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The concept of neighborhood
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The definition of neighborhood
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The definition of neighborhood

xeS

a set N(x) C S of solutions that are “close to" a solution x

a distance function

dist: S5 xS —=R

neighborhood

N(x) ={y € S : dist(x,y) < e}

each solution y € N(x) is called a neighbor of x

we assume that y € N(x) < x € N(y)



Properties of neighborhood

@ size limits
e for each x, its N(x) contains at least one solution y different
from x
o N(x) should not cover the entire space of acceptable solutions
(should not be exhaustive)
@ similarity of neighbors
o y € N(x) should not be very different from x, so that moving
from x to y should not require constructing the new solution y
“from scratch”
@ ‘“equality”
o regardless of the choice of the initial solution, any solution
belonging to S should be reachable



Examples of neighborhoods for permutation of n items

@ k-swap, k-opt
N(x) — a set of solutions created by removing k items and
inserting them in another order

@ 2-swap with position preserved
1—2—3—4—5—6—7—8—9

1—2—8—4—5—6—7—3—9

|Nap(x)| =
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Examples of neighborhoods for permutation of n items

@ k-swap, k-opt
N(x) — a set of solutions created by removing k items and
inserting them in another order

@ 2-swap with position preserved
1—2—3—4—5—6—7—8—9

1—2—8—4—5—6—7—3—9

|Nap(x)| = 2ot)

@ 3-swap with position preserved. |N3p(x)| = ...

@ would swapping only adjacent elements constitute a good
neighborhood?



Neighborhood in TSP (swapping cities)

Nop, indexes (3, 8):

...............................................



Neighborhood in TSP (path reversal)

Nag, indexes (3, 8):




Which neighborhood will make it easier to optimize TSP?

The fitness landscape should be smooth... FDC should be high...

STSP | ATSP

swapping cities
path reversal




Neighborhood in QAP (quadratic assignment problem)
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Which neighborhood will make it easier to optimize TSP?

The fitness landscape should be smooth... FDC should be high...

STSP | ATSP | QAP

swapping cities
path reversal




Neighborhood in GPP

Neighborhood — all partitions

(V{, V3) such that t
Vi = Vi U{x} and V] = Wu\{x} e
or B
Vl\{y} and V2 VaU {y} Step No. [Vertex Pair Gain [Cuteat
? d.9) g | g
xe€Vo,y eV EEImEEE

Alternative approach:
generating infeasible solutions, i.e., | V1| # | Va|.

F(Vi, Vo) = > Ej+(Val — [ Val)?
ieV1,jeVs

-y — a positive constant (a weight of a penalty for an infeasible
partition).



Neighborhood of a vector of numbers

[4,5.017,3.422, —12.430,107.819, .. ]


http://www.framsticks.com/foraminifera
http://sailor.mooncoder.com/
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Exploration of the neighborhood of the solution x

@ select a solution in S, evaluate it, define it as current

@ generate new solutions as neighbors of the current one and
evaluate them

© if a new solution is better, consider it the current one,
otherwise ignore it

@ repeat steps 2 and 3 as long as there is improvement



Local search procedure

procedure LOCAL_SEARCH;

begin
INITIALIZE(Xstart);
Xcurrent = Xstart
repeat

GENERATE(y from N(Xcurrent));
if f()/) < f(Xcurrent) then

Xcurrent = Y
until f()’) > f(Xcurrent) for all y EN(Xcurremr);

end;



Local search procedure

procedure LOCAL_SEARCH;

begin
INITIALIZE(Xstart);
Xcurrent *= Xstart
repeat

GENERATE(y from N(Xcyrrent)); <— implementation?
ﬁ f(y) S f(Xcurrent) then <— S ?

Xcurrent <= Y,
until 1(y) > f(Xcurrent) for all y EN(Xcurrent); — > 7
end;



Local optimum

Xmin 18 @ local minimum if

VyEN(xm,-,,) f(Xmin) < f(¥)

Xmax 1S a local maximum if

vyeN(Xmax) f(XmaX) 2 f(y)



Local optimum

Xmin 18 @ local minimum if

VyEN(xm,-,,) f(Xmin) < f(¥)

Xmax 1S a local maximum if

vyeN(Xmax) f(XmaX) 2 f(y)

strict vs. non-strict inequality!

E =



Two variants of Local Search

@ Greedy — first improvement; first descent

@ Steepest — best improvement; highest descent



Two variants of Local Search

@ Greedy — first improvement; first descent

@ Steepest — best improvement; highest descent

Could you implement LS now?



Example (maximization in a 2D grid)
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start from B2
simulate Greedy and Steepest
consider two neighborhoods: Moore (8) and von Neumann (4)

think about the influence of the condition < vs. <

e 6 66 o6 o

formulate conclusions


http://en.alife.pl/opt/e/index.html
https://en.wikipedia.org/wiki/Von_Neumann_neighborhood

Efficient calculation of the cost of a new solution

@ TSP time: linear (naive) or constant (easy)

@ QAP time: quadratic (naive) or linear (easy) or quasi-constant
(auxiliary table)



Disadvantages and advantages

Disadvantages
@ LS algorithms stop working (prematurely?) in the local
optimum
@ the quality of the solutions obtained may depend on the
choice of the starting solution
e for most problems, there are no guidelines on how the starting
solution should be selected for best results )




Disadvantages and advantages

Disadvantages
@ LS algorithms stop working (prematurely?) in the local
optimum
@ the quality of the solutions obtained may depend on the

choice of the starting solution
e for most problems, there are no guidelines on how the starting

solution should be selected for best results )
Advantages
o flexible

@ can be used for any combinatorial optimization problem

@ very fast and simple




Avoiding the disadvantages of local search algorithms

@ running the local search algorithm for a large number of
different starting solutions

e multi-random start variant
e guided local search variant: the goal function is modified in
subsequent runs so that parts of the solutions existing in
previously found local optima are penalized
@ introduction of a more complex definition of neighborhood in
order to search a larger part of the space of feasible solutions

@ changing the neighborhood definition used while running —
variable neighborhood search

@ to some extent, accepting the deterioration of the value of the
goal function



