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Reminder from earlier studies (and, possibly, a supplement)

What does Holland’s schema theorem talk about?

What does the building-block hypothesis state?

What does the “No Free Lunch” theorem tell us?

https://en.wikipedia.org/wiki/Holland%27s_schema_theorem
https://en.wikipedia.org/wiki/Genetic_algorithm#The_building_block_hypothesis
https://en.wikipedia.org/wiki/No_free_lunch_in_search_and_optimization
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The structure of deceptive optimization problems

In order to construct a problem that will cause difficulty for the genetic algorithm, let’s
negate the building-block hypothesis: good building blocks, when combined, should
constitute an unprofitable structure.

The simplest such case can be produced for genotypes of length 2 (this is a deceptive
problem of order two).
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Let’s build a deceptive problem of order two

Let’s assume that there exist four schemata:

*** 0 *** 0 ***
*** 0 *** 1 ***
*** 1 *** 0 ***
*** 1 *** 1 ***

Asterisks correspond to any number of non-determined bits (but the positions of
determined bits are the same in all schemata). Let’s denote the average fitness of
schemata by f00, f01, f10, f11 and the schema with two ones is the global optimum
(f11). For a problem to be deceptive, we want schemata with one determined ‘0’ to be
better than the corresponding schemata with one determined ‘1’ – that is, at least one
of the inequalities should be satisfied:

f0∗ > f1∗ f0∗ = (f00 + f01)/2, etc.
f∗0 > f∗1
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The fitness landscape of the minimal deceptive problem

Such a problem is called the minimal deceptive problem, MDP, because a deceptive
problem of order one does not exist.

There are two types of deceptive
problems of order two (the plot on the
right shows an example of a deceptive
problem of order two, type I):

Type I: f01 > f00
Type II: f00 ≥ f01 00

10

11

In MDP, the fitness function cannot be expressed as a linear combination of individual

alleles, that is, in the form of f (x1, x2) = b +
2∑

i=1

aixi .
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Hardness of deceptive problems in practice

The fact that a problem is deceptive does not mean that a genetic algorithm will not
find the optimum. It means though that the fitness function (shown on the vertical
axis) cannot be expressed as a linear combination of individual bits, and so the
phenomenon of epistasis (nonlinearity) occurs. Usually, however, such a problem does
not turn out to be GA-hard, that is, the genetic algorithm can find the optimal solution.

The behavior of the algorithm, though, depends on a number of factors – such as, for
example, the initial existence of schemata in the population of individuals. In particular,
if all four schemata occur in the initial population, the deceptive problem of order two,
type I is not GA-hard. For type II problems, the performance of the algorithm depends
on the distribution of schemata in the population: if the 00 schema prevails, the
algorithm may converge to a suboptimal solution (although such a situation is rare). A
more detailed analysis of deceptive problems can be found in [Gol02, pp. 46–48, 377].
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Epistasis

This is a property of a representation (and potentially, operators that act on it) – the
degree of interdependence between different genes in a chromosome [Dav90]. If a
given representation exhibits high epistasis, the phenotypic effect of certain genes
depends on the alleles (values) of other genes (i.e., polygenicity).

Zero epistasis: each gene independently influences the value of the objective function
(and then there is no merit in using EAs). For the effectiveness of EAs, the less
epistasis the better. For some definitions of the objective function, when designing the
representation and operators, it may be beneficial to accept a slight increase in
epistasis if we gain a more favorable relationship between the topology of the search
space and the fitness landscape.

Estimate roughly the epistasis for the following objective functions f (x1, x2), where x
are numbers – values of genes: x1 + x2, x1 − x2, x1 · x2, x1 + x2 · x2, x1 + x1 · x2,
x1
x2
, x2 +

x1
x2
.

https://en.wikipedia.org/wiki/Epistasis#Fitness_landscapes_and_evolvability
https://en.wikipedia.org/wiki/Epistasis#Fitness_landscapes_and_evolvability
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Epistasis – an example
We are optimizing the shape of a 2D geometry (or a
cross-section of a 3D object); genes represent the
position of vertices in space (coordinates xi , yi ).

Compare the epistasis in the following scenarios:

1 Just the xi , yi genes and the mutation operator that moves a random vertex.
2 We introduce two additional genes: rotation and scale. The mutation of these
individual genes changes the orientation (rotation) and size of the entire geometry.

3 Instead of these two genes, we introduce dedicated rotation-mutation and
scaling-mutation operators.

In scenario (1), adjusting the orientation and the size of the geometry is only possible
by very many independent mutations of the vertex coordinates. However, in some
problems (for example in online optimization, where the target shape keeps changing),
the ability to quickly rotate and scale the geometry can accelerate convergence and
improve the quality of obtained solutions. In scenario (2), consider the impact of a
particular implementation (mathematical operations transforming genotype →
phenotype) – think about the effects of combining mutations (1) and (2).
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Epistasis – a formal description

Epistasis as the degree of interaction between genes [RW95; NK00]:

f (s) = constant

+
l−1∑
i=0

effect of si

+
l−2∑
i=0

l−1∑
j=i+1

interaction between si i sj

+ . . .

+ interaction between s0, s1, . . . , sl−1
+ random noise.

si – i-th gene (or allele at i-th gene, if s is a specific solution),
l – the number of genes (indexed starting from 0).

The interactions can be positive and negative: if, for example, the interaction between
si and sj has the same sign as the effects of si and sj , then such an interaction
amplifies the effect of these two genes and may be desirable.

https://simple.wikipedia.org/wiki/Allele
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Epistasis and mutation

The epistasis of genes has consequences when they are mutated: explore this plot.

https://en.wikipedia.org/wiki/Epistasis#/media/File:Synergistic_versus_antagonistic_epistasis.svg
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Empirical and theoretical evaluation of EAs

Evaluating the efficiency and behavior of EAs can be performed either theoretically or
experimentally (empirically).

Theoretical analysis results in well-established, definite knowledge, but often only very
simple models (i.e., models with many assumptions) can be investigated in this way.

Empirical analysis of EAs results in less definite knowledge, and it is more difficult to
make generalizations, but it is always possible to perform such analysis. Apart from
testing the efficiency of the algorithm on the given optimization problem, well-known
test problems∗ are often used, or parameterized models of problems that allow to
control the degree of epistasis – such as the NK model∗∗ and its variations with
neutrality: NKP (probabilistic) and NKQ (quantised).

∗https://en.wikipedia.org/wiki/Test_functions_for_optimization
∗∗https://en.wikipedia.org/wiki/NK_model

https://en.wikipedia.org/wiki/Empirical_research
https://en.wikipedia.org/wiki/Test_functions_for_optimization
https://en.wikipedia.org/wiki/NK_model
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Consequences of neutrality in fitness landscapes [Gea+02]

naively/traditionally, fitness landscape is thought to be “composed of hills”, and
mutations cause a change in fitness

this leads to the concept of “local optima” where solutions or their populations
can be trapped

molecular research on RNA folding landscapes suggests that a large proportion of
mutations at the molecular level are selectively neutral

neutrality is also present in many real-world optimization problems (popular
“plateaus” or same-quality neighbors)

thus, many genotypes [→ single phenotype] → single fitness
neutrality: one of the reasons of punctuated equilibria

if neutrality is frequent in the landscape, the risk of an EA population being
trapped in local optima is low

accordingly, the role of the characteristics of reconfiguration operators
(mutation/neighborhood, crossover) and the role of the genetic drift is increased

key role of the strict vs. non-strict inequality in local search implementations we
discussed earlier (strict → all neutral moves are potential dead ends)
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The main driving forces of evolution

what is driving evolution? influencing the trajectory of the population?

fitness landscape vs. reconfiguration operators

what happens when all or most mutations are detrimental and old individuals are
not preserved?

“bias”/“neutrality” of fitness landscape vs. bias/neutrality of reconfiguration
operators

reconfiguration operators: changes in allele frequency, but usually no intended
bias!

you see a population of individuals with blue, green, and brown eyes;
after some generations, everybody has green eyes. Why?
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Genetic drift
let’s turn off selective pressure, mutation and crossover

marbles-in-a-jar example
the discrete nature of populations (made of discrete individuals), so a perfectly
equal distribution of alleles is not possible (e.g., 1/64 among 5000 individuals)
bottlenecks (population temporarily contracts to a very small size)

the founder effect

the influence of trait distribution and population size

the probability that a trait will ultimately dominate the entire population is its
frequency in the population
the expected number of generations for the total domination to occur is
proportional to population size

the influence of randomness (unrestricted) vs. “fairness” – reminder: our earlier
detailed discussion

consequences can be counterintuitive, misinterpreted and misattributed if you
don’t know about these phenomena!
the interaction of the fitness landscape (selection), reconfiguration operators, and
genetic drift

https://en.wikipedia.org/wiki/Genetic_drift#/media/File:Random_sampling_genetic_drift.svg
https://en.wikipedia.org/wiki/Population_bottleneck
https://en.wikipedia.org/wiki/Genetic_drift#/media/File:Founder_effect_with_drift.jpg
https://en.wikipedia.org/wiki/Genetic_drift#/media/File:Random_genetic_drift_chart.png
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Genetic drift
let’s turn off selective pressure, mutation and crossover
marbles-in-a-jar example
the discrete nature of populations (made of discrete individuals), so a perfectly
equal distribution of alleles is not possible (e.g., 1/64 among 5000 individuals)
bottlenecks (population temporarily contracts to a very small size)
the founder effect

the influence of trait distribution and population size

the probability that a trait will ultimately dominate the entire population is its
frequency in the population
the expected number of generations for the total domination to occur is
proportional to population size

the influence of randomness (unrestricted) vs. “fairness” – reminder: our earlier
detailed discussion

consequences can be counterintuitive, misinterpreted and misattributed if you
don’t know about these phenomena!
the interaction of the fitness landscape (selection), reconfiguration operators, and
genetic drift
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An example of a theoretical analysis of a GA

Let’s imagine a genetic algorithm (binary representation) with roulette selection,
crossover, but no mutation.

What will happen after the algorithm has been running for a long time?

How to prove it?
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An example of a theoretical analysis of a GA
States and transitions

Let us consider a population with m individuals of length k. How many states the
population can be in?

How many states are attractors?

We will employ Markov chains; let π be a state, and P be a transition matrix
containing probabilities of transitions between states∗. There are 2mk states. The
distribution of probabilities of being in each state after n transitions∗∗ starting from
state π is the π-th row of the matrix Pn, i.e., πPn. Since there is no mutation, some
states are absorbing (there is no transition out of them) – all individuals are identical;
there are a = 2k such states. Consequently, we can describe the matrix P as∗∗∗

P =

[
Ia 0
R Q

]
where Ia is an a× a matrix with ones on the main diagonal and zeros elsewhere (the
identity matrix), R is a t × a submatrix describing transitions to an absorbing state,
and Q is a t × t submatrix describing transitions to transient (non-absorbing) states;
t = 2mk − a.

∗https://en.wikipedia.org/wiki/Stochastic_matrix
∗∗https://www.youtube.com/watch?v=nnssRe5DewE

∗∗∗https://en.wikipedia.org/wiki/Absorbing_Markov_chain

https://en.wikipedia.org/wiki/Stochastic_matrix
https://www.youtube.com/watch?v=nnssRe5DewE
https://en.wikipedia.org/wiki/Absorbing_Markov_chain
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An example of a theoretical analysis of a GA
Aggregation of probabilities of transitions between states

For n transitions,

Pn =

[
Ia 0

NnR Qn

]
where Nn = It +Q +Q2 +Q3 + . . .+Qn−1, and It is the identity matrix of size t × t.

As n approaches infinity,

lim
n→∞

Pn =

[
Ia 0

(It − Q)−1R 0

]
.
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An example of a theoretical analysis of a GA
The probability of absorption

So, as one can easily see by multiplying sample matrices in numpy or even in a
spreadsheet, our algorithm starting from a non-absorbing state (probabilities
(It − Q)−1R) is bound to end up in some absorbing state and stay there (Ia). Let’s
calculate the probability of reaching an absorbing state [Fog00, p. 105]. Let
Γ = {0, 1}. After n steps, our algorithm will end up in a state γ, γ ∈ (Γk)

m
:

Pr(γ ∈ A) =
a∑

i=1

(π∗Pn)i =
a∑

i=1

(
π∗

[
Ia

NnR

])
i

where (·)i denotes the i-th element of the row vector, A is the set of all absorbing
states, and π∗ is a row vector that contains the probabilities of starting the algorithm
with each state of the population. At the limit, the probability of absorption

lim
n→∞

a∑
i=1

(
π∗

[
Ia

NnR

])
i

=
a∑

i=1

(
π∗

[
Ia

(I − Q)−1R

])
i

= 1.

https://www.cs.put.poznan.pl/mkomosinski/lectures/optimization/absorbing-markov-chain.mp4
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An optional exercise

We use a generational evolutionary algorithm, a population of n individuals, g of n
individuals are good, n − g are bad. We use tournament selection (tournament size k)
with replacement, in which if a good individual meets a bad one, the good one wins.

Assume that crossover and mutation do not change the quality of an individual (good
remains good, bad remains bad).

1 Assuming that there are half of the good individuals (g = n
2 ) in the population,

how will this proportion change in the next generation (i.e., after one selection)?
2 Assume that all individuals are subject to mutation. Mutation never improves a
bad individual, however, it degrades a good individual with probability m. What is
the minimum g to prevent the number of good individuals in the population from
decreasing?
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