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2 Introduction

The Quadratic Assignment Problem (QAP) has remained one of the great challenges in combinatorial

optimization. It is still considered a computationally nontrivial task to solve modest size problems, say

of size n = 20: The QAPLIB was �rst published in 1991, in order to provide a uni�ed testbed for QAP,

accessible to the scienti�c community. It consisted of virtually all QAP instances that were accessible to

us at that time. Due to the continuing demand for these instances, and the strong feedback from many

researchers, we provided a major update in 1994, which was also accessible through anonymous ftp. In

this update we also included many new problem instances, generated by several researchers for their own

testing purposes. Moreover, we included a list of current champions, i.e. best known feasible solutions,

and best lower bounds.

The current update re
ects on one hand the big changes in electronic communication. It has become

a World Wide Web site, the QAPLIB Home Page. The online version will be updated on a regular basis

and also contains most of the currently best known permutations. On the other hand, we feel the update

was necessary, due to the increased research activities around the QAP, carried out in the last years.

Therefore we also include a short list of dissertations concerning QAP, which were written in the last few

years.

�

September 1996. Updated version of \QAPLIB{A Quadratic Assignment Problem Library. European Journal of

Operational Research, 55:115-119, 1991".

y

Department of Mathematics, Graz University of Technology, Steyrergasse 30, A-8010 Graz, Austria

z

Department of Computer Science, University of Copenhagen, Universitetsparken 1, DK-2100 Copenhagen, Denmark

1



QAPLIB{A Quadratic Assignment Problem Library 2

3 Problem Instances

In this section we describe in some detail all the problem instances currently included in the QAPLIB.

We have removed all the instances of size n < 12, because these can be solved quite e�ciently by current

state of the art programs. On the other hand, we included several larger instances, the largest one of size

n = 256:

The instances are listed in alphabetical order by the names of their authors or contributors. We

shortly characterize the examples by indicating their generation. All the instances in the current version

are pure quadratic. If not stated otherwise the examples are symmetric.

The format of the problem data whose �lenames have extension \dat" is

n

A

B

where n is the size of the instance, and A and B are either 
ow or distance matrix. This corresponds to

a QAP of the form

min

p

n

X

i=1

n

X

j=1

a

ij

b

p(i);p(j)

where p is a permutation.

We quote the �lename under which it is stored in the library and report the size of the problem.

Then the objective function value of the best known feasible solution is given. In parentheses we indicate

whether this solution is provably optimal. Otherwise we indicate, by which heuristic the solution was

found. The heuristics that are currently considered are

� genetic hybrids: (GEN) [13] and (GEN-2) [29],

� a greedy randomized adaptive search procedure: (GRASP) [25],

� simulated annealing: (SIM-1) [7] and (SIM-2) [41], and

� tabu search: reactive tabu search (Re-TS) [1], robust tabu search (Ro-TS) [39, 40], and strict tabu

search (S-TS) [37].

If available we provide permutations corresponding to the feasible solutions in the QAPLIB Home Page.

The �les for these solutions have extension \sln" and their format is

n sol

p

where n gives the size of the instance, sol is the objective function value and p a corresponding permu-

tation, i.e.

sol =

n

X

i=1

n

X

j=1

a

ij

b

p(i);p(j)

:

For problems solved to optimality, we enclose the optimal permutation. Otherwise we include the

currently best known lower bounds. We also give explicit reference for who solved hard instances of size

n � 16 �rst. The lower bounds given in the tables are

� the elimination bound: (ELI) [15],

� the Gilmore-Lawler bound: (GLB) [14, 22],

� an interior point based linear programming bound: (IPLP) [33]

� a semide�nite programming bound: (SDP) [18, 20], and
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� a triangle decomposition bound: (TDB) [19].

When lower bounds are included we also give the relative gap between best feasible solution and best

known lower bound in percent, i.e. gap = (solution� bound)=(solution) � 100 %. We also note that GLB

can be calculated routinely for all instances of the QAPLIB. The bound ELI is only valid for symmetric

instances. It can also be computed e�ciently for all symmetric instances, but its computation time is

(by a constant factor) higher than the time to compute GLB. The bound TDB can be applied only

to instances where the distance matrix has a metric structure. It can be calculated e�ciently for all

metric instances in the QAPLIB. Finally, IPLP and SDP produce in general very strong bounds, but

the computational e�ort by far outgrows the computation times for the other bounds. Currently, these

bounds can not be considered e�cient for problems of sizes larger than, say n = 30.

R.E. Burkard and J. O�ermann [6]

The data of the �rst matrix correspond to the typing-time of an average stenotypist, while the second

matrix describes the frequency of pairs of letters in di�erent languages taken over 100,000 pairs for ex-

amples a-f and over 187,778 pairs for examples g-h. (Note that the solutions of the latter instances are

not scaled for a 
ow matrix of 100,000 pairs any more.) One also distinguishes between two types of

typewriter keyboards. The instances are asymmetric.

name n feas. solution bound gap

Bur26a 26 5426670 (GRASP) 5334208 (IPLP) 1:71%

Bur26b 26 3817852 (GRASP) 3736954 (IPLP) 2:12%

Bur26c 26 5426795 (GRASP) 5359110 (IPLP) 1:25%

Bur26d 26 3821225 (GRASP) 3705831 (IPLP) 3:03%

Bur26e 26 5386879 (GRASP) 5315311 (IPLP) 1:33%

Bur26f 26 3782044 (GRASP) 3712627 (IPLP) 1:84%

Bur26g 26 10117172 (GRASP) 10047627 (IPLP) 0:69%

Bur26h 26 7098658 (GRASP) 7036448 (IPLP) 0:88%

N. Christo�des and E. Benavent [9]

One matrix is the adjacency matrix of a weighted tree the other that of a complete graph.

name n feas. solution permutation

Chr12a 12 9552 (OPT) p

�

= (7; 5; 12; 2; 1;3; 9; 11; 10; 6; 8;4)

Chr12b 12 9742 (OPT) p

�

= (5; 7; 1; 10; 11;3;4; 2; 9;6;12;8)

Chr12c 12 11156 (OPT) p

�

= (7; 5; 1; 3; 10;4; 8; 6;9;11;2;12)

Chr15a 15 9896 (OPT) p

�

= (5; 10; 8; 13; 12; 11; 14; 2;4;6;7; 15; 3; 1;9)

Chr15b 15 7990 (OPT) p

�

= (4; 13; 15; 1; 9;2;5; 12; 6; 14; 7; 3;10;11;8)

Chr15c 15 9504 (OPT) p

�

= (13; 2; 5; 7; 8;1; 14; 6; 4;3;15;9;12;11;10)

Chr18a 18 11098 (OPT) p

�

= (3; 13; 6; 4; 18;12;10;5;1;11;8; 7; 17; 14; 9;16; 15; 2)

Chr18b 18 1534 (OPT) p

�

= (1; 2; 4; 3; 5; 6; 8;9;7;12;10;11;13;14;16;15;17;18)

Chr20a 20 2192 (OPT) p

�

= (3; 20; 7; 18; 9;12;19;4;10;11;1;6; 15; 8; 2;5;14;16;13;17)

Chr20b 20 2298 (OPT) p

�

= (20; 3; 9; 7; 1;12;16;6; 8; 14; 10; 4; 5;13;17;2;18;11;19;15)

Chr20c 20 14142 (OPT) p

�

= (12; 6; 9; 2; 10;11;3;4; 15;18;7; 13; 16; 5; 14; 17; 19; 1; 8;20)

Chr22a 22 6156 (OPT) p

�

= (15; 2; 21; 8; 16; 1;7;18;14;13;5;17;6; 11; 3; 4; 20; 19; 9;22;10;12)

Chr22b 22 6194 (OPT) p

�

= (10; 19; 3; 1; 20; 2;6;4; 7; 8; 17; 12; 11; 15; 21; 13; 9; 5;22;14;18;16)

Chr25a 25 3796 (OPT) p

�

= (25; 12; 5; 3; 18; 4;16;8;20;10;14;6;15;23;24;19;13;1;21;11;17;

2; 22; 7; 9)
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A.N. Elshafei [11]

The data describe the distances of 19 di�erent facilities of a hospital and the 
ow of patients between

those locations.

name n feas. solution permutation

Els19 19 17212548 (OPT)[27] p

�

= (9; 10; 7; 18;14;19;13;17;6;11;4;5; 12; 8; 15; 16; 1; 2;3)

B. Eschermann and H.J. Wunderlich [12]

These examples stem from an application in computer science, from the testing of self-testable sequential

circuits. The amount of additional hardware for the testing should be minimized. (Note that problem

instance Esc16f was removed from QAPLIB.)

name n feas. solution permutation/bound gap

Esc16a 16 68 (OPT)[10] p

�

= (2; 14; 10; 16;5;3;7; 8; 4;6;12;11;15;13;9;1) �

Esc16b 16 292 (OPT)[10] p

�

= (6; 3; 7; 5; 13; 1; 15; 2;4;11;9;14;10;12;8; 16) �

Esc16c 16 160 (OPT)[10] p

�

= (11; 14; 10; 16; 12; 8; 9;3;13;6; 5; 7; 15; 2;1;4) �

Esc16d 16 16 (OPT)[10] p

�

= (14; 2; 12; 5;6;16;8; 10; 3; 9;13;7;11;15;4;1) �

Esc16e 16 28 (OPT)[10] p

�

= (16; 7; 8; 15;9;12;14;10;11;2; 6; 5; 13; 4;3;1) �

Esc16g 16 26 (OPT)[10] p

�

= (8; 11; 9; 12;15;16;14;10;7;6; 2; 5; 13; 4;3;1) �

Esc16h 16 996 (OPT)[10] p

�

= (13; 9; 10; 15;3;11;4;16;12;7; 8; 5; 6;2;1; 14) �

Esc16i 16 14 (OPT)[10] p

�

= (13; 9; 11; 3;7;5; 6; 2;1;15;4;14;12;10;8; 16) �

Esc16j 16 8 (OPT)[10] p

�

= (8; 3; 16; 14;2;12;10;6; 9; 5;13;11; 4;7;15;1) �

Esc32a 32 130 (Ro-TS) 35 (GLB) 73:08%

Esc32b 32 168 (Ro-TS) 96 (GLB) 42:86%

Esc32c 32 642 (SIM-1) 464 (ELI) 27:73%

Esc32d 32 200 (Ro-TS) 106 (GLB) 47:00%

Esc32e 32 2 (OPT)[2] p

�

= (1; 2; 5; 6; 8; 16; 13; 19; 9;32;7;22;24;20;4;12;3;17;

29; 21; 11; 25;27;18; 30; 31; 23; 28; 14; 15; 26; 10) �

Esc32f 32 2 (OPT)[2] p

�

= (1; 2; 5; 6; 8; 16; 10; 7;9;28;30;4;32;31;22;12;3;17;

26; 18; 13; 25;29;21; 23; 24; 19; 20; 14; 15; 27; 11) �

Esc32g 32 6 (SIM-1) 0 (GLB) 100:00%

Esc32h 32 438 (Ro-TS) 257 (GLB) 41:33%

Esc64a 64 116 (SIM-1) 47 (GLB) 59:49%

Esc128 128 64 (GRASP) 2 (GLB) 96:86%

S.W. Hadley, F. Rendl and H. Wolkowicz [15]

The �rst matrix represents Manhattan distances of a connected cellular complex in the plane while the

entries in the 
ow matrix are drawn uniformly from the interval [1; n].

name n feas. solution permutation/bound

Had12 12 1652 (OPT) p

�

= (3; 10; 11; 2;12;5;6;7; 8; 1;4;9)

Had14 14 2724 (OPT) p

�

= (8; 13; 10; 5;12;11;2;14;3;6; 7; 1;9;4)

Had16 16 3720 (OPT)[16] p

�

= (9; 4; 16; 1;7; 8; 6;14; 15; 11; 12; 10; 5;3;2;13)

Had18 18 5358 (OPT)[2] p

�

= (8; 15; 16; 6;7;18;14;11;1;10;12;5; 3; 13; 2; 17; 9;4)

Had20 20 6922 (OPT)[2] p

�

= (8; 15; 16; 14; 19; 6;7;17;1;12;10;11;5;20;2; 3; 4;9;18;13)
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J. Krarup and P.M. Pruzan [21]

The instances contain real world data and were used to plan the Klinikum Regensburg in Germany.

name n feas. solution bound gap

Kra30a 30 88900 (S-TS) 76003 (IPLP) 14:51%

Kra30b 30 91420 (Ro-TS) 76752 (IPLP) 16:05%

Y. Li and P.M. Pardalos [24]

These instances come from problem generators described in [24]. The generators provide asymmetric

instances with known optimal solutions.

name n feas. solution

Lipa20a 20 3683 (OPT)

Lipa20b 20 27076 (OPT)

Lipa30a 30 13178 (OPT)

Lipa30b 30 151426 (OPT)

Lipa40a 40 31538 (OPT)

Lipa40b 40 476581 (OPT)

Lipa50a 50 62093 (OPT)

Lipa50b 50 1210244 (OPT)

Lipa60a 60 107218 (OPT)

Lipa60b 60 2520135 (OPT)

Lipa70a 70 169755 (OPT)

Lipa70b 70 4603200 (OPT)

Lipa80a 80 253195 (OPT)

Lipa80b 80 7783962 (OPT)

Lipa90a 90 360630 (OPT)

Lipa90b 90 12490441 (OPT)

C.E. Nugent, T.E. Vollmann and J. Ruml [28]

The following problem instances are probably the most frequently used. The distance matrix contains

Manhattan distances of rectangular grids. The instances of size n 2 f14; 16; 17; 18; 21; 22; 24; 25g were

constructed out of the larger ones by deleting certain rows and columns, see Clausen and Perregaard [10].
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name n feas. solution permutation/bound gap

Nug12 12 578 (OPT) p

�

= (12; 7; 9; 3; 4;8;11;1;5; 6; 10; 2) �

Nug14 14 1014 (OPT) p

�

= (9; 8; 13; 2; 1;11;7;14;3;4; 12; 5; 6; 10) �

Nug15 15 1150 (OPT) p

�

= (1; 2; 13; 8; 9;4;3;14;7; 11; 10; 15;6; 5; 12) �

Nug16a 16 1610 (OPT)[10] p

�

= (9; 14; 2; 15; 16; 3; 10; 12; 8; 11; 6;5;7;1; 4; 13) �

Nug16b 16 1240 (OPT)[10] p

�

= (16; 12; 13; 8;4; 2; 9; 11; 15; 10; 7;3;14;6;1; 5) �

Nug17 17 1732 (OPT)[10] p

�

= (16; 15; 2; 14;9; 11;8; 12; 10; 3; 4;1;7;6; 13; 17; 5) �

Nug18 18 1930 (OPT)[10] p

�

= (10; 3; 14; 2; 18; 6; 7; 12; 15; 4;5;1;11;8; 17; 13; 9; 16) �

Nug20 20 2570 (OPT)[10] p

�

= (18; 14; 10; 3;9; 4; 2; 12; 11; 16; 19; 15; 20; 8; 13; 17; 5;

7; 1; 6) �

Nug21 21 2438 (OPT)[2] p

�

= (4; 21; 3; 9; 13; 2;5;14;18;11;16;10;6;15;20;19;8;7;

1; 12; 17) �

Nug22 22 3596 (OPT)[2] p

�

= (2; 21; 9; 10; 7; 3;1;19;8;20;17;5;13;6; 12; 16; 11; 22;

18; 4; 14; 15) �

Nug24 24 3488 (SIM-1) 3251 (TDB) 6:80%

Nug25 25 3744 (SIM-1) 3486 (TDB) 6:89%

Nug30 30 6124 (S-TS) 5772 (TDB) 5:75%

C. Roucairol [35]

The entries of the matrices are chosen from the interval [1; 100].

name n feas. solution permutation/bound

Rou12 12 235528 (OPT) p

�

= (6; 5; 11; 9;2; 8; 3;1;12;7;4; 10)

Rou15 15 354210 (OPT) p

�

= (12; 6; 8; 13;5;3; 15; 2; 7;1;9;10;4; 14; 11)

Rou20 20 725522 (OPT)[2] p

�

= (1; 19; 2; 14;10;16;11;20;9;5;7; 4; 8;18;15;3;12;17;13;6)

M. Scriabin and R.C. Vergin [36]

The distances of these problems are rectangular.

name n feas. solution permutation

Scr12 12 31410 (OPT) p

�

= (8; 6; 3; 2; 10; 1; 5;9;4; 7; 12; 11)

Scr15 15 51140 (OPT) p

�

= (15; 7; 11; 8;1;4; 3; 2;12;6;13;5;14;10;9)

Scr20 20 110030 (OPT)[27] p

�

= (20; 7; 12; 6;4;8; 3; 2;14;11;18;9;19;15;16;17;13;5;10;1)

J. Skorin-Kapov [37]

The distances of these problems are rectangular and the entries of the 
ow matrices are pseudorandom

numbers.
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name n feas. solution bound gap

Sko42 42 15812 (Ro-TS) 14934 (TDB) 5:56%

Sko49 49 23386 (Ro-TS) 22004 (TDB) 5:91%

Sko56 56 34458 (Ro-TS) 32610 (TDB) 5:37%

Sko64 64 48498 (Ro-TS) 45736 (TDB) 5:70%

Sko72 72 66256 (Ro-TS) 62691 (TDB) 5:38%

Sko81 81 90998 (GEN) 86072 (TDB) 5:41%

Sko90 90 115534 (Ro-TS) 108493 (TDB) 6:10%

Sko100a 100 152002 (GEN) 142668 (TDB) 6:14%

Sko100b 100 153890 (GEN) 143872 (TDB) 6:51%

Sko100c 100 147862 (GEN) 139402 (TDB) 5:73%

Sko100d 100 149576 (GEN) 139898 (TDB) 6:47%

Sko100e 100 149150 (GEN) 140105 (TDB) 6:07%

Sko100f 100 149036 (GEN) 139452 (TDB) 6:43%

L. Steinberg [38]

The three instances model the backboard wiring problem. The distances in the �rst one are Manhattan,

in the second squared Euclidean, and in the third one Euclidean distances.

name n feas. solution bound qap

Ste36a 36 9526 (Ro-TS) 7124 (GLB) 25:22%

Ste36b 36 15852 (S-TS) 8653 (GLB) 45:42%

Ste36c 36 8239:11 (Ro-TS) 6393:63 (GLB) 22:40%

�

E.D. Taillard [39, 40]

The instances Taixxa are uniformly generated and were proposed in [39]. The other problems were in-

troduced in [40]. Problems Taixxb are asymmetric and randomly generated. Instances Taixxc occur in

the generation of grey patterns.
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name n feas. solution permutation/bound gap

Tai12a 12 224416 (OPT) p

�

= (8; 1; 6; 2; 11;10;3;5;9; 7; 12; 4) �

Tai12b 12 39464925 (OPT) p

�

= (9; 4; 6; 3; 11;7;12;2;8; 10; 1; 5) �

Tai15a 15 388214 (OPT) p

�

= (5; 10; 4; 13; 2; 9;1;11;12;14;7;15;3;8; 6) �

Tai15b 15 51765268 (OPT) p

�

= (1; 9; 4; 6; 8;15;7;11;3; 5; 2;14; 13; 12; 10) �

Tai17a 17 491812 (OPT)[2] p

�

= (12; 2; 6; 7; 4;8;14;5;11;3; 16;13;17;9; 1;

10; 15) �

Tai20a 20 703482 (OPT)[2] p

�

= (10; 9; 12; 20;19;3;14;6; 17; 11; 5; 7;15; 16;

18; 2; 4; 8; 13;1) �

Tai20b 20 122455319 (Ro-TS) 14857089 (GLB) 87:87%

Tai25a 25 1167256 (Ro-TS) 962417 (GLB) 17:55%

Tai25b 25 344355646 (Ro-TS) 51401950 (GLB) 85:08%

Tai30a 30 1818146 (Ro-TS) 1504688 (GLB) 17:25%

Tai30b 30 637117113 (Ro-TS) 40947945 (GLB) 93:58%

Tai35a 35 2422002 (Ro-TS) 1951207 (GLB) 19:44%

Tai35b 35 283315445 (Ro-TS) 32611838 (GLB) 88:49%

Tai40a 40 3139370 (Re-TS) 2492850 (GLB) 20:60%

Tai40b 40 637250948 (Ro-TS) 46143753 (GLB) 92:77%

Tai50a 50 4941410 (GEN) 3854359 (GLB) 22:00%

Tai50b 50 458821517 (Ro-TS) 40296004 (GLB) 91:23%

Tai60a 60 7208572 (Ro-TS) 5555095 (GLB) 22:94%

Tai60b 60 608215054 (Ro-TS) 50113782 (GLB) 91:77%

Tai64c 64 1855928 (Ro-TS) 896398 (ELI) 51:71%

Tai80a 80 13557864 (Ro-TS) 10329674 (GLB) 23:82%

Tai80b 80 818415043 (Ro-TS) 89169828 (GLB) 89:11%

Tai100a 100 21125314 (Re-TS) 15824355 (GLB) 25:10%

Tai100b 100 1185996137 (Ro-TS) 174687926 (GLB) 86:28%

Tai150b 150 499348972 (Ro-TS) 63007151 (GLB) 87:39%

Tai256c 256 44919020 (GEN-2) 41291996 (ELI) 8:08%

U.W. Thonemann and A. B�olte [41]

The distances of these instances are rectangular.

name n feas. solution bound gap

Tho30 30 149936 (SIM-2) 136447 (TDB) 9:00%

Tho40 40 240516 (SIM-2) 214218 (TDB) 10:94%

Tho150 150 8134030 (GEN) 7620628 (TDB) 6:32%

M.R. Wilhelm and T.L. Ward [42]

The distances of these problems are rectangular.

name n feas. solution bound gap

Wil50 50 48816 (SIM-2) 47098 (TDB) 3:52%

Wil100 100 273038 (GEN) 263909 (TDB) 3:35%
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4 Surveys and Dissertations Concerning QAP since 1990

Surveys

R.E. Burkard and E. C� ela provide the most recent survey on QAP [4]. Their paper is an annotated

bibliography on all aspects of the QAP. Another recent survey on QAP is due to P.M. Pardalos, F. Rendl

and H. Wolkowicz [30]. It appeared in 1994 in a proceedings book of the DIMACS workshop on QAP

edited by P.M. Pardalos and H. Wolkowicz [31]. R.E. Burkard reviews the QAP in the context of facility

location in the survey paper [3].

Dissertations

The following list of dissertations considering the quadratic assignment problem shows that there is still

a broad interest in this di�cult combinatorial optimization problem. Even though there has not been

substantial improvement regarding the solvability of larger problem instances, these dissertations contain

many ideas which are certainly a strong foundation for successful future work on QAP.

E. C� ela [8] investigated the computational complexity of specially structured quadratic assignment prob-

lems. Moreover, she considered a generalization of QAP, the so called biquadratic assignment problem.

T.A. Johnson [17] introduced solution procedures based on linear programming. The linear formulation

derived in her thesis theoretically dominates alternate linear formulations for QAP.

S.E. Karisch [18] presented nonlinear approaches for QAP. These provide the currently strongest lower

bounds for problems instances whose distance matrix contains distances of a rectangular grid and for

smaller sized general problems.

Y. Li [23] introduced beside other ideas lower bounding techniques based on reductions, GRASP and a

problem generator for QAP.

F. Malucelli [26] proposed a lower bounding technique for QAP based on a reformulation scheme and

implemented it in a branch and bound code. Some new applications of QAP in the �eld of transportation

were also presented.

T. Mautor [27] focused on parallel implementations and exploited the metric structure of the Nugent

instances to reduce the branching tree considerably.

M. Rijal [34] investigated structural properties of the QAP polytope. The starting point is the quadric

Boolean polytope.

5 Fortran Codes for QAP

The following Fortran codes are available through the QAPLIB Home Page on WWW. We intend to

extend this list of codes, and would like to include also further software, contributed by other researchers.

Unless otherwise stated, the following programs are selfcontained, i.e. compiling them should result in

an executable main program. The input convention is the same for all �les. The main program expects

a QAP instance (in the format of the QAPLIB) from the primary input.

qapbb.f

The Branch and Bound code from [5] solves QAPs to optimality. The code qapbb.f is a modi�ed version

of it (a linear term can be included) and is quite e�cient on problems of sizes n � 15. Running it on

larger problems may result in unpredictably long computation times. Currently the code is dimensioned

to handle problems of sizes at most n � 33: A typical call might look like

bbqap < nug12.dat
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qapglb.f

The Gilmore-Lawler bound can be computed quite e�ciently for all instances of the QAPLIB. Currently

the code is dimensioned for problems with n � 256. It uses some of the subroutines from [5] in modi�ed

form.

qapeli.f

This routine computes the elimination bound. It is applicable only if the problem is symmetric. It is also

dimensioned for n � 256.

GRASP

These are the GRASP heuristics of [25, 32]. The code is obtainable from the home page of M.G.C.

Resende (URL: ftp://netlib.att.com/netlib/att/math/resende/home.html), and consists of com-

pressed tar-�les.

qapsim.f

This is the code from [7], and produces heuristic solutions for symmetric QAPs of dimension n � 256,

based on simulated annealing.

Li-Pardalos generator

The problem generator of Y. Li and P.M. Pardalos [24] can be obtained by sending an E-Mail to

coap@math.ufl.edu and putting \send 92006" in the body of the mail message.

6 Conclusion

Even though the research activities around the QAP have signi�cantly increased during the last years,

we feel that the QAP is still a serious challenge for scientists. There are very e�cient heuristics available,

that �nd in acceptable computation times seemingly good solutions. To prove their optimality, there

are a variety of bounds available. Unfortunately, it seems to be the case that the bounds with low

computational cost, like GLB or ELI are not strong enough on larger problems, to prove optimality with

limited enumeration.

The more advanced, and only recently investigated polyhedral and semide�nite relaxations seem to

be stronger, but their current implementations are prohibitive for even moderately sized problems. Their

advantage lies also in the fact, that dual information is available, which can be used to guide the branching

process.

A breakthrough to solve larger QAP instances to optimality can in our opinion only be expected, if

these stronger bounds can also be implemented to run much faster than the current implementations. It

will be interesting to follow the progress on QAP in the near future.
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