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The concept of neighborhood



The definition of neighborhood

x ∈ S

a set N(x) ⊆ S of solutions that are “close to” a solution x

a distance function

dist : S × S → R
neighborhood

N(x) = {y ∈ S : dist(x , y) ≤ ε}

each solution y ∈ N(x) is called a neighbor of x

we assume that y ∈ N(x)⇔ x ∈ N(y)
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Properties of neighborhood

size limits
for each x , its N(x) contains at least one solution y different
from x
N(x) should not cover the entire space of acceptable solutions
(should not be exhaustive)

similarity of neighbors
y ∈ N(x) should not be very different from x , so that moving
from x to y should not require constructing the new solution y
“from scratch”

“equality”
regardless of the choice of the initial solution, any solution
belonging to S should be reachable



Examples of neighborhoods for permutation of n items

k-swap, k-opt
N(x) – a set of solutions created by removing k items and
inserting them in another order

2-swap with position preserved

1—2—3—4—5—6—7—8—9

1—2—8—4—5—6—7—3—9

|N2P(x)| =

n(n−1)
2

3-swap with position preserved. |N3P(x)| = ...

would swapping only adjacent elements constitute a good
neighborhood?

. . .
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Neighborhood in TSP (swapping cities)

N2P , indexes (3, 8):

1− 2− 3− 4− 5− 6− 7− 8− 9
1− 2− 8− 4− 5− 6− 7− 3− 9



Neighborhood in TSP (path reversal)

N2R , indexes (3, 8):

1− 2−−−−−−−−−−−−−−−−→3− 4− 5− 6− 7− 8− 9
1− 2−←−−−−−−−−−−−−−−−8− 7− 6− 5− 4− 3− 9



Which neighborhood will make it easier to optimize TSP?
The fitness landscape should be smooth... FDC should be high...

STSP ATSP
swapping cities
path reversal



Neighborhood in QAP (quadratic assignment problem)

Modifying the assignment, for example 1-3-2 → 1-2-3:



Which neighborhood will make it easier to optimize TSP?
The fitness landscape should be smooth... FDC should be high...

STSP ATSP QAP
swapping cities
path reversal



Neighborhood in GPP

Neighborhood – all partitions
(V ′
1,V

′
2) such that

V ′
1 = V1 ∪ {x} and V ′

2 = V2\{x}
or
V ′
1 = V1\{y} and V ′

2 = V2 ∪ {y}

x ∈ V2, y ∈ V1

Alternative approach:
generating infeasible solutions, i.e., |V1| ≠ |V2|.

F (V1,V2) =
∑

i∈V1,j∈V2

Eij + γ(|V1| − |V2|)2

γ – a positive constant (a weight of a penalty for an infeasible
partition).



Neighborhood of a vector of numbers

[4, 5.017, 3.422,−12.430, 107.819, ...]

http://www.framsticks.com/foraminifera http://sailor.mooncoder.com/

http://www.framsticks.com/foraminifera
http://sailor.mooncoder.com/
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Exploration of the neighborhood of the solution x

1 select a solution in S , evaluate it, define it as current
2 generate new solutions as neighbors of the current one and
evaluate them

3 if a new solution is better, consider it the current one,
otherwise ignore it

4 repeat steps 2 and 3 as long as there is improvement



Local search procedure

procedure LOCAL SEARCH;
begin
INITIALIZE(xstart);
xcurrent := xstart ;
repeat
GENERATE(y from N(xcurrent));
if f (y) ≤ f (xcurrent) then

xcurrent := y ;
until f (y) > f (xcurrent) for all y ∈N(xcurrent);

end;



Local search procedure

procedure LOCAL SEARCH;
begin
INITIALIZE(xstart);
xcurrent := xstart ;
repeat
GENERATE(y from N(xcurrent)); ←− implementation?
if f (y) ≤ f (xcurrent) then ←− ≤ ?
xcurrent := y ;

until f (y) > f (xcurrent) for all y ∈N(xcurrent); ←− > ?
end;



Local optimum

xmin is a local minimum if

∀y∈N(xmin) f (xmin) ≤ f (y)

xmax is a local maximum if

∀y∈N(xmax ) f (xmax) ≥ f (y)

strict vs. non-strict inequality!
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Two variants of Local Search

Greedy – first improvement; first descent

Steepest – best improvement; highest descent

Could you implement LS now?
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Example (maximization in a 2D grid)
http://en.alife.pl/opt/e/index.html

PPPPPx1
x2 1 2 3 4 5

A 1 2 1 7 4
B 0 2 1 2 4
C 1 3 3 4 8
D 3 4 5 3 3
E 6 5 3 2 1

start from B2

simulate Greedy and Steepest

consider two neighborhoods: Moore (8) and von Neumann (4)

think about the influence of the condition < vs. ≤
formulate conclusions

http://en.alife.pl/opt/e/index.html
https://en.wikipedia.org/wiki/Von_Neumann_neighborhood


Efficient calculation of the cost of a new solution

TSP time: linear (naive) or constant (easy)

QAP time: quadratic (naive) or linear (easy) or quasi-constant
(auxiliary table)



Disadvantages and advantages

Disadvantages

LS algorithms stop working (prematurely?) in the local
optimum
the quality of the solutions obtained may depend on the
choice of the starting solution
for most problems, there are no guidelines on how the starting
solution should be selected for best results

Advantages

flexible

can be used for any combinatorial optimization problem

very fast and simple
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Avoiding the disadvantages of local search algorithms

running the local search algorithm for a large number of
different starting solutions
multi-random start variant
guided local search variant: the goal function is modified in
subsequent runs so that parts of the solutions existing in
previously found local optima are penalized

introduction of a more complex definition of neighborhood in
order to search a larger part of the space of feasible solutions

changing the neighborhood definition used while running –
variable neighborhood search

to some extent, accepting the deterioration of the value of the
goal function

...


