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@ increasing the temperature of a hot bath to such a value that
the solid melts

@ slowly decreasing the temperature until the molecules line up
and reach zero temperature (ground state)

@ the opposite of hardening



The Metropolis algorithm

@ Metropolis et al. (1953) — an algorithm of statistical
simulation (Monte Carlo) of changes of a solid in a hot bath
until the state of thermal equilibrium

@ random generation of a sequence of states of a solid:

a state / of a solid and its energy E;,

perturbation (small change) — next state.

The energy of the next state is E;.

if E; — E; <0, the state j is accepted as the current state


https://www.youtube.com/watch?v=h1NOS_wxgGg
https://www.youtube.com/watch?v=vTUwEu53uzs

The Metropolis algorithm

@ Metropolis et al. (1953) — an algorithm of statistical
simulation (Monte Carlo) of changes of a solid in a hot bath
until the state of thermal equilibrium

@ random generation of a sequence of states of a solid:
e a state / of a solid and its energy E;,
o perturbation (small change) — next state.
The energy of the next state is E;.
o if Ej — E; <0, the state j is accepted as the current state
e otherwise, state j is accepted with some probability:

ex Ei—
P\ keT
T — bath temperature

kg — Boltzmann constant
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Analogies to optimization

state | solution
energy | cost
ground state | optimum
temperature T | parameter ¢
fast cooling | local optimization
slow cooling | simulating annealing




Simulated annealing

@ using the Metropolis algorithm for combinatorial optimization

@ other names: Monte Carlo annealing, probabilistic hill
climbing, stochastic relaxation



Acceptance criterion

@ /, j — solutions

e f(i), f(j) — costs

@ the acceptance criterion determines whether j obtained from J
is accepted

, 1 it f(j) < f(i)
Pc{acceptf}—{ exp(f(i);fm) it () > f(i)
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@ /, j — solutions

e f(i), f(j) — costs

@ the acceptance criterion determines whether j obtained from J
is accepted

, 1 it f(j) < f(i)
Pc{acceptf}—{ exp(f(i);fm) it () > f(i)

_A A
Homework: plot e™= for several different c.



procedure SIMULATED_ANNEALING
begin
INITIALIZE (xetart, Cos L)
k:=0
Xi=Xstart
repeat
for | :=1to Ly do
begin
GENERATE(x’ z N(x))
if f(x’) < f(x) then
x:=x
else
if exp(—(f(x’) — f(x))/C«) > random|[0, 1) then
x:=x
end
k=k+1
CALCULATE(Cy)
until STOPPING_CONDITION
end



procedure SIMULATED_ANNEALING
begin
INITIALIZE (xetart, Cos L)
k:=0
Xi=Xstart
repeat
for /:=1to L do
begin
GENERATE(x’ z N(x))
if f(x’) < f(x) then
x = x
else
if exp(—(f(x’) — f(x))/C«) > random|[0, 1) then

o T o
end

ko=k+1
CALCULATE(Cy)
until STOPPING_CONDITION

end



The convergence of the SA algorithm

@ it is possible to determine such L, and ¢, that ensure the
convergence of SA to the optimum



The convergence of the SA algorithm

@ it is possible to determine such L, and ¢, that ensure the
convergence of SA to the optimum

@ a good approximation of SA: generating homogeneous Markov
chains of finite length for a finite sequence of decreasing
values of the parameter ¢



A Markov chain

@ a Markov chain is a sequence of trials (events, solutions) in
which the probability of the outcome of a given trial depends
(only) on the outcome of the previous trial


https://en.wikipedia.org/wiki/Markov_chain

A Markov chain

@ a Markov chain is a sequence of trials (events, solutions) in
which the probability of the outcome of a given trial depends
(only) on the outcome of the previous trial

@ a Markov chain is non-homogeneous if the transition

probability depends on the trial number, k. If it does not
depend on k, then the Markov chain is (time-)homogeneous.


https://en.wikipedia.org/wiki/Markov_chain

The cooling process (schedule) is determined by

@ a finite sequence of values of the parameter c, i.e.,
e initial parameter value, ¢y
e parameter decrement function
o final parameter value



The cooling process (schedule) is determined by

@ a finite sequence of values of the parameter c, i.e.,

e initial parameter value, ¢y
e parameter decrement function
o final parameter value

@ a finite number of moves for each value of the parameter c,
ie.,

e a finite length of each homogeneous Markov chain



Initial value of the parameter ¢

@ the ¢y value should be high enough to ensure that all moves
are accepted (the initial acceptance rate is close to 1).
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Initial value of the parameter ¢

@ the ¢y value should be high enough to ensure that all moves
are accepted (the initial acceptance rate is close to 1).

N

10 MW WWM /L/Au ‘

3

e

@ depends on the problem (see the formula with Af and P.)
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o for example: p ~ 0.98 and average Af = 1000 = ¢y ~ 49 500
@ or we can simulate heating. ..



Cooling schedule by Kirkpatrick, Gelatt and Vecchi

@ Decreasing the value of the parameter c:
Ck4+1 = O Ck, k:1,2,...
k
Ck+1 = Q"

« is a constant smaller than 1 (for example 0.8 — 0.99)



A simple cooling schedule: for example, L, = L




Markov chain length

@ should be sufficient for the algorithm to “visit” all neighbors
at least once (i.e., to reach thermodynamic equilibrium at
each temperature level)



Markov chain length

@ should be sufficient for the algorithm to “visit” all neighbors
at least once (i.e., to reach thermodynamic equilibrium at
each temperature level)

@ since the probability of acceptance decreases over time, one
would expect Ly — oo for ¢, — 0. Therefore, the length of
the Markov chain must be limited for small ¢,



Markov chain length

@ should be sufficient for the algorithm to “visit” all neighbors
at least once (i.e., to reach thermodynamic equilibrium at
each temperature level)

@ since the probability of acceptance decreases over time, one
would expect Ly — oo for ¢, — 0. Therefore, the length of
the Markov chain must be limited for small ¢,

@ in practice — proportional to the average neighborhood size



The final value of the parameter ¢

The algorithm terminates when, for example, the current solution
does not change for several consecutive Markov chains.



Other cooling schedules




