Optimization. Local search

Maciej Komosinski

Institute of Computing Science Poznan University of Technology www.cs.put.poznan.pl/mkomosinski

C Maciej Komosinski, Maciej Hapke

The concept of neighborhood

S

The definition of neighborhood

• *x* ∈ *S*

- a set $N(x) \subseteq S$ of solutions that are "close to" a solution x
- a distance function

$$dist: S \times S \to \mathbb{R}$$

neighborhood

$$N(x) = \{y \in S : dist(x, y) \le \varepsilon\}$$

The definition of neighborhood

x ∈ *S*

- a set $N(x) \subseteq S$ of solutions that are "close to" a solution x
- a distance function

 $\textit{dist}: S \times S \rightarrow \mathbb{R}$

neighborhood

$$N(x) = \{y \in S : dist(x, y) \le \varepsilon\}$$

• each solution $y \in N(x)$ is called a neighbor of x

• we assume that $y \in N(x) \Leftrightarrow x \in N(y)$

Properties of neighborhood

- size limits
 - for each x, its N(x) contains at least one solution y different from x
 - *N*(*x*) should not cover the entire space of acceptable solutions (should not be exhaustive)
- similarity of neighbors
 - y ∈ N(x) should not be very different from x, so that moving from x to y should not require constructing the new solution y "from scratch"
- "equality"
 - regardless of the choice of the initial solution, any solution belonging to S should be reachable

Examples of neighborhoods for permutation of n items

• *k*-swap, *k*-opt

N(x) – a set of solutions created by removing k items and inserting them in another order

• 2-swap with position preserved

 $|N_{2P}(x)| =$

Examples of neighborhoods for permutation of n items

• *k*-swap, *k*-opt

N(x) – a set of solutions created by removing k items and inserting them in another order

• 2-swap with position preserved

$$|N_{2P}(x)| = \frac{n(n-1)}{2}$$

• 3-swap with position preserved. $|N_{3P}(x)| = ...$

Examples of neighborhoods for permutation of n items

• *k*-swap, *k*-opt

N(x) – a set of solutions created by removing k items and inserting them in another order

• 2-swap with position preserved

$$|N_{2P}(x)| = \frac{n(n-1)}{2}$$

- 3-swap with position preserved. $|N_{3P}(x)| = ...$
- would swapping only adjacent elements constitute a good neighborhood?

• . . .

Neighborhood in TSP (swapping cities)

 N_{2P} , indexes (3, 8):

$$\begin{array}{r} 1-2-3-4-5-6-7-8-9\\ 1-2-8-4-5-6-7-3-9\end{array}$$

Neighborhood in TSP (path reversal)

 N_{2R} , indexes (3, 8):

$$1 - 2 - \overline{3 - 4 - 5 - 6 - 7 - 8} - 9$$

$$1 - 2 - \overline{8 - 7 - 6 - 5 - 4 - 3} - 9$$

Which neighborhood will make it easier to optimize TSP? The fitness landscape should be smooth... FDC should be high...

	STSP	ATSP
swapping cities		
path reversal		

Neighborhood in QAP (quadratic assignment problem)

Modifying the assignment, for example 1-3-2 \rightarrow 1-2-3:

Which neighborhood will make it easier to optimize TSP? The fitness landscape should be smooth... FDC should be high...

	STSP	ATSP	QAP
swapping cities			
path reversal			

Neighborhood in GPP

Neighborhood – all partitions (V'_1, V'_2) such that $V'_1 = V_1 \cup \{x\}$ and $V'_2 = V_2 \setminus \{x\}$ or $V'_1 = V_1 \setminus \{y\}$ and $V'_2 = V_2 \cup \{y\}$ $x \in V_2, y \in V_1$

Alternative approach:

generating infeasible solutions, i.e., $|V_1| \neq |V_2|$.

$$F(V_1, V_2) = \sum_{i \in V_1, j \in V_2} E_{ij} + \gamma (|V_1| - |V_2|)^2$$

 γ – a positive constant (a weight of a penalty for an infeasible partition).

Neighborhood of a vector of numbers

 $[4, 5.017, 3.422, -12.430, 107.819, \ldots]$

Neighborhood of a vector of numbers

[4, 5.017, 3.422, -12.430, 107.819, ...]

http://www.framsticks.com/foraminifera

http://sailor.mooncoder.com/

Neighborhood of a vector of numbers

[4, 5.017, 3.422, -12.430, 107.819, ...]

http://www.framsticks.com/foraminifera

http://sailor.mooncoder.com/

2 m 3"-1 (+···)

Exploration of the neighborhood of the solution x

- **(**) select a solution in S, evaluate it, define it as *current*
- generate new solutions as neighbors of the current one and evaluate them
- if a new solution is better, consider it the current one, otherwise ignore it
- repeat steps 2 and 3 as long as there is improvement

```
procedure LOCAL_SEARCH;
begin
     INITIALIZE(x_{start});
     X_{current} := X_{start};
     repeat
           GENERATE(y from N(x_{current}));
           if f(y) \leq f(x_{current}) then
             x_{current} := y;
     <u>until</u> f(y) > f(x_{current}) for all y \in N(x_{current});
end;
```

procedure LOCAL_SEARCH; begin INITIALIZE(*x*_{start}); $X_{current} := X_{start};$ repeat GENERATE(y from N($x_{current}$)); \leftarrow implementation? if $f(y) \leq f(x_{current})$ then $\leftarrow \leq ?$ $x_{current} := y;$ **until** $f(y) > f(x_{current})$ for all $y \in N(x_{current})$; $\leftarrow > ?$ end:

Local optimum

x_{min} is a local minimum if

$$\forall_{y \in N(x_{min})} \quad f(x_{min}) \leq f(y)$$

 x_{max} is a local maximum if

$$\forall_{y \in N(x_{max})} \quad f(x_{max}) \geq f(y)$$

Local optimum

x_{min} is a local minimum if

$$\forall_{y \in N(x_{min})} \quad f(x_{min}) \leq f(y)$$

 x_{max} is a local maximum if

$$\forall_{y \in N(x_{max})} \quad f(x_{max}) \geq f(y)$$

strict vs. non-strict inequality!

- Greedy first improvement; first descent
- Steepest best improvement; highest descent

- Greedy first improvement; first descent
- Steepest best improvement; highest descent

Could you implement LS now?

Example (maximization in a 2D grid)

http://en.alife.pl/opt/e/index.html

x2 x1	1	2	3	4	5
Α	1	2	1	7	4
В	0	2	1	2	4
С	1	3	3	4	8
D	3	4	5	3	3
E	6	5	3	2	1

- start from B2
- simulate Greedy and Steepest
- consider two neighborhoods: Moore (8) and von Neumann (4)
- \bullet think about the influence of the condition < vs. \leq
- formulate conclusions

- TSP time: linear (naive) or constant (easy)
- QAP time: quadratic (naive) or linear (easy) or quasi-constant (auxiliary table)

Disadvantages

- LS algorithms stop working (prematurely?) in the local optimum
- the quality of the solutions obtained may depend on the choice of the starting solution
 - for most problems, there are no guidelines on how the starting solution should be selected for best results

Disadvantages

- LS algorithms stop working (prematurely?) in the local optimum
- the quality of the solutions obtained may depend on the choice of the starting solution
 - for most problems, there are no guidelines on how the starting solution should be selected for best results

Advantages

- flexible
- can be used for any combinatorial optimization problem
- very fast and simple

- running the local search algorithm for a large number of different starting solutions
 - multi-random start variant
 - guided local search variant: the goal function is modified in subsequent runs so that parts of the solutions existing in previously found local optima are penalized
- introduction of a more complex definition of neighborhood in order to search a larger part of the space of feasible solutions
- changing the neighborhood definition used while running variable neighborhood search
- to some extent, accepting the deterioration of the value of the goal function

• ...