# Biologically-inspired algorithms and models 7. Evolutionary design

Maciej Komosinski

# How to represent solutions in ED (evolutionary design)?

#### Examples

Reasons for the difficulty

Types

Genotype vs. phenotype

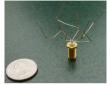
References

Evolutionary design is a special case of design automation.

Optimized designs can be passive (static) or active (equipped with actuators–effectors and sometimes also with sensors). One example of ED is therefore evolutionary robotics.

Come up with a few genetic representations for bridge optimization.

# Examples of evolutionary design (1/2)


## Examples

Reasons for the difficulty

Types

Genotype vs. pheno type


References



Automated Antenna Design with Evolutionary Algorithms, G. Hornby et al., 2006



Combining Structural Analysis and Multi-Objective Criteria for Evolutionary Architectural Design, J. Byrne et al., 2011



Evolutionary Design of Steel Structures in Tall Buildings, R. Kicinger et al., 2005



Evolving Soft Robots, 2013

Evolutionary Developmental Soft Robotics (...) to Study Intelligence and Adaptive Behavior (...), F. Corucci, 2017

#### Xenobots, [Kri+20]



Evolving virtual creatures, K. Sims [Sim94]





Framsticks [KU25]



Generative representations, G. Hornby [Hor03]

# Examples of evolutionary design (2/2)

## Examples

- Reasons for the difficulty
- Types
- Genotype vs. phenotype
- References

- Early evolved robots https://youtu.be/tgJcYx-yewA?t=237
- Wind power plant and turbine optimization https://www.youtube.com/watch?v=cNaFhhwTpS8
- Water turbine optimization (what to pay attention to, what are the goals) https://youtu.be/fcE6HV1g2kk?t=2477
- Optimizing the aerodynamics of a car https://www.youtube.com/watch?v=sw7\_XWdd56c&t=25



• Optimizing the structure of a car Czinger 21C: "Using supercomputing and AI (...) the chassis structure is generatively designed. Every component of the structure is pareto optimized for its precise function, not a single gram of material goes to waste." https://youtu.be/Pppne2jcgok7t=1541

Let's compare the complexity of the classic permutation-based optimization problem and the problem of optimizing designs:

| Property                |   | QAP/TSP | Optimizing designs |
|-------------------------|---|---------|--------------------|
| Finite set of solutions |   |         |                    |
|                         |   |         |                    |
|                         |   |         |                    |
|                         |   |         |                    |
|                         |   |         |                    |
|                         |   |         |                    |
|                         |   |         |                    |
|                         |   |         |                    |
|                         |   |         |                    |
|                         |   |         |                    |
|                         |   |         |                    |
|                         |   |         |                    |
|                         |   |         |                    |
|                         | I |         |                    |

#### Examples

Reasons for the difficulty

## Types

Genotype vs. pheno type

Let's compare the complexity of the classic permutation-based optimization problem and the problem of optimizing designs:

| Property                  |    | QAP/TSP | Optimizing designs |
|---------------------------|----|---------|--------------------|
| Finite set of solutions   |    |         |                    |
| Discrete-continuous space |    |         |                    |
|                           |    |         |                    |
|                           |    |         |                    |
|                           |    |         |                    |
|                           |    |         |                    |
|                           |    |         |                    |
|                           |    |         |                    |
|                           |    |         |                    |
|                           |    |         |                    |
|                           |    |         |                    |
|                           |    |         |                    |
|                           |    |         |                    |
|                           |    |         |                    |
|                           | 11 | I       |                    |

#### **Examples**

Reasons for the difficulty

## **Types**

Genotype vs. pheno type

Let's compare the complexity of the classic permutation-based optimization problem and the problem of optimizing designs:

| Property                   | QAP/TSP | Optimizing designs |
|----------------------------|---------|--------------------|
| Finite set of solutions    |         |                    |
| Discrete-continuous space  |         |                    |
| Genotype has constant size |         |                    |
|                            |         |                    |
|                            |         |                    |
|                            |         |                    |
|                            |         |                    |
|                            |         |                    |
|                            |         |                    |
|                            |         |                    |
|                            |         |                    |
|                            |         |                    |
|                            |         |                    |
|                            |         |                    |
|                            |         |                    |

#### Examples

Reasons for the difficulty

## **Types**

Genotype vs. pheno type

Let's compare the complexity of the classic permutation-based optimization problem and the problem of optimizing designs:

| Property                        | QAP/TSP | Optimizing designs |
|---------------------------------|---------|--------------------|
| Finite set of solutions         |         |                    |
| Discrete-continuous space       |         |                    |
| Genotype has constant size      |         |                    |
| Obvious, natural representation |         |                    |
|                                 |         |                    |
|                                 |         |                    |
|                                 |         |                    |
|                                 |         |                    |
|                                 |         |                    |
|                                 |         |                    |
|                                 |         |                    |
|                                 |         |                    |
|                                 |         |                    |
|                                 |         |                    |
|                                 |         |                    |

#### Examples

Reasons for the difficulty

## **Types**

Genotype vs. pheno type

Let's compare the complexity of the classic permutation-based optimization problem and the problem of optimizing designs:

| Property                          | QAP/TSP | Optimizing designs |
|-----------------------------------|---------|--------------------|
| Finite set of solutions           |         |                    |
| Discrete-continuous space         |         |                    |
| Genotype has constant size        |         |                    |
| Obvious, natural representation   |         |                    |
| Simple definition of neighborhood |         |                    |
|                                   |         |                    |
|                                   |         |                    |
|                                   |         |                    |
|                                   |         |                    |
|                                   |         |                    |
|                                   |         |                    |
|                                   |         |                    |
|                                   |         |                    |
|                                   |         |                    |
|                                   |         |                    |

#### Examples

Reasons for the difficulty

## **Types**

Genotype vs. pheno type

Let's compare the complexity of the classic permutation-based optimization problem and the problem of optimizing designs:

| Property                          | QAP/TSP | Optimizing designs |
|-----------------------------------|---------|--------------------|
| Finite set of solutions           |         |                    |
| Discrete-continuous space         |         |                    |
| Genotype has constant size        |         |                    |
| Obvious, natural representation   |         |                    |
| Simple definition of neighborhood |         |                    |
| Many local optima                 |         |                    |
|                                   |         |                    |
|                                   |         |                    |
|                                   |         |                    |
|                                   |         |                    |
|                                   |         |                    |
|                                   |         |                    |
|                                   |         |                    |
|                                   |         |                    |
|                                   |         |                    |

#### Examples

Reasons for the difficulty

## **Types**

Genotype vs. phenotype

Let's compare the complexity of the classic permutation-based optimization problem and the problem of optimizing designs:

| Property                                          | QAP/TSP | Optimizing designs |
|---------------------------------------------------|---------|--------------------|
| Finite set of solutions                           |         |                    |
| Discrete-continuous space                         |         |                    |
| Genotype has constant size                        |         |                    |
| Obvious, natural representation                   |         |                    |
| Simple definition of neighborhood                 |         |                    |
| Many local optima                                 |         |                    |
| Strong interactions between parts of the solution |         |                    |
|                                                   |         |                    |
|                                                   |         |                    |
|                                                   |         |                    |
|                                                   |         |                    |
|                                                   |         |                    |
|                                                   |         |                    |
|                                                   |         |                    |
|                                                   |         |                    |

#### Examples

Reasons for the difficulty

## Types

Genotype vs. phenotype

Let's compare the complexity of the classic permutation-based optimization problem and the problem of optimizing designs:

| Property                                          | QAP/TSP | Optimizing designs |
|---------------------------------------------------|---------|--------------------|
| Finite set of solutions                           |         |                    |
| Discrete-continuous space                         |         |                    |
| Genotype has constant size                        |         |                    |
| Obvious, natural representation                   |         |                    |
| Simple definition of neighborhood                 |         |                    |
| Many local optima                                 |         |                    |
| Strong interactions between parts of the solution |         |                    |
| Numerous constraints                              |         |                    |
|                                                   |         |                    |
|                                                   |         |                    |
|                                                   |         |                    |
|                                                   |         |                    |
|                                                   |         |                    |
|                                                   |         |                    |
|                                                   |         |                    |

#### Examples

Reasons for the difficulty

Types

Genotype vs. pheno type

Let's compare the complexity of the classic permutation-based optimization problem and the problem of optimizing designs:

| Property                                          | QAP/TSP | Optimizing designs |
|---------------------------------------------------|---------|--------------------|
| Finite set of solutions                           |         |                    |
| Discrete-continuous space                         |         |                    |
| Genotype has constant size                        |         |                    |
| Obvious, natural representation                   |         |                    |
| Simple definition of neighborhood                 |         |                    |
| Many local optima                                 |         |                    |
| Strong interactions between parts of the solution |         |                    |
| Numerous constraints                              |         |                    |
| Multiple evaluation criteria                      |         |                    |
|                                                   |         |                    |
|                                                   |         |                    |
|                                                   |         |                    |
|                                                   |         |                    |
|                                                   |         |                    |
|                                                   |         |                    |

#### Examples

Reasons for the difficulty

## **Types**

Genotype vs. phenotype

Let's compare the complexity of the classic permutation-based optimization problem and the problem of optimizing designs:

| Property                                          | QAP/TSP | Optimizing designs |
|---------------------------------------------------|---------|--------------------|
| Finite set of solutions                           |         |                    |
| Discrete-continuous space                         |         |                    |
| Genotype has constant size                        |         |                    |
| Obvious, natural representation                   |         |                    |
| Simple definition of neighborhood                 |         |                    |
| Many local optima                                 |         |                    |
| Strong interactions between parts of the solution |         |                    |
| Numerous constraints                              |         |                    |
| Multiple evaluation criteria                      |         |                    |
| Hard to formalize evaluation criteria             |         |                    |
|                                                   |         |                    |
|                                                   |         |                    |
|                                                   |         |                    |
|                                                   |         |                    |
|                                                   |         |                    |

#### Examples

Reasons for the difficulty

## Types

Genotype vs. phenotype

Let's compare the complexity of the classic permutation-based optimization problem and the problem of optimizing designs:

| Property                                          | QAP/TSP | Optimizing designs |
|---------------------------------------------------|---------|--------------------|
| Finite set of solutions                           |         |                    |
| Discrete-continuous space                         |         |                    |
| Genotype has constant size                        |         |                    |
| Obvious, natural representation                   |         |                    |
| Simple definition of neighborhood                 |         |                    |
| Many local optima                                 |         |                    |
| Strong interactions between parts of the solution |         |                    |
| Numerous constraints                              |         |                    |
| Multiple evaluation criteria                      |         |                    |
| Hard to formalize evaluation criteria             |         |                    |
| Deterministic evaluation                          |         |                    |
|                                                   |         |                    |
|                                                   |         |                    |
|                                                   |         |                    |
|                                                   |         |                    |

#### Examples

Reasons for the difficulty

Types

Genotype vs. pheno type

Let's compare the complexity of the classic permutation-based optimization problem and the problem of optimizing designs:

| Property                                          | QAP/TSP | Optimizing designs |
|---------------------------------------------------|---------|--------------------|
| Finite set of solutions                           |         |                    |
| Discrete-continuous space                         |         |                    |
| Genotype has constant size                        |         |                    |
| Obvious, natural representation                   |         |                    |
| Simple definition of neighborhood                 |         |                    |
| Many local optima                                 |         |                    |
| Strong interactions between parts of the solution |         |                    |
| Numerous constraints                              |         |                    |
| Multiple evaluation criteria                      |         |                    |
| Hard to formalize evaluation criteria             |         |                    |
| Deterministic evaluation                          |         |                    |
| Evaluation includes the aspect of time            |         |                    |
|                                                   |         |                    |
|                                                   |         |                    |
|                                                   |         |                    |

#### Examples

Reasons for the difficulty

## Types

Genotype vs. phenotype

Let's compare the complexity of the classic permutation-based optimization problem and the problem of optimizing designs:

| Property                                          | QAP/TSP | Optimizing designs |
|---------------------------------------------------|---------|--------------------|
| Finite set of solutions                           |         |                    |
| Discrete-continuous space                         |         |                    |
| Genotype has constant size                        |         |                    |
| Obvious, natural representation                   |         |                    |
| Simple definition of neighborhood                 |         |                    |
| Many local optima                                 |         |                    |
| Strong interactions between parts of the solution |         |                    |
| Numerous constraints                              |         |                    |
| Multiple evaluation criteria                      |         |                    |
| Hard to formalize evaluation criteria             |         |                    |
| Deterministic evaluation                          |         |                    |
| Evaluation includes the aspect of time            |         |                    |
| Evaluation is costly                              |         |                    |
|                                                   |         |                    |
|                                                   |         |                    |

#### Examples

Reasons for the difficulty

**Types** 

Genotype vs. pheno type

Let's compare the complexity of the classic permutation-based optimization problem and the problem of optimizing designs:

| Property                                          | QAP/TSP | Optimizing designs |
|---------------------------------------------------|---------|--------------------|
| Finite set of solutions                           |         |                    |
| Discrete-continuous space                         |         |                    |
| Genotype has constant size                        |         |                    |
| Obvious, natural representation                   |         |                    |
| Simple definition of neighborhood                 |         |                    |
| Many local optima                                 |         |                    |
| Strong interactions between parts of the solution |         |                    |
| Numerous constraints                              |         |                    |
| Multiple evaluation criteria                      |         |                    |
| Hard to formalize evaluation criteria             |         |                    |
| Deterministic evaluation                          |         |                    |
| Evaluation includes the aspect of time            |         |                    |
| Evaluation is costly                              |         |                    |
| Predictable evaluation cost                       |         |                    |
|                                                   |         |                    |

#### Examples

# Reasons for the difficulty

## **Types**

Genotype vs. phenotype

Let's compare the complexity of the classic permutation-based optimization problem and the problem of optimizing designs:

| Finite set of solutions         Discrete-continuous space         Genotype has constant size         Obvious, natural representation         Simple definition of neighborhood         Many local optima         Strong interactions between parts of the solution         Numerous constraints         Multiple evaluation criteria         Hard to formalize evaluation criteria         Deterministic evaluation                                           | Property                                          | QAP/TSP | Optimizing designs |
|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------|---------|--------------------|
| Genotype has constant sizeImage: Constant sizeObvious, natural representationImage: Constant sizeSimple definition of neighborhoodImage: Constant sizeMany local optimaImage: Constant sizeStrong interactions between parts of the solutionImage: Constant sizeNumerous constraintsImage: Constant sizeMultiple evaluation criteriaImage: Constant sizeHard to formalize evaluation criteriaImage: Constant sizeDeterministic evaluationImage: Constant size | Finite set of solutions                           |         |                    |
| Obvious, natural representation         Simple definition of neighborhood         Many local optima         Strong interactions between parts of the solution         Numerous constraints         Multiple evaluation criteria         Hard to formalize evaluation criteria         Deterministic evaluation                                                                                                                                                | Discrete-continuous space                         |         |                    |
| Simple definition of neighborhoodMany local optimaStrong interactions between parts of the solutionNumerous constraintsMultiple evaluation criteriaHard to formalize evaluation criteriaDeterministic evaluation                                                                                                                                                                                                                                              | Genotype has constant size                        |         |                    |
| Many local optima                                                                                                                                                                                                                                                                                                                                                                                                                                             | Obvious, natural representation                   |         |                    |
| Strong interactions between parts of the solutionNumerous constraintsMultiple evaluation criteriaHard to formalize evaluation criteriaDeterministic evaluation                                                                                                                                                                                                                                                                                                | Simple definition of neighborhood                 |         |                    |
| Numerous constraints     Image: Constraint service       Multiple evaluation criteria     Image: Constraint service       Hard to formalize evaluation criteria     Image: Constraint service       Deterministic evaluation     Image: Constraint service                                                                                                                                                                                                    | Many local optima                                 |         |                    |
| Multiple evaluation criteria         Hard to formalize evaluation criteria         Deterministic evaluation                                                                                                                                                                                                                                                                                                                                                   | Strong interactions between parts of the solution |         |                    |
| Hard to formalize evaluation criteria Deterministic evaluation                                                                                                                                                                                                                                                                                                                                                                                                | Numerous constraints                              |         |                    |
| Deterministic evaluation                                                                                                                                                                                                                                                                                                                                                                                                                                      | Multiple evaluation criteria                      |         |                    |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                               | Hard to formalize evaluation criteria             |         |                    |
| Evaluation includes the expect of time                                                                                                                                                                                                                                                                                                                                                                                                                        | Deterministic evaluation                          |         |                    |
| Evaluation includes the aspect of time                                                                                                                                                                                                                                                                                                                                                                                                                        | Evaluation includes the aspect of time            |         |                    |
| Evaluation is costly                                                                                                                                                                                                                                                                                                                                                                                                                                          | Evaluation is costly                              |         |                    |
| Predictable evaluation cost                                                                                                                                                                                                                                                                                                                                                                                                                                   | Predictable evaluation cost                       |         |                    |
| Easy to estimate similarity                                                                                                                                                                                                                                                                                                                                                                                                                                   | Easy to estimate similarity                       |         |                    |

#### Examples

Reasons for the difficulty

## **Types**

Genotype vs. phenotype

#### Examples

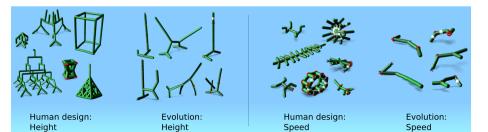
# Reasons for the difficulty

## Types

Genotype vs. phenotype

- Conceptual ED: production of high-level conceptual frameworks for designs. New design concepts can be evolved, but building blocks are provided by the designer. Example: a hydropower system as a combination of locations, dam types, tunnel lengths and modes of operation.
- Generative ED: generation of the form of design directly. No pre-defined high-level concepts, no conventions, no imposed knowledge (the Einstellung effect).
   Low-level building blocks defined. Complex representations. Examples: tables, heatsinks, optical prisms, aerodynamic and hydrodynamic forms, bridges, cranes, EHW, analogue circuits.

# The Einstellung effect and human vs. natural design


## From 7th Int. Conf. on Swarm Intelligence, session on Morphogenetic Engineering:

Engineered products:

- often made of a number of unique, heterogeneous components assembled in a precise and complicated way,
- work deterministically following the specifications given by the designers.

By contrast (compare the figure below), self-organization in natural systems (physical, biological, ecological, social):

- often relies on the repetition of identical agents and stochastic dynamics,
- nontrivial behavior can emerge from relatively simple rules,
- however, most natural patterns can be described with a small number of statistical variables,
- such patterns are random or shaped by boundary conditions, but never exhibit an intrinsic architecture like engineered products do.



### Examples

Reasons for the difficulty

## Types

Genotype vs. phenotype

# Embryogeny in ED

#### Examples

Reasons for the difficulty

Types

Genotype vs. phenotype

References

In evolutionary design, phenotypes are usually much more different from their genotypic representations, than in typical optimization problems. That means that mapping from genotype to phenotype ("embryogeny") is needed and may be complex – we talked about it when discussing evolutionary programming.

The goal is good **scalability** (the ability to scale up and create more sophisticated designs [Hor08]) and **evolvability** (the ability to produce offspring that are diverse/more fit [Gaj+19]) – consider the example of optimizing a *toothbrush* [discussion].

# Embryogeny in ED

#### Examples

Reasons for the difficulty

Types

Genotype vs. phenotype

References

In evolutionary design, phenotypes are usually much more different from their genotypic representations, than in typical optimization problems. That means that mapping from genotype to phenotype ("embryogeny") is needed and may be complex – we talked about it when discussing evolutionary programming.

The goal is good **scalability** (the ability to scale up and create more sophisticated designs [Hor08]) and **evolvability** (the ability to produce offspring that are diverse/more fit [Gaj+19]) – consider the example of optimizing a *toothbrush* [discussion].

The same desirable properties of the genotype-phenotype mapping that we identified in the toothbrush example also apply when optimizing bridges, turbines, robots, cars, etc.

# The genotype-phenotype mapping: nature vs. ED

Examples

Reasons for the difficulty

Types

Genotype vs. phenotype

References

**In nature** embryogeny is defined by interactions between genes, their phenotypic effects and the environment in which the embryo develops. There are chains of interacting "rules"; the flow of activation is not completely predetermined and preprogrammed; it is dynamic, parallel and adaptive.\*

In optimization (e.g., in evolutionary design) embryogenies can be [Ben99]:

• External (non-evolved). Fixed, static rules, which specify how phenotypes are constructed from the genotypes. E.g. *f0*, *f1*, *fH*, *f7* and *f9* in Framsticks [KU21].

<sup>\*</sup>https://nautil.us/the-strange-inevitability-of-evolution-235189/

# The genotype-phenotype mapping: nature vs. ED

Examples

Reasons for the difficulty

Types

Genotype vs. phenotype

References

**In nature** embryogeny is defined by interactions between genes, their phenotypic effects and the environment in which the embryo develops. There are chains of interacting "rules"; the flow of activation is not completely predetermined and preprogrammed; it is dynamic, parallel and adaptive.\*

In optimization (e.g., in evolutionary design) embryogenies can be [Ben99]:

- External (non-evolved). Fixed, static rules, which specify how phenotypes are constructed from the genotypes. E.g. *f0*, *f1*, *fH*, *f7* and *f9* in Framsticks [KU21].
- Explicit (evolved). Genotype and embryogeny are evolved simultaneously, but embryogeny is made of pre-defined blocks/features – like iteration, recursion, etc., as in GP (genetic programming). Specialized operators and representations are often needed. E.g. *f4* in Framsticks.

<sup>\*</sup>https://nautil.us/the-strange-inevitability-of-evolution-235189/

# The genotype-phenotype mapping: nature vs. ED

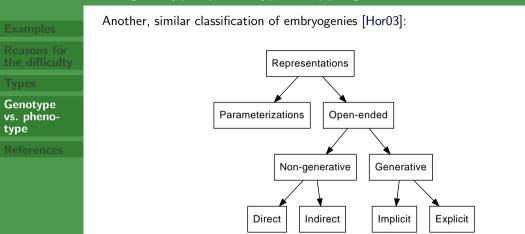
Examples

Reasons for the difficulty

Types

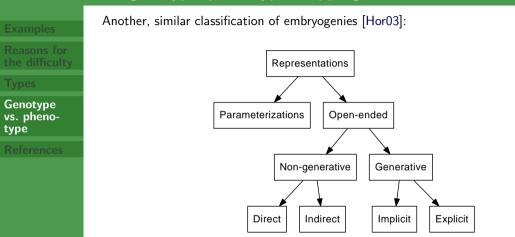
Genotype vs. phenotype

References


**In nature** embryogeny is defined by interactions between genes, their phenotypic effects and the environment in which the embryo develops. There are chains of interacting "rules"; the flow of activation is not completely predetermined and preprogrammed; it is dynamic, parallel and adaptive.\*

In optimization (e.g., in evolutionary design) embryogenies can be [Ben99]:

- External (non-evolved). Fixed, static rules, which specify how phenotypes are constructed from the genotypes. E.g. *f0*, *f1*, *fH*, *f7* and *f9* in Framsticks [KU21].
- Explicit (evolved). Genotype and embryogeny are evolved simultaneously, but embryogeny is made of pre-defined blocks/features – like iteration, recursion, etc., as in GP (genetic programming). Specialized operators and representations are often needed. E.g. *f4* in Framsticks.
- Implicit (evolved). The same genes can be activated and suppressed many times; the same genes can specify *different* functions. Conditional iteration, subroutines, parallel interpretation of genes are allowed. However, it is very difficult to design a good implicit representation. E.g. *fB*, *f6* and *fL* in Framsticks.


<sup>\*</sup>https://nautil.us/the-strange-inevitability-of-evolution-235189/

# The genotype-phenotype mapping: classification



In non-generative representations, each gene is activated once. In Direct and Explicit, the meaning of genes is fixed (not subject to evolution).

# The genotype-phenotype mapping: classification



In non-generative representations, each gene is activated once. In Direct and Explicit, the meaning of genes is fixed (not subject to evolution).

Question: to which category belongs: permutation in TSP, DNA in nature, f9 in ED?

#### Examples

Reasons for the difficulty

**Types** 

Genotype vs. phenotype

References

The development of an efficient embryogeny/mapping may be itself posed as an optimization or machine learning problem ("find an encoding that results in a smooth fitness landscape: maximize FDC" or "find an encoding that makes similar phenotypes genetic neighbors").

Such a problem may be addressed using techniques similar to word embeddings\* or (neural) autoencoders\*\* [KKM21].

<sup>\*</sup>https://en.wikipedia.org/wiki/Word\_embedding \*\*https://en.wikipedia.org/wiki/Autoencoder

| Examples                   | [Ben99]  | Peter Bentley. Evolutionary design by computers. Morgan Kaufmann, 1999.                                                                                                                                                                                                                                                                                                                            |
|----------------------------|----------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Reasons for the difficulty | [Gaj+19] | Alexander Gajewski et al. "Evolvability ES: scalable and direct optimization of evolvability". In:<br>Proceedings of the Genetic and Evolutionary Computation Conference. 2019, pp. 107–115. URL:<br>https://arxiv.org/pdf/1907.06077.pdf.                                                                                                                                                         |
| Турез                      | [Hor03]  | Gregory S. Hornby. "Creating complex building blocks through generative representations". In:<br>Proceedings of the 2003 AAAI Spring Symposium: Computational Synthesis: From Basic Building                                                                                                                                                                                                       |
| Genotype<br>vs. pheno-     |          | Blocks to High Level Functionality, 2003, pp. 98–105. URL:<br>https://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.323.8779&rep=rep1&type=pdf.                                                                                                                                                                                                                                                |
| type                       | [Hor08]  | Gregory S. Hornby. "Improving the scalability of generative representations for openended design". In: Genetic Programming Theory and Practice V (2008), pp. 125–142.                                                                                                                                                                                                                              |
| References                 | [KKM21]  | Piotr Kaszuba, Maciej Komosinski, and Agnieszka Mensfelt. "Automated development of latent<br>representations for optimization of sequences using autoencoders". In: 2021 IEEE Congress on<br>Evolutionary Computation (CEC). IEEE. 2021, pp. 1123-1130. DOI:<br>10.1109/CEC45853.2021.9504910. URL: http:<br>//www.framsticks.com/files/common/LatentRepresentationsForSequencesOptimization.pdf. |
|                            | [Kri+20] | Sam Kriegman et al. "A scalable pipeline for designing reconfigurable organisms". In: <i>Proceedings of the National Academy of Sciences</i> 117.4 (2020), pp. 1853–1859. DOI: 10.1073/pnas.1910837117. URL: https://www.pnas.org/doi/10.1073/pnas.1910837117.                                                                                                                                     |
|                            | [KU21]   | Maciej Komosinski and Szymon Ulatowski. <i>Genetic representations in Framsticks.</i><br>http://www.framsticks.com/a/al_genotype. 2021.                                                                                                                                                                                                                                                            |
|                            | [KU25]   | Maciej Komosinski and Szymon Ulatowski. <i>Framsticks website</i> . 2025. URL: http://www.framsticks.com.                                                                                                                                                                                                                                                                                          |

## References II

[Sim94]

Reasons for the difficulty

**Types** 

Genotype vs. pheno type

References

Karl Sims. "Evolving virtual creatures". In: Proceedings of the 21st annual conference on Computer graphics and interactive techniques. ACM. 1994, pp. 15-22. URL: https://www.cs.drexel.edu/~david/Classes/Papers/p15-sims.pdf.