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How to represent solutions in ED (evolutionary design)?

Evolutionary design is a special case of design automation.

Optimized designs can be passive (static) or active (equipped with actuators–effectors
and sometimes also with sensors). One example of ED is therefore evolutionary
robotics.

Come up with a few genetic representations for bridge optimization.

https://en.wikipedia.org/wiki/Computer-automated_design
https://en.wikipedia.org/wiki/Evolutionary_robotics
https://en.wikipedia.org/wiki/Evolutionary_robotics
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Examples of evolutionary design (1/2)

Automated Antenna Design with
Evolutionary Algorithms,
G. Hornby et al., 2006

Combining Structural Analysis and
Multi-Objective Criteria for

Evolutionary Architectural Design,
J. Byrne et al., 2011

Evolutionary Design of
Steel Structures in Tall
Buildings, R. Kicinger

et al., 2005

Evolving Soft Robots,
2013

Evolutionary Develop-
mental Soft Robotics
(...) to Study Intelli-
gence and Adaptive
Behavior (...),
F. Corucci, 2017

Xenobots, [Kri+20]

Evolving virtual
creatures,

K. Sims [Sim94]

Framsticks [KU25]

Generative
representations,
G. Hornby [Hor03]

https://www.youtube.com/watch?v=z9ptOeByLA4
https://en.wikipedia.org/wiki/Xenobot
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Examples of evolutionary design (2/2)

Early evolved robots
https://youtu.be/tgJcYx-yewA?t=237

Wind power plant and turbine optimization
https://www.youtube.com/watch?v=cNaFhhwTpS8

Water turbine optimization (what to pay attention to, what are the goals)
https://youtu.be/fcE6HV1g2kk?t=2477

Optimizing the aerodynamics of a car
https://www.youtube.com/watch?v=sw7_XWdd56c&t=25

Optimizing the structure of a car
Czinger 21C: “Using supercomputing and AI (...) the chassis structure is
generatively designed. Every component of the structure is pareto optimized for
its precise function, not a single gram of material goes to waste.”
https://youtu.be/Pppne2jcgok?t=1541

https://youtu.be/tgJcYx-yewA?t=237
https://www.youtube.com/watch?v=cNaFhhwTpS8
https://youtu.be/fcE6HV1g2kk?t=2477
https://www.youtube.com/watch?v=sw7_XWdd56c&t=25
https://www.czinger.com/revolutionary-technology
https://youtu.be/Pppne2jcgok?t=1541
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Comparison of optimization difficulty

Let’s compare the complexity of the classic permutation-based optimization problem
and the problem of optimizing designs:

Property QAP/TSP Optimizing designs

Finite set of solutions

Discrete-continuous space
Genotype has constant size
Obvious, natural representation
Simple definition of neighborhood
Many local optima
Strong interactions between parts of the solution
Numerous constraints
Multiple evaluation criteria
Hard to formalize evaluation criteria
Deterministic evaluation
Evaluation includes the aspect of time
Evaluation is costly
Predictable evaluation cost
Easy to estimate similarity

https://en.wikipedia.org/wiki/Quadratic_assignment_problem
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The level of granularity in evolutionary design

Conceptual ED: production of high-level conceptual frameworks for designs. New
design concepts can be evolved, but building blocks are provided by the designer.
Example: a hydropower system as a combination of locations, dam types, tunnel
lengths and modes of operation.

Generative ED: generation of the form of design directly. No pre-defined high-level
concepts, no conventions, no imposed knowledge (the Einstellung effect).
Low-level building blocks defined. Complex representations. Examples: tables,
heatsinks, optical prisms, aerodynamic and hydrodynamic forms, bridges, cranes,
EHW, analogue circuits.

https://en.wikipedia.org/wiki/Einstellung_effect
https://en.wikipedia.org/wiki/Evolvable_hardware
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The Einstellung effect and human vs. natural design
From 7th Int. Conf. on Swarm Intelligence, session on Morphogenetic Engineering:

Engineered products:

often made of a number
of unique, heterogeneous
components assembled
in a precise and
complicated way,

work deterministically
following the
specifications given by
the designers.

By contrast (compare the figure below), self-organization in natural
systems (physical, biological, ecological, social):

often relies on the repetition of identical agents and stochastic
dynamics,

nontrivial behavior can emerge from relatively simple rules,

however, most natural patterns can be described with a small
number of statistical variables,

such patterns are random or shaped by boundary conditions, but
never exhibit an intrinsic architecture like engineered products do.
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Embryogeny in ED

In evolutionary design, phenotypes are usually much more different from their
genotypic representations, than in typical optimization problems. That means that
mapping from genotype to phenotype (“embryogeny”) is needed and may be complex
– we talked about it when discussing evolutionary programming.

The goal is good scalability (the ability to scale up and create more sophisticated
designs [Hor08]) and evolvability (the ability to produce offspring that are
diverse/more fit [Gaj+19]) – consider the example of optimizing a toothbrush
[discussion].

The same desirable properties of the genotype-phenotype mapping that we identified in
the toothbrush example also apply when optimizing bridges, turbines, robots, cars, etc.
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The genotype–phenotype mapping: nature vs. ED

In nature embryogeny is defined by interactions between genes, their phenotypic
effects and the environment in which the embryo develops. There are chains of
interacting “rules”; the flow of activation is not completely predetermined and
preprogrammed; it is dynamic, parallel and adaptive.∗

In optimization (e.g., in evolutionary design) embryogenies can be [Ben99]:

External (non-evolved). Fixed, static rules, which specify how phenotypes are
constructed from the genotypes. E.g. f0, f1, fH, f7 and f9 in Framsticks [KU21].

Explicit (evolved). Genotype and embryogeny are evolved simultaneously, but
embryogeny is made of pre-defined blocks/features – like iteration, recursion, etc.,
as in GP (genetic programming). Specialized operators and representations are
often needed. E.g. f4 in Framsticks.

Implicit (evolved). The same genes can be activated and suppressed many times;
the same genes can specify different functions. Conditional iteration, subroutines,
parallel interpretation of genes are allowed. However, it is very difficult to design a
good implicit representation. E.g. fB, f6 and fL in Framsticks.

∗https://nautil.us/the-strange-inevitability-of-evolution-235189/

https://nautil.us/the-strange-inevitability-of-evolution-235189/
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The genotype–phenotype mapping: classification

Another, similar classification of embryogenies [Hor03]:

Representations

Parameterizations Open-ended

Non-generative Generative

Direct Indirect Implicit Explicit

In non-generative representations, each gene is activated once. In Direct and Explicit,
the meaning of genes is fixed (not subject to evolution).

Question: to which category belongs: permutation in TSP, DNA in nature, f9 in ED?
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Automated development of the genotype–phenotype mapping

The development of an efficient embryogeny/mapping may be itself posed as an
optimization or machine learning problem (“find an encoding that results in a smooth
fitness landscape: maximize FDC” or “find an encoding that makes similar phenotypes
genetic neighbors”).

Such a problem may be addressed using techniques similar to word embeddings∗ or
(neural) autoencoders∗∗ [KKM21].

∗https://en.wikipedia.org/wiki/Word_embedding
∗∗https://en.wikipedia.org/wiki/Autoencoder

https://en.wikipedia.org/wiki/Word_embedding
https://en.wikipedia.org/wiki/Autoencoder
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