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e remembering solutions or moves (changes)
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An example of storing tabu moves (iteration 0)

Tabu list structure:

234567

1]

2

6

Inside: “tabu tenure” (the number of iterations until deactivation).

Iteration 0 (starting point, maximization task)

234567 ~ move AWAA
[2][5]7]3]4]6]1] 1] SHNEG
2 714 4
Current solution — 3 316 2
value=10 4 213 0
5 4 |1 |-1
6 J
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An example of storing tabu moves (iterations 1, 2)

Iteration 1 234567 move A
[2][4]7]3]5]6]1] 1 S
2 213 1
Current solution — 3 36| -1
value=16 413 7111 -2
5 6| 1] -4
6
Iteration 2 234567 move A
[2]4]7]1]5]6]3] 1 [3 T[1]3] -2]
2 2|14 =2
Current solution — 3T T 1] 716 6
value=18 412 T 45 7
5 513 -9
6




An example of storing tabu moves (iterations 3, 4)

Iteration 3 234567 move A
[4]2]7]1]5]6]3] 1[ ]2 T E[E]E]
2] [3 53] 2
Current solution — 3 711 0
value=14 401 T(1[3-3
5 2166

6




An example of storing tabu moves (iterations 3, 42@

Ll

Iteration 3 234567 _move A
2] 7[1[5[6]3] 1[ ]2 T [HBIS
2 3 513 2
Current solution — 3 711 0
value=14 411 T/ 1|3]| -3
5 216 (-6

6_.




An example of storing tabu moves (iterations 3, 42@

Ll

Iteration 3 234567 move <A
[4]2]7]1[5]6]3] 1[ ]2 T B[]
2] 3 513 2
Current solution — 3 711 0
value=14 41 T[1]3]-3
5 216 -6
6
Iteration 4 234567 move A
[5]2[7]1]4]6]3] e 711 ©
20 2 4[3=3
Current solution — 3 63| -5
value=20 413 T/5 4] =6
5 2(6([—8
6




Recency-based memory vs. frequency-based memory

The frequency of individual moves can be additionally used to
disperse the search in the space of possible solutions (i.e.,
diversification). For example, moves can get a penalty proportional
to their frequency if they don't improve the value of the solution.

Diversification is only useful under certain conditions (e.g., when
there are no improvements).

Iteration 26. A’ = A—frequency_penalty

1 2 3 4 5 6 7 move A A’
[5]2]7]1]4]6]3] 1l 3 T[1]4 3 3
Al | 1 2[4] -1] -6
313 [ | ‘AN
4215 B2 116] -5] -5
5/ |4 | 65| —6|] —7
6 1
7[2 3 B




procedure TABU_SEARCH
begin
INITIALIZE(xstart, xbest, T)
X .= xstart
repeat
GENERATE(V C N(x))
SELECT(x") //best f in V + aspiration
UPDATE_TABU_LIST(T)
if f(x') < f(xbest) then xbest := x’
x :=x

until STOPPING_CONDITION
end




Determinism

The algorithm is deterministic.

@ TS author: “a bad strategic choice is better than a good
random choice” (because it is under control, so one can
evaluate the strategy and draw conclusions)
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New: a list of “candidates” — the V set

@ what for: to avoid the need for generating and evaluating the
entire neighborhood in each iteration

@ a good move, if not applied in the current iteration, will still
be good in the next few iterations (?)
@ which subset V' C N of the set of neighbors N should
constitute the subset of candidates?
e candidates = good neighbors

o we need to choose the moves that are beneficial... for the
current solution and for future ones.



Construction of the list of candidates.

The idea of strategy 1: “Aspiration plus”

@ searching the neighborhood until a neighbor is
found better by a certain threshold value

(“aspiration plus”) 1 Selected ,
v 1 Stop 1
@ the number of candidates increases until the * Yo
. ASpIration = = = = = = = = JI. ________ ll.___.
threshold value is reached Ie !
[ ] 1
> 1 1
@ Min < number of visited neighbors < Max 3 o . ! !
o 1 1
@ aspiration level may vary during the search i i
(may depend on the search history) . i i
1 1
@ the strategy returns 1 or more best neighbors M w
f d 1 2 3 4 5 6 7 8 9
oun Neighbors

@ as many as 3 parameters...

@ details: [1]



Construction of the list of candidates.

The idea of strategy 2: “Elite candidate list”

A
Elite Rebuild
@ to build the list, check all or most of °
the moves and select the best k of °
them (k is a parameter) °
@ in subsequent iterations, the currently | Threshold e
best move from the list is applied until §
the quality of the move drops below a
given threshold, or a certain number of
iterations is reached
@ can be adaptive
@ details: [1] - : —>
1 2 3

Iterations



Aspiration criteria

@ goal: to decide when tabu restrictions can be overridden

@ basic aspiration criterion (by optimization objective, global,
shown in the example in the beginning of this presentation):
remove the tabu constraint when the move yields a solution
better than the best solution found so far

@ aspiration by default

o if all moves are tabu and they are not allowed by other criteria,
then the move that is the least tabu is selected

@ aspiration by optimization objective

o global — the move x — x’ that is tabu is accepted if
cost(x") < best_cost
o regional (the solution space is divided into regions R) — the

move that is tabu is accepted if cost(x’) < best_cost(R). R is
the region where x’ is located.
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Intensification and diversification (exploitation and exploration) — related:
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@ Discussion: is higher intensification than LS possible?
e EA? RW? RS with forced diversification?
@ Can both properties be simultaneously improved? 2D?

@ What happens to exploitation and exploration when “the
fundamental premise of optimization” fades away?


https://en.wikipedia.org/wiki/Multi-armed_bandit
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Intensification and diversification in Tabu Search

e intensification (exploitation)
e in areas with good solutions
e coming back to the best solution found so far
e short term memory — shortening the tabu list
e long term memory

@ each solution or move is a collection of components

e remembering the components of good moves or solutions
during optimization

@ during the intensification period, moves or solutions
incorporate the good components

@ long-term memory enables “learning”

o diversification (exploration)
e for rarely visited areas
e penalizing frequent moves — escaping from the area
@ these mechanisms can be perceived as a way of modifying the
objective function: ' = f + Int + Div
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