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Annealing

increasing the temperature of a hot bath to such a value that
the solid melts

slowly decreasing the temperature until the molecules line up
and reach zero temperature (ground state)

the opposite of hardening



The Metropolis algorithm

Metropolis et al. (1953) – an algorithm of statistical
simulation (Monte Carlo) of changes of a solid in a hot bath
until the state of thermal equilibrium

random generation of a sequence of states of a solid:
a state i of a solid and its energy Ei ,
perturbation (small change) → next state.
The energy of the next state is Ej .
if Ej − Ei ≤ 0, the state j is accepted as the current state

otherwise, state j is accepted with some probability:

exp

(
Ei − Ej

kBT

)
T – bath temperature
kB – Boltzmann constant

https://www.youtube.com/watch?v=h1NOS_wxgGg, https://www.youtube.com/watch?v=vTUwEu53uzs
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Analogies to optimization

Physical system Optimization problem
state solution
energy cost

ground state optimum
temperature T parameter c
fast cooling local optimization
slow cooling simulating annealing



Simulated annealing

using the Metropolis algorithm for combinatorial optimization

other names: Monte Carlo annealing, probabilistic hill
climbing, stochastic relaxation



Acceptance criterion

i , j – solutions

f (i), f (j) – costs

the acceptance criterion determines whether j obtained from i
is accepted

Pc{accept j} =

{
1 if f (j) ≤ f (i)

exp
(
f (i)−f (j)

c

)
if f (j) > f (i)

Homework: plot e
−∆
c for several different c .
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procedure SIMULATED ANNEALING
begin

INITIALIZE(xstart ,C0, L)
k:=0
x:=xstart
repeat

for l := 1 to Lk do
begin

GENERATE(x ′ z N(x))
if f (x ′) ≤ f (x) then
x := x ′

else
if exp(−(f (x ′)− f (x))/Ck) > random[0, 1) then
x := x ′

end
k := k + 1
CALCULATE(Ck)

until STOPPING CONDITION
end

cycles...
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The convergence of the SA algorithm

it is possible to determine such Lk and ck that ensure the
convergence of SA to the optimum

a good approximation of SA: generating homogeneous Markov
chains of finite length for a finite sequence of decreasing
values of the parameter c
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A Markov chain

a Markov chain is a sequence of trials (events, solutions) in
which the probability of the outcome of a given trial depends
(only) on the outcome of the previous trial

a Markov chain is non-homogeneous if the transition
probability depends on the trial number, k. If it does not
depend on k , then the Markov chain is (time-)homogeneous.

https://en.wikipedia.org/wiki/Markov_chain
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The cooling process (schedule) is determined by

a finite sequence of values of the parameter c , i.e.,
initial parameter value, c0
parameter decrement function
final parameter value

a finite number of moves for each value of the parameter c ,
i.e.,
a finite length of each homogeneous Markov chain
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Initial value of the parameter c

the c0 value should be high enough to ensure that all moves
are accepted (the initial acceptance rate is close to 1).

depends on the problem (see the formula with ∆f and Pc)

for example: p ≈ 0.98 and average ∆f = 1000⇒ c0 ≈ 49 500
or we can simulate heating. . .
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Cooling schedule by Kirkpatrick, Gelatt and Vecchi

Decreasing the value of the parameter c:

ck+1 = α ck , k = 1, 2, . . .
ck+1 = αk c0

α is a constant smaller than 1 (for example 0.8− 0.99)



A simple cooling schedule: for example, Lk = L



Markov chain length

should be sufficient for the algorithm to “visit” all neighbors
at least once (i.e., to reach thermodynamic equilibrium at
each temperature level)

since the probability of acceptance decreases over time, one
would expect Lk → ∞ for ck → 0. Therefore, the length of
the Markov chain must be limited for small ck
in practice – proportional to the average neighborhood size
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The final value of the parameter c

The algorithm terminates when, for example, the current solution
does not change for several consecutive Markov chains.



Other cooling schedules


