x), neg(x))))), max(add(min(min(x, 0),
add(min(sin(x), x), max(sin(x), add(add(0, 0), sin(sin(sin(x))))))),
max(sin(add(min(sin(x), sin(sin(sin(sin(x))))), max(sin(sin(x)), -1))),
x)), x)))
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Looking for f (x) = x2 − x . Last generation
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Best expression

Figure: The best solution once the evolution finished.

sub(x, add(min(min(min(0, x), mul(0, add(0, max(1, 0)))),
add(x, max(x, mul(add(0, x), neg(x))))), max(add(min(min(x, 0),
add(min(sin(x), x), max(sin(x), add(add(0, 0), sin(sin(sin(x))))))),
max(sin(add(min(sin(x), sin(sin(sin(sin(x))))), max(sin(sin(x)), -1))),
x)), x)))
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Looking for f (x) = x2 − x . Alternative settings. . .

After increasing population size and the number of generations: mul(add(-1, x),
min(x, x)). Similarly, after limiting the complexity of expressions (intensifies search
among simple expressions): mul(add(-1, x), protectedDiv(x, 1)).
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Symbolic regression – looking for XOR

Sample experiment #2: Find a logic circuit that implements the XOR function, i.e.,
{x1, x2, y} = {(0, 0, 0); (0, 1, 1); (1, 0, 1); (1, 1, 0)}.

In this experiment, GENERATIONS=100 and POPSIZE=150, and in case of failure –
another attempt with POPSIZE=1500.
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Symbolic regression – looking for XOR: functions and terminals

def nand(input1 , input2):
return not(input1 and input2)

def if_then_else(input , output1 , output2):
return output1 if input else output2

pset = gp.PrimitiveSetTyped("main", [bool , bool], bool) # let’s
use strongly -typed GP as an example

pset.addPrimitive(operator.xor , [bool , bool], bool)
pset.addPrimitive(operator.or_ , [bool , bool], bool)
pset.addPrimitive(operator.and_ , [bool , bool], bool)
pset.addPrimitive(operator.not_ , [bool], bool)
pset.addPrimitive(nand , [bool , bool], bool) # custom
pset.addPrimitive(if_then_else , [bool , bool , bool], bool) #
custom

pset.addTerminal(True , bool)

pset.renameArguments(ARG0="x1")
pset.renameArguments(ARG1="x2")
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Symbolic regression – looking for XOR: evaluation

def eval_expr(individual):
# transform the tree expression into a callable function
func = toolbox.compile(expr=individual)
# evaluate the error between the expression and the target
function
err = 0
for x1 in (False ,True):

for x2 in (False ,True):
target = x1^x2
actual = func(x1,x2)
if target != actual:
err += 1

return err ,
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Symbolic regression – looking for XOR: results

All operators and the True constant as in the source code above:
xor(if then else(x2, True, x2), x1)

xor

if_then_else x1

x2 True x2

Only if-then-else: no perfect solution found (lowest error = 1)
Only if-then-else and not:
if then else(x1, not (x2), x2)

if_then_else

x1 not_ x2

x2

Only not and and: no perfect solution found (lowest error = 1)
Only nand:
nand(nand(nand(x2, x1), x2), nand(x1, nand(x1, x2)))

nand

nand nand

nand x2 x1 nand

x2 x1 x1 x2

Trio and, or, not:
and (not (and (x2, x1)), or (x1, x2))

and_

not_ or_

and_ x1 x2

x2 x1
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Symbolic regression – looking for XOR: results

All operators and the True constant as in the source code above:
xor(if then else(x2, True, x2), x1)

xor

if_then_else x1

x2 True x2

Only if-then-else: no perfect solution found (lowest error = 1)

Only if-then-else and not:
if then else(x1, not (x2), x2)

if_then_else

x1 not_ x2

x2

Only not and and: no perfect solution found (lowest error = 1)
Only nand:
nand(nand(nand(x2, x1), x2), nand(x1, nand(x1, x2)))

nand

nand nand

nand x2 x1 nand

x2 x1 x1 x2

Trio and, or, not:
and (not (and (x2, x1)), or (x1, x2))

and_

not_ or_

and_ x1 x2

x2 x1
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Symbolic regression – looking for XOR: results

All operators and the True constant as in the source code above:
xor(if then else(x2, True, x2), x1)

xor

if_then_else x1

x2 True x2

Only if-then-else: no perfect solution found (lowest error = 1)
Only if-then-else and not:
if then else(x1, not (x2), x2)

if_then_else

x1 not_ x2

x2

Only not and and: no perfect solution found (lowest error = 1)
Only nand:
nand(nand(nand(x2, x1), x2), nand(x1, nand(x1, x2)))

nand

nand nand

nand x2 x1 nand

x2 x1 x1 x2

Trio and, or, not:
and (not (and (x2, x1)), or (x1, x2))

and_

not_ or_

and_ x1 x2

x2 x1
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Symbolic regression – looking for XOR: results

All operators and the True constant as in the source code above:
xor(if then else(x2, True, x2), x1)

xor

if_then_else x1

x2 True x2

Only if-then-else: no perfect solution found (lowest error = 1)
Only if-then-else and not:
if then else(x1, not (x2), x2)

if_then_else

x1 not_ x2

x2

Only not and and: no perfect solution found (lowest error = 1)

Only nand:
nand(nand(nand(x2, x1), x2), nand(x1, nand(x1, x2)))

nand

nand nand

nand x2 x1 nand

x2 x1 x1 x2

Trio and, or, not:
and (not (and (x2, x1)), or (x1, x2))

and_

not_ or_

and_ x1 x2

x2 x1
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Symbolic regression – looking for XOR: results

All operators and the True constant as in the source code above:
xor(if then else(x2, True, x2), x1)

xor

if_then_else x1

x2 True x2

Only if-then-else: no perfect solution found (lowest error = 1)
Only if-then-else and not:
if then else(x1, not (x2), x2)

if_then_else

x1 not_ x2

x2

Only not and and: no perfect solution found (lowest error = 1)
Only nand:
nand(nand(nand(x2, x1), x2), nand(x1, nand(x1, x2)))

nand

nand nand

nand x2 x1 nand

x2 x1 x1 x2

Trio and, or, not:
and (not (and (x2, x1)), or (x1, x2))

and_

not_ or_

and_ x1 x2

x2 x1
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Symbolic regression – looking for XOR: results

All operators and the True constant as in the source code above:
xor(if then else(x2, True, x2), x1)

xor

if_then_else x1

x2 True x2

Only if-then-else: no perfect solution found (lowest error = 1)
Only if-then-else and not:
if then else(x1, not (x2), x2)

if_then_else

x1 not_ x2

x2

Only not and and: no perfect solution found (lowest error = 1)
Only nand:
nand(nand(nand(x2, x1), x2), nand(x1, nand(x1, x2)))

nand

nand nand

nand x2 x1 nand

x2 x1 x1 x2

Trio and, or, not:
and (not (and (x2, x1)), or (x1, x2))

and_

not_ or_

and_ x1 x2

x2 x1
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Genetic programming – conclusions and discussion

Discussion: would it be beneficial to simplify expressions during evolution?

Discussion: in which areas does GP have a chance to compete with humans, in which
it can surpass them, and in which it has no chance? Why?
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Genetic programming – conclusions and discussion

Discussion: would it be beneficial to simplify expressions during evolution?

Discussion: in which areas does GP have a chance to compete with humans, in which
it can surpass them, and in which it has no chance? Why?
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Genetic programming – improving effectiveness

Semantic GP (semantics = the set of results of an individual for the set of tests) and
geometric semantic GP (genetic operators take into account the topology of the
semantic space) [Bak+19].

Cf. earlier reminder on FDC, DPX, “How to intentionally develop (design) effective
crossover operators?”, and the embryogeny/mapping.
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Looking for a training algorithm for a neural network

Sample experiment #3: Find an algorithm that trains a neural network...

Evolutionary architecture: “regularized evolution” (Fig. 2) [Rea+20].
Discoveries of evolution – Fig. 6:
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Hyper-heuristics and self-programmable algorithms

The structure of the evolutionary algorithm (the selection technique, crossing over,
mutation, ...) may be controlled by GP (i.e., the structure may be subject to
evolutionary improvement) [BT96; OG03; Olt05]. GP can “construct” the optimization
algorithm from modules, including atypical architectures: many kinds of mutations,
unusual operators that influence just a part of the population, multiple selection
processes in one step, etc., depending on the degrees of freedom of GP.

Results are better than those produced by the traditional algorithm, but at a cost. . .

Compare: the No Free Lunch theorem and hyper-heuristics∗ that search through the
space of heuristics and their combinations [Ros05; ÖBK08; Bur+10].

∗http://en.wikipedia.org/wiki/Hyper-heuristic

http://en.wikipedia.org/wiki/Hyper-heuristic
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Hyper-heuristics and self-programmable algorithms

The structure of the evolutionary algorithm (the selection technique, crossing over,
mutation, ...) may be controlled by GP (i.e., the structure may be subject to
evolutionary improvement) [BT96; OG03; Olt05]. GP can “construct” the optimization
algorithm from modules, including atypical architectures: many kinds of mutations,
unusual operators that influence just a part of the population, multiple selection
processes in one step, etc., depending on the degrees of freedom of GP.

Results are better than those produced by the traditional algorithm, but at a cost. . .

Compare: the No Free Lunch theorem and hyper-heuristics∗ that search through the
space of heuristics and their combinations [Ros05; ÖBK08; Bur+10].

∗http://en.wikipedia.org/wiki/Hyper-heuristic

http://en.wikipedia.org/wiki/Hyper-heuristic
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And what if. . .

If you have some time and you like SF, read
https://www.teamten.com/lawrence/writings/coding-machines/.

https://www.teamten.com/lawrence/writings/coding-machines/
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