
Arti�cial Life and

Nature-Inspired Algorithms

[citing this script]

Maciej Komosinski

2025

CC BY-NC 4.0

Resources useful to recall and review most of the ideas

presented during lectures on Arti�cial Life.

https://www.cs.put.poznan.pl/mkomosinski/site/?q=biologically-inspired-computing-and-arti�cial-life

https://creativecommons.org/licenses/by-nc/4.0/
https://www.cs.put.poznan.pl/mkomosinski/site/?q=biologically-inspired-computing-and-artificial-life

Contents

1 Arti�cial Life � introduction 3
1.1 De�nition, methodology, goals . 4
1.2 Arti�cial life vs. arti�cial intelligence . 6
1.3 What life is and what it is not: de�nitions of life 7
1.4 Research interests and applications . 10

2 Optimization 12
2.1 Single-solution neighborhood search . 12
2.2 Adjusting parameter values; interactive and batch application 13

3 Evolutionary algorithms 14
3.1 Classi�cation . 14
3.2 Genetic algorithms . 15

3.2.1 Algorithm structure and parameters 15
3.2.2 Selection . 16
3.2.3 Crossover . 19
3.2.4 Mutation . 19

3.3 Evolutionary strategies . 20
3.4 Evolutionary programming . 20

3.4.1 Crossover and mutation vs. smoothness of the �tness landscape . . . 21
3.4.2 Embryogeny . 21

3.5 Genetic programming . 25
3.5.1 Symbolic regression . 30
3.5.2 Hyper-heuristics and self-programming algorithms 36

3.6 Classi�er systems (CFS/LCS/GBML) . 37
3.6.1 Input and output interfaces . 41
3.6.2 Main cycle . 43
3.6.3 Learning Classi�er Systems (LCS) 44

1

CONTENTS 2

3.6.4 Good and bad classi�ers . 45
3.6.5 The need for competition . 45
3.6.6 Quality of classi�ers . 45
3.6.7 Adaptation by credit assignment . 46
3.6.8 The Bucket Brigade algorithm . 46
3.6.9 Adaptation by rule discovery . 47
3.6.10 Summary . 48

4 Other nature-inspired optimization techniques 49
4.1 Ant systems, ant colony optimization (AS, ACO) and swarm intelligence . . 49
4.2 Particle swarm optimization (PSO) . 51
4.3 Other swarm-intelligent optimization algorithms 51

5 Remaining aspects of arti�cial life 52
5.1 Modeling plants using L-systems . 53
5.2 Emergence in Boids . 53
5.3 Spatio-temporal dynamics in Cellular Automata 54
5.4 Agent and environment . 56

5.4.1 Complex Adaptive Systems (CAS), Multi-Agent Systems (MAS) . . 56
5.4.2 Robotics: hierarchical control with layers 56
5.4.3 Levels of autonomy . 57
5.4.4 Cognitive architectures and arti�cial general intelligence 58

5.5 Models of biological life � selected examples 58

Chapter 1

Arti�cial Life � introduction

Video for this chapter: https://youtu.be/4u75vgmIq-U

All videos for this script: https://www.youtube.com/playlist?list=PLWsgSwUaSMpE0KeeOWfVsxmfIN4RtfT61

Lecture meetings:

� Oct. 2: video #1

� Oct. 30: questions (non-graded test) and discussion on videos #2�#8 you watched

� Nov. 27: questions and discussion on videos #9�#12 you watched

� Jan. 8: questions and discussion on all lectures (#1�#14)

� January 22 � the �nal test (the entire playlist).

The remaining odd-week Wednesdays (Oct. 16, Nov. 13, Dec. 11): optional consultations
� if you need one, come to the lecture room.

3

https://youtu.be/4u75vgmIq-U
https://www.youtube.com/playlist?list=PLWsgSwUaSMpE0KeeOWfVsxmfIN4RtfT61

1.1 De�nition, methodology, goals

Discussion: �What is life?�

Arti�cial Life1 (AL, ALife) [Sip95]:

� is an interdisciplinary research enterprise aimed at understanding life-as-it-is (life-
as-we-know-it) on Earth and life-as-it-could-be (larger domain of �bio-logic� of
possible life)

� synthesizes life-like phenomena (embodiment and physical constraints for the self-
organization) in chemical (wetware), electronic (hardware) [AK09], software [KA09]
(cf. movie �Her�, 2013; movie �Transcendence�, 2014), and other arti�cial media

� is devoted to understanding life by attempting to abstract the fundamental dynamical
principles underlying biological phenomena, and recreating these dynamics in other
physical media, such as computers, making them accessible to new kinds of experi-
mental manipulation and testing [Lan97]

� rede�nes the concepts of arti�cial and natural, blurring the borders between tradi-
tional disciplines and providing new insights into the origin and principles of life.

Complementary research methods (Fig. 1.1):

� most research (biology and AI, too) is essentially analytic, breaking down complex
phenomena into their basic components (which is not always possible),

� ALife is synthetic, attempting to construct phenomena from their elemental units �
this is inevitable when trying to understand emergent phenomena.

Main goals of ALife:

� Increasing our understanding of nature by studying existing biological phenomena.
Examples are provided in Sect. 5.5.

� Enhancing our insight into applicable arti�cial models (this requires studying complex
systems) in order to improve their performance. Examples are software development
through evolution (Genetic Programming, GP) or devising biologically-inspired opti-
mization algorithms. This is where we will focus during this course.

Sample questions for ALife:

1http://en.alife.pl/main/e

Arti�cial Life � lecture script 4

http://en.alife.pl/main/e

Figure 1.1: Left: analytic/synthetic research methods. Right: synthesis as a way of the
inference about how complex systems are built and how they work. Consider two examples:
neurons, brain, thoughts and companies, market, stock prices. Another use case: consider
the vertical axis to be time (top=present) � sometimes time obscures the past and we cannot
know what happened (e.g. how life emerged, how species evolved, how atypical supernovae
were created [JMK20]), so to learn what might have happened we have to build models of
changes in time, simulate them and compare the outcomes to the present state.

� Can a machine reproduce?2 (John von Neumann, early 1950's � CA, Sect. 5.3)

� Can software be evolved? (John Koza � GP, Sect. 3.5)

� How are sophisticated robots built to function in a human environment?

� Can an ecological system be created within a computer?

� How do �ocks of birds �y?

Arti�cial Life � lecture script 5

Figure 1.2: Three possible relationships between AL and AI. Left: AI-centric/traditional.
Middle: common sense. Right: right.

Figure 1.3: A sensory input space (here, 3D) is all a creature can sense. Contrary to what
we, its observers, can sense...

1.2 Arti�cial life vs. arti�cial intelligence

A remark on notation: sometimes a di�erence between �Arti�cial Life� and �arti�cial life�
is emphasized (same as with �Arti�cial Intelligence� and other domains/disciplines/�elds)
and such a distinction is useful, but capitalization rules say not to do it3.

2The ability to repair is a part of reproduction, and repair may concern the https://en.wikipedia.org/wiki/Trolley_
problem.

3https://english.stackexchange.com/questions/6246/capitalize-fields-of-study

Arti�cial Life � lecture script 6

https://en.wikipedia.org/wiki/Trolley_problem
https://en.wikipedia.org/wiki/Trolley_problem
https://english.stackexchange.com/questions/6246/capitalize-fields-of-study

A new paradigm of intelligence states that intelligence is not an abstract process, but it
rather requires situatedness in the environment and embodiment. This allows agents to
in�uence the data they perceive; an agent-environment interaction emerges, and sensory-
motor coordination is required. Sometimes an agent is expected to react di�erently to the
same stimuli (in robotics this is called the perceptual aliasing problem4: one should act di�er-
ently in seemingly identical situations � situations that are perceived as identical, compare
Fig. 1.3). Usually the solution is then to acquire more information or to transform/trans-
late the information already possessed. Thanks to embodiment, an agent can do it (active
perception), e.g. by changing the way they perceive objects, by reaching for additional data
that will discriminate between agent's decisions, or even by self-observation and analyzing
their interaction with the environment [NP99]. Example 1: a perfectly symmetrical football
playing �eld and identical players: how do you tell your own goal from your opponent's
goal? Example 2: a tiny bacteria and chemotaxis. Example 3: accidents of autonomous
cars. Example 4: no eyesight.

1.3 What life is and what it is not: de�nitions of life

From [Ada98], for an extended discussion see [Life10]:

� Physiological De�nition: Focuses on physiological functions such as breathing,
moving, digesting, etc, to construct a list of requirements that will distinguish living
from non-living. Outdated .

� Metabolic De�nition: Centers on the exchange of materials between the organism
and its surroundings as the only requirement for it to be alive. Too narrow? or Too
general?

� Biochemical De�nition: Classi�es living systems by their capability to store hered-
itary information in nuclear acid molecules. Focuses on DNA/RNA. Too narrow.

� Genetic De�nition: Focuses on the process of evolution as the central de�ning
characteristic of living systems, without regard to how the information is coded (i.e.,
independently of substrate).

� Thermodynamic De�nition: Describes systems in terms of their ability to main-
tain low levels of entropy (i.e., disorder) despite a noisy environment [Sch44]. Too
general?

4Perception: receiving information from the environment (and from oneself) with senses or sensors. Cognition: receiving,
processing and storing information in order to control one's behavior. More in Sect. 5.4.4.

Arti�cial Life � lecture script 7

� Physics-based De�nition: Life is a property of an ensemble of units that share
information coded in a physical substrate and which, in the presence of noise, manages
to keep its entropy signi�cantly lower than the maximal entropy of the ensemble, on
timescales exceeding the �natural� timescale of decay of the (information-bearing)
substrate by many orders of magnitude.

According to one theory, life is a perfect dissipator of energy5. The universe tends toward
disorder, decay, and equilibrium (entropy grows). But life maintains low entropy due to a
non-random, speci�c structure; the complexity of life on Earth increased during evolution,
as if entropy decreased. However, Earth is not a closed system � Sun provides energy. Life
decreases its own entropy by increasing the entropy of its surroundings (it absorbs order
and ejects disorder), and so energy gradients (energy �ow) facilitate the emergence of life6.
The original source of the lowest entropy was the Big Bang, and life (as a local phenomenon
of order) arises naturally as the energy is redistributed into the most random possible state.

Why these are alive?

� Viruses: which de�nitions support it, and which are against it?

� Sand Dunes: as they get blown through the desert, end up growing, and splitting
o� smaller dunes. Many think of this as a form of self-replication.

� An Organized Religion: a meme of sorts, with no physical representation. Cer-
tainly an `idea' which can spread like wild�re as a parasite through a host population
of `people'. It can also be argued to be the people who are part of the religion, and
then it would have a genetic basis.

� Chain Letter: This is another meme, only this one does certainly have a physical
representation. And I know many people who wish Chain Letters would just die
already...

� Prions: These proteins will infect a living organism and bend its proteins around to
become more prions (e.g., Mad Cow and Creutzfeld-Jacob disease). It requires a very
select environment to work (so do we. . .)

� A Robot which moves around collecting resources from the environment and returns
them to a robotic `hive' to build more robots just like it.

5https://www.youtube.com/watch?v=GcfLZSL7YGw
6https://www.sciencefocus.com/science/the-origin-of-life-a-new-theory-suggests-physics-holds-the-answer/

Arti�cial Life � lecture script 8

https://www.youtube.com/watch?v=GcfLZSL7YGw
https://www.sciencefocus.com/science/the-origin-of-life-a-new-theory-suggests-physics-holds-the-answer/

Epistemology (the study of the nature of knowledge, justi�cation, and the ra-
tionality of belief). What do we commonly consider alive? How to identify life? What
qualities living beings possess? [Dom99]

According to Farmer and Belin [FB90]: Life is a pattern in spacetime, self-reproduction,
storage of a self-representation, a metabolism, functional interaction with the environment,
interdependence of parts, stability under perturbations, the ability to evolve.

Mark Bedau, in turn, proposed �exible, supple adaptation [Bed96] as a property (a deter-
minant) of life. This was because it seemed that to determine whether objects are alive,
their own properties are not enough � one should also looked at these objects from the per-
spective of the system they constitute, its behavior and dynamics. To determine whether
continuous, supple adaptation takes place, the evolution of organisms is compared in the
tested model and in the additionally created null model, in which mutations occur as often
as in the tested model. However, in the null model, genotypes have no e�ect on survival.
The traits (characteristic properties, features) of organisms are studied: if they occur sta-
tistically signi�cantly more frequently in the model under study than in the null model, it
means that the system under study shows adaptive evolution, which, according to Bedau,
is an indicator of life.

In the �rst arti�cial life models, we either do not notice such characteristic properties of
simulated organisms, or they appear until the �task� posed by the environment is �solved�
(then the evolution no longer progresses), and therefore statistically they do not last longer
than in the null model. On the other hand, by using the property of supple adaptation as
a de�nition of life, we come to the conclusion that individual people are less alive than the
biosphere as a whole, and also less than some chemical or economic systems [Dom99].

The properties (determinants) proposed by Farmer and Belin and the feature of supple
adaptation were criticized; Paul Domjan invented the �Romance Novel System� � a system
in which romance writers are also readers, all novels are published, and the authors can read
them and freely borrow ideas from themselves [Dom99]. Domjan believes that his system in
a sense and with a proper interpretation has all the properties of life mentioned above, yet
neither this system nor its components would be by common sense, or intuitively, considered
alive.

More about the role of null model : if you are studying an evolutionary model in terms of
adaptation (e.g., looking for the frequency of genes, traits, etc.), it is bene�cial to create
the corresponding null model (�neutral shadow �) [RB99]. This new model is the `shadow'
of the examined model, because their evolutionary parameters, the rules of survival and
reproduction, etc., are identical, but genotypes have no adaptive signi�cance in the null

Arti�cial Life � lecture script 9

model. Selection in the null model is purely random, while in the model under investigation
it usually removes poor genotypes. Thus null model helps minimize the impact of evolu-
tionary phenomena such as chance and necessity7. When comparing the examined model
with its �shadow�, the e�ect of adaptation becomes clearly distinguished, and the remaining
evolutionary e�ects (potentially overlapping the adaptation process and hindering analysis)
can be �ltered out.

1.4 Research interests and applications

� Self-organization

� Chemical origins of life, Autocatalytic systems, Prebiotic evolution, RNA systems,
Evolutionary/arti�cial chemistry

� Fitness landscapes

� Natural selection

� Arti�cial evolution

� Ecosystem evolution

� Multicellular development

� Natural and arti�cial morphogenesis

� Learning and development

� Bio-morphic and neuro-morphic engineering

� Arti�cial / Virtual worlds

� Simulation tools

� Arti�cial organisms

� Synthetic actors

� Arti�cial (virtual and robotic) humanoids

� Intelligent autonomous robots

7�Everything existing in the universe is the fruit of chance and necessity� is attributed to Democritus, an ancient Greek
pre-Socratic philosopher (�400 BC). �Chance and Necessity: Essay on the Natural Philosophy of Modern Biology� is a 1970
book by a French biochemist, Nobel Prize winner (1965, for discoveries concerning genetic control of enzyme and virus
synthesis) Jacques Monod. He interpreted the processes of evolution to show that life is only the result of natural processes
by �pure chance� � https://en.wikipedia.org/wiki/Chance_and_Necessity.

Arti�cial Life � lecture script 10

https://en.wikipedia.org/wiki/Chance_and_Necessity

� Evolutionary Robotics / Design

� Life detectors

� Self-repairing hardware

� Evolvable hardware (EHW)

� Emergent collective behaviors

� Swarm intelligence

� Evolution of social behaviors

� Evolution of communication

� Epistemology

� Arti�cial Life in Art. Evolutionary art (example); evolutionary music; creative evo-
lutionary design; conceptual evolutionary design; strategy evolution; collaborative
evolutionary systems; interactive evolutionary systems; evolutionary sculpture; evolu-
tionary architecture.

Works on arti�cial life are not limited to evolving systems. Sometimes the goal is to sim-
ulate life focusing on the realism of behaviors. Realistic macro-simulations were created
in this respect � one of the �rst ones were Arti�cial Fishes [TTG94] and the Humanoid
and Humanoid-2 projects [Tha+95]. For such purposes, virtual reality (VR) techniques,
interactive actors (avatars), or Lindenmayer systems (L-systems, Sect. 5.1) are used.

Selected applications of AL [KC06]: robotics, design, engineering and construction of three-
dimensional objects; robots adapting to tasks, to environments and to their own damage;
computer animations (movies, advertisements, games, simulations); medicine, therapy and
physical therapy; study of group and social behavior, crowds, schools (�sh, birds), ecosys-
tems (forests, bacteria, viruses); studying the behavior of complex adaptive systems8 (bi-
ology, economics, market and consumer models) and biological processes (e.g., building a
spider's web, the structure and working principles of the eye); research on distributed knowl-
edge and information, intelligence, communication ability and language evolution; creating
robust algorithms and protocols for time-varying/mobile computer networks; integrated
circuits adapting to computation.

Sample questions

What is perceptual aliasing? What is its cause and how to prevent it?

8https://en.wikipedia.org/wiki/Complex_adaptive_system

Arti�cial Life � lecture script 11

https://en.wikipedia.org/wiki/Evolvable_hardware
http://en.alife.pl/art_painter/e/colorful.html
https://en.wikipedia.org/wiki/Complex_adaptive_system

Chapter 2

Optimization

2.1 Single-solution neighborhood search

Before we start talking about biologically-inspired optimization algorithms (including evo-
lutionary algorithms), we should learn some basics of optimization theory and the simplest
optimization algorithms [url].

� OptIntroduction.pdf https://youtu.be/_EUoWFFA_mo

Fundamentals of optimization � slides up to �Homework� and the red landscape at
the end.

� LS-en.pdf https://youtu.be/b-gGAE0mP7U

The idea behind local search � neighborhood and its size for a permutation and for
a vector of numbers; the di�erence between greedy and steepest.

� MetaheuristicsSummary.pdf https://youtu.be/paY0XcrL08o

The idea behind SA and TS; slides up to �But...�.

12

http://www.cs.put.poznan.pl/mkomosinski/lectures/optimization/
https://youtu.be/_EUoWFFA_mo
https://youtu.be/b-gGAE0mP7U
https://youtu.be/paY0XcrL08o

Sample questions

� How is TSP de�ned?

� How many solutions are there in the TSP?

� Why is it hard to �nd global optimum in combinatorial problems?

� How many solutions must be checked in the TSP in the worst case to �nd
the global optimum?

� How the exhaustive (a.k.a. brute force or full search) algorithm works?

� What is the di�erence between Simulated Annealing and Greedy Local
Search?

� What is the di�erence between Tabu Search and Steepest Local Search?

� What is the role of �temperature� in Simulated Annealing? How the initial
temperature value should be adjusted?

� What is stored in the �tabu� list in Tabu Search?

� Are TS and SA faster or slower than Greedy and Steepest?

� What is the stopping condition for LS, SA and TS?

� Do SA or TS always discover the global optimum? Why?

2.2 Adjusting parameter values; interactive and batch
application

As in the case of many AI algorithms, the optimal values of parameters depend on the
nature of the task being solved, which, however, a priori (and usually also a posteriori) is
unknown. The selection of values also depends on the application � interactive (on-line)
or batch (o�-line). With a batch approach, we are interested in the best solution found
during the algorithm's operation. With the on-line approach, we are interested in making
the optimization algorithm work at its best all the time. To evaluate the operation in on-line
and o�-line modes one can employ various statistics such as average and max.

Arti�cial Life � lecture script 13

Chapter 3

Evolutionary algorithms

3.1 Classi�cation

Evolutionary Computation (EC) / Algorithms (EA)

EA is based upon biological observations that date back to Charles Darwin's discoveries in
the 19th century: the means of natural selection and the survival of the �ttest, and theories
of evolution.

Evolutionary
Biology

Computer
Science

Evolutionary
Computation

Figure 3.1: Evolutionary computation as a part of computer science and biology.

� Genetic Algorithms (GA)

� Evolution Strategies (ES)

� Evolutionary Programming (EP)

� Genetic Programming (GP)

14

� Classi�er Systems (CFS), Genetic-Based Machine Learning (GBML)

� Various coevolutionary architectures

� ...

GA: created by John Holland (1973, 1975), made famous by David Goldberg (1989)
EP: created by Lawrence Fogel (1963), developed by his son, David Fogel (1992)
ES: created by Ingo Rechenberg (1973), promoted by Thomas Bäck (1996)
GP: developed by John Koza (1992)

Applications of EA:

� optimization of mathematical functions

� operational research � scheduling, optimization, . . .

� multiple-criteria optimization and decision support

� image processing, pattern recognition

� adaptive algorithms in games

� control; robotics; evolutionary design

� biology � simulations (species, populations, . . .)

� social sciences � simulations of groups

� arti�cial life

� . . .

3.2 Genetic algorithms

All genotypes are binary vectors of the same, �xed length. If the optimization problem
requires a di�erent representation (e.g. a permutation), then solutions need encoding, de-
coding and sometimes repair. Genetic operators are unaware of the original representation
of solutions, so they can be the same for every optimization problem. Compare this to
nature... very di�erent species, the same basic code.

3.2.1 Algorithm structure and parameters

Main loop:

Arti�cial Life � lecture script 15

t := 0
initialize P (t)
evaluate P (t)
while (not stopping-condition)
{

t := t+ 1
select P (t) from P (t− 1)
modify P (t)
evaluate P (t)

}

Parameters:

� population size POPSIZE

� probability of crossing-over PXOVER

� probability of mutation PMUT

� choosing the stopping criterion

� choosing the selection mechanism (positive and possibly negative)

� adjusting parameter values of the selection mechanism

Simple demo: http://en.alife.pl/opt/e/index.html

Creating consecutive gene pools in GA: steady state (incremental) or generational replace-
ment. In steady state GA, not all individuals undergo modi�cation � some go to the next
generation unchanged. In a special case, we change only one individual and the algorithm
works smoothly, without clearly separated generations, and uses newly evolved ideas sooner
(faster convergence is possible).

3.2.2 Selection

From the reproduction stage we expect good individuals to be multiplied. The stronger
the dominance of better solutions over worse ones (higher selective pressure), the lower the
diversity of the resulting population will be. These two aspects of selection (preference
for better individuals over worse ones and maintaining diversity) are to a certain extent
contradictory, although both are also desirable.

Arti�cial Life � lecture script 16

http://en.alife.pl/opt/e/index.html

The amount of selective pressure can be expressed numerically, e.g. by dividing the prob-
ability of selecting the best individual in the population by the probability of selecting an
average individual (having �tness equal to the median �tness in the population).

The selective pressure can be controlled, for example, by means of scaling of individual
�tness values. Too high pressure will lead to premature convergence (to a local optimum),
because the best individuals at the given time will gain preponderance and dominate the
remaining solutions. On the other hand, low selective pressure will ensure a high diversity
of individuals in populations, which may result in the ine�ciency of the entire evolutionary
process and make it similar to a random search.

Let fi be the �tness of i-th individual (i = 1..POPSIZE), and ei � the number of its
expected copies in the new (consecutive) population, ei = POPSIZE · fi/

∑
fj.

The most popular selection techniques are:

� Fitness proportionate random selection with replacement, commonly called the roulette
wheel technique: individuals are assigned �elds on the roulette wheel, the sizes of
which are proportional to their �tness fi. Then the roulette wheel is spun POPSIZE
times, selecting the drawn individual for the new population. The same principle
is implemented by the stochastic universal sampling method1, which provides better
properties of randomness during selection.

� Stochastic remainder selection without replacement: each individual gets as many
copies in the new population as the integer part of its ei. The remaining free places
are �lled by randomly deciding, for each individual with the probability being the
fractional part of its ei, whether it should go to the new population. Example: 4 in-
dividuals, f = [1,3,5,6].

� Selection according to random tournaments: k individuals are randomly drawn, and
then the winner (the individual with the highest �tness) is placed in the new popula-
tion. The process is repeated until all places are �lled in the new population. A more
careful variant of this technique ensures that each individual participates in the same
number of tournaments.

Other selection techniques:

� Deterministic remainder-based selection: each individual gets as many copies in the
new population as the integer part of its ei, and the remaining free places in the
population are �lled in order of decreasing fractional parts of individual ei.

1https://en.wikipedia.org/wiki/Stochastic_universal_sampling

Arti�cial Life � lecture script 17

https://en.wikipedia.org/wiki/Stochastic_universal_sampling

� Stochastic remainder selection with replacement: each individual gets as many copies
in the new population as the integer part of its expected number of copies (ei). The
remaining places are �lled according to the roulette principle proportionally to the
fractional part of ei.

� Ordinal selection: individuals are assigned integer ranks that correspond to their
position in ranking, from best to worst. The selection is based on the probability
function that depends not on raw �tness values, but on individual positions in the
ranking. Various probability functions are used � linear and non-linear, and the
parameters of these functions allow one to adjust selective pressure.

Additional properties of selection:

� Elitism (elitist model): ful�lls the expectation that the selection process should not
cause the loss of the best individual found so far. If such an individual does not �nd
its way to the next population in a natural way (resulting from the selection method
used), it is included in it and thus the information about the best solution so far is
always preserved.

� Crowding factor model: similar to nature, where species �lling the ecological niche
must �ght for limited resources � in the crowding model, new individuals replace
old individuals (from the previous population) taking into account their similarities,
i.e., new individuals take the place of the old individuals most similar to them. The
crowding factor (a parameter) a�ects the way individuals are replaced [DJ75; Mah92].

Meta-schemes of selection:

In the following selection methods, parts of the population (subpopulations) can be indepen-
dently processed � these methods can therefore also act as a distribution and parallelization
scheme for evolution.

� Island model: a population is split into subpopulations in which the chosen selection
scheme operates (for example tournament, roulette or other). Evolution proceeds on
each island independently, with periodic migration of some genotypes between islands.
This model increases exploration capabilities.

� Convection selection: unlike in the traditional island model, the division into sub-
populations follows the similarity of the value of the objective function of solutions.
Convection selection improves the exploration ability of an EA by properly balancing
selective pressure [KU17; KM18]. The way this selection method works is illustrated
in animations here.

Arti�cial Life � lecture script 18

http://www.cs.put.poznan.pl/mkomosinski/convection.html

The selection techniques mentioned above have their pros and cons; in particular, the �rst
of them � the roulette method � has a high variance that results in large di�erences between
the actually achieved and the expected numbers of individuals. Hence many techniques were
introduced (such as stochastic remainder selection without replacement) that overcome this
drawback. The choice of the selection method has a big impact on the behavior of the
algorithm, in particular on the ability to cross saddles2 during optimization.

Sometimes (depending on the adopted GA architecture), in addition to using a positive
selection, it is also necessary to employ a negative selection. Its role is to make room in the
population for new genotypes � negative selection decides which genotypes to remove from
the population. Similar mechanisms as for the positive selection can be used; two examples
of naive methods are deleting the worst genotype and a random one.

Sample questions

� Enumerate and summarize the selection techniques you learned.

� What are the disadvantages and advantages of each technique?

3.2.3 Crossover

Discussion: is the crossover operator mandatory in the evolutionary algorithm?

Crossover: creates new solutions inheriting information from two (or more) �parent� solu-
tions. For example a single-point crossover (�cutting� a genotype in a random location and
swapping parts of the genotype)

a b c d e f|g h a b c d e f G H

A B C D E F|G H A B C D E F g h

or a uniform crossover (each bit in a child is chosen from a random parent).

3.2.4 Mutation

Discussion: is the mutation operator mandatory in the evolutionary algorithm?

Mutation: creates a new solution inheriting almost all information from one �parent� solu-
tion. A source of variability, prevents convergence. Analogous to the neighborhood operator
in local optimization algorithms.

2https://en.wikipedia.org/wiki/Saddle_point

Arti�cial Life � lecture script 19

https://en.wikipedia.org/wiki/Saddle_point

3.3 Evolutionary strategies

Similar to a GA, but the representation is suited for numerical optimization � it is a vector
of real (i.e., �oating-point) numbers. Mutation adds a normally distributed (with µ = 0)
random value to each gene � this is the �creep� mutation. Crossover can be uniform or
arithmetic. Arithmetic crossover produces o�spring that are a linear combination of parents
(an average in a special case).

3.4 Evolutionary programming

EP, originally conceived3 by Lawrence J. Fogel4 in 1960, is a stochastic OPTIMIZATION
strategy similar to GAs, but instead places emphasis on the behavioral linkage between
PARENTs and their OFFSPRING, rather than seeking to emulate speci�c GENETIC OP-
ERATORS as observed in nature.

Three ways in which EP di�ers from GAs:

1. There is no constraint on the representation. The typical GA approach involves
encoding the problem solutions as a string of representative tokens, the GENOME.
In EP, the representation follows from the problem. Example: a neural network
can be represented in the same manner as it is implemented, because the mutation
operation does not demand a linear encoding. (In this case, for a �xed topology, real-
valued weights could be coded directly as their real values and mutation operates by
perturbing a weight vector with a zero mean multivariate Gaussian perturbation. For
variable topologies, the architecture is also perturbed).

2. The mutation operation simply changes aspects of the solution according to a statisti-
cal distribution: minor variations in the behavior of the o�spring are highly probable,
substantial variations are unlikely. The severity of mutations is often reduced in time.

3. EP typically does not use any CROSSOVER as a GENETIC OPERATOR.

Nowadays, �evolutionary programming� is a rarely used name. Instead we speak about an
evolutionary algorithm � which generally means an algorithm adapted to the problem at
hand. The degree of its adaptation varies; most often customizations involve the represen-
tation and operators.

Many representations of individuals are used: a set, list, permutation, tree, non-directed
graph, directed graph, matrix, logical expressions, rules (as in GBML, Sect. 3.6), neural

3https://www.kanadas.com/whats-ep.html, email from https://en.wikipedia.org/wiki/David_B._Fogel
4https://en.wikipedia.org/wiki/Lawrence_J._Fogel

Arti�cial Life � lecture script 20

https://www.kanadas.com/whats-ep.html
https://en.wikipedia.org/wiki/David_B._Fogel
https://en.wikipedia.org/wiki/Lawrence_J._Fogel

networks, automata, grammar expressions (e.g. stored as RPN5), expressions structured as
trees, programs (as in GP, Sect. 3.5), . . .

3.4.1 Crossover and mutation vs. smoothness of the �tness land-

scape

The way mutation and crossing over operators are de�ned determines which solutions are
neighbors, and this determines the smoothness of the �tness landscape. The more smooth
the �tness landscape, the better for optimization. �Smoothness� can be estimated by cal-
culating �tness�distance correlation (FDC) � the higher, the better. The correlation C is
calculated in a set of two properties of pairs of solutions. These two properties are the
di�erence in �tness F of a pair of solutions and the di�erence in their genotypes (�distance�
D). D = how di�erent the two solutions are: the number of mutations needed to transform
one into the other.

3.4.2 Embryogeny

Embryogeny: mapping genotype → phenotype. For simple representations and uniform,
homogeneous spaces like the full space of bits, numbers or permutations, a trivial direct 1:1
mapping is the �rst (default) idea.

But is such a mapping the best choice?

Recall RGB ↔ HSL, signal ↔ spectrum, water tap ↔ , . . .

Consider in which situations the genotype → phenotype mapping should (or must?) be

5https://en.wikipedia.org/wiki/Reverse_Polish_notation

Arti�cial Life � lecture script 21

https://en.wikipedia.org/wiki/Reverse_Polish_notation

more sophisticated. What properties of the mapping should be provided by the procedure
that maps the genotype space into the phenotype space?

X

10

5

0

5

10

Y

10

5

0

5

10

Gain

20

40

60

80

100

120

140

X

10

5

0

5

10

Y

10

5

0

5

10

Gain

0
20
40
60
80
100
120
140
160

Now think about the nature and the biological genotype → phenotype mapping. How it
works and is it advantageous? Could this mapping be implemented better?

If the phenotype space is di�erent from the genotype space (which is often the case � imagine
the optimization of any highly complicated solution, for example a bridge, a car, a robot,
. . .), then a procedure is needed to �map� one space to another (Fig. 3.2). In biology, this
process is called embryogenesis (the development from the genotype to the embryo stage,
i.e., building a body). But even for identical spaces, indirect mapping can be bene�cial.

Embryogeny � choices and their consequences [Rot06]:

� redundancy: many genotypes → one phenotype

� synonymous: genotypes that produce the same phenotype are neighbors

* uniform: each phenotype is produced by the same number of genotypes

* non-uniform: the opposite is true

� non-synonymous: bad for optimization

� scaling of alleles: how uniformly alleles a�ect �tness

� locality: similarity (closeness) in genotypes correlated with similarity in their corre-
sponding phenotypes

� high: good! the mapping does not make the problem more di�cult

� low: adds di�culty to the problem

Arti�cial Life � lecture script 22

https://en.wikipedia.org/wiki/Evolvability#Evolution_of_evolvability

The above properties can be estimated numerically.

Possible reasons to use a non-trivial mapping [Ben99]:

� reduction of the search space (recursive, hierarchical etc.),

� better enumeration of the search space (resulting in a topology that increases FDC as
described in Sect. 3.4.1),

� more complex solutions in the phenotype space (�growing instructions� in genotype),

� improved constraint handling (mapping every genotype into a valid phenotype),

and:

� compression: simple genotypes de�ne complex phenotypes,

� repetition: genotypes can describe symmetry, segmentation, subroutines, etc.,

� adaptation: phenotypes can be grown �adaptively� (to satisfy constraints, or to correct
errors),

but:

� experience is required to manually de�ne an embryogeny that provides abovemen-
tioned bene�ts,

� it is hard to automatically evolve embryogeny (speci�c operators needed because of
genetic and phenetic bloat, epistasis and excessive disruption of child solutions by
genetic operators or poor inheritance of information).

In most applications, embryogeny is a set of �xed rules designed by a human that map
genotypes into their meanings. More complex embryogenies are required in complicated
optimization problems � an example is evolutionary design where robots, 3D structures,
mechanical components, trusses and architectural designs, or analogue and digital circuits
in electronics are optimized.

Arti�cial Life � lecture script 23

Figure 3.2: The relationship between the genetic space, the phenetic space, and the �t-
ness landscape. Note that di�erent embryogenies (and thus di�erent sets of phenotypes,
phenotypic topologies and �tness landscapes) may be the result of (1) di�erent representa-
tions and their dedicated operators (two are shown), (2) di�erent interpretations (three are
shown) of genes within one representation, and (3) the same representation and the same
interpretation of genes, but di�erent mutation/neighborhood operators (not shown).

Arti�cial Life � lecture script 24

min

add x

max neg

add cos y

y 0 y

Figure 3.3: Expression min(add(max(add(y, 0), cos(y)), neg(y)), x)) which is
min(max(y + 0, cos(y)) + (-y), x) which is min(x, max(y, cos(y)) - y).

3.5 Genetic programming

Genetic programming6 is used to optimize expressions and programs. A characteristic prop-
erty is a tree structure that represents solutions, so programs can be encoded � Fig. 3.3,
although a less popular linear representation also exists.7

Expressions existing in a population consist of elements that belong to the set of functions F
(tree nodes) and the set of terminals T (tree leaves). These sets can be composed as needed
and adapted to the problem being solved. The solution space consists of all combinations
of expressions composed of members of both sets.

Set of functions Set of terminals
Type Examples Type Examples

Arithmetic +, *, / Variables x⃗, y, x172
Math sin, cos, exp Constants 3, 0.45, π
Logic AND, OR, NOT Procedures rand, go_left, read_proximity
Conditional IF-THEN-ELSE
Looping FOR, REPEAT

�Procedures� can be functions or actions without arguments.

Two properties of the F and T sets are desirable:

1. closure � each function works for any values and types of arguments returned by any

6Free book: http://www0.cs.ucl.ac.uk/staff/W.Langdon/ftp/papers/poli08_fieldguide.pdf
7https://en.wikipedia.org/wiki/Linear_genetic_programming

Arti�cial Life � lecture script 25

http://www0.cs.ucl.ac.uk/staff/W.Langdon/ftp/papers/poli08_fieldguide.pdf
https://en.wikipedia.org/wiki/Linear_genetic_programming

function or terminal,

2. su�ciency � elements available in both sets allow one to construct a solution to the
problem.

from deap import gp
https :// deap.readthedocs.io/en/master/tutorials/advanced/gp.html
https :// deap.readthedocs.io/en/master/examples/gp_symbreg.html

pset = gp.PrimitiveSet("MAIN", 2) # two arguments (x and y)
pset.addPrimitive(operator.add , 2)
pset.addPrimitive(operator.sub , 2)
pset.addPrimitive(operator.mul , 2)
pset.addPrimitive(operator.neg , 1)
pset.addPrimitive(min , 2)
pset.addPrimitive(max , 2)
pset.addPrimitive(math.cos , 1)
pset.addPrimitive(math.sin , 1)
pset.addEphemeralConstant("rand101", lambda: random.randint (-1,1))
pset.renameArguments(ARG0='x')
pset.renameArguments(ARG1='y')

Consider how the closure property can be ensured.

The closure property can be achieved by protecting functions (e.g. always calculating the
absolute value of the square root argument) or penalizing invalid expressions (lowering their
�tness value). Or set the CPU/program/operating system �ags so that all operations do not
cause exceptions... (mention here a long numerical simulation under linux and the di�erence
of the same simulation under Windows).
def protectedDiv(left , right):

try:
return left / right

except ZeroDivisionError:
return 1

pset.addPrimitive(protectedDiv , 2)

If we don't provide su�ciency , GP will try to �nd the (best) approximation of the solution
using available means.

Basic methods of creating the initial population:

� Full : randomly pick nodes from F if the depth is below the selected threshold, oth-
erwise from T . All trees will have the same depth � examples in Fig. 3.4.

Arti�cial Life � lecture script 26

� Grow : randomly pick nodes from F ∪ T if the depth is below the selected threshold,
otherwise from T . The trees will have di�erent depth and shape � examples in Fig. 3.5.

� Ramped half-and-half : generate half of the population using the full method, and
another half using the grow method � this ensures diversity in the initial population.

toolbox.register("expr", gp.genHalfAndHalf , pset=pset , min_=1, max_ =2) #
tree height range

toolbox.register("individual", tools.initIterate , creator.Individual ,
toolbox.expr)

toolbox.register("population", tools.initRepeat , list , toolbox.individual
)

sin

5

add

neg cos

sin neg

4 4

max

protectedDiv cos

add sub cos

x 0 x 3 x

cos

mul

sin add

x y x

protectedDiv

neg cos

x y

Figure 3.4: Five individuals generated using the Full method, gp.genFull(pset,1,3)

(DEAP requires two parameters, not one) for T={x, y, 0, 1, 2, 3, 4, 5}.

sin

y

sin

add

4 4

mul

mul add

x add neg min

4 0 x 3 1

max

mul y

cos sub

0 0 y

sin

x

Figure 3.5: Five individuals generated using the Grow method, gp.genGrow(pset,1,3),
for T={x, y, 0, 1, 2, 3, 4, 5}. In the DEAP's genGrow() method there is no point in setting
the min_depth and max_depth arguments to the same value, because then the generated
trees will have all the leaves at the same depth � as if the trees were generated using the
genFull() method.

Arti�cial Life � lecture script 27

Crossing over in GP is usually implemented as swapping randomly selected subtrees of
parent trees (Fig. 3.6).
toolbox.register("mate", gp.cxOnePoint)

max

sub sin

sin x x

add

y 1

sub

add neg

y y y

max

sub sin

sin x neg

add y

y 1

sub

add x

y y

Figure 3.6: Crossing over in GP. Top: parents generated by the gp.genGrow(pset,2,4)

method. Bottom: o�spring generated using the gp.cxOnePoint(parent1,parent2)

method.

A standard mutation is implemented as selecting a random location in the original tree and
replacing the subtree with a newly generated one using one of the methods described above
(Fig. 3.7).
toolbox.register("expr_mut", gp.genFull , min_=0, max_ =2)
toolbox.register("mutate", gp.mutUniform , expr=toolbox.expr_mut , pset=

pset)

To protect against uncontrolled bloating of expressions, penalties for the size of expressions
can be included in �tness, or limits of the depth of the tree can be introduced.
toolbox.decorate("mate", gp.staticLimit(key=operator.attrgetter("height")

, max_value =13))

Arti�cial Life � lecture script 28

sin

max

sin neg

protDiv x

y y

sin

max

sin neg

protDiv x

sub y

add min

x x 1 5

Figure 3.7: Mutation w GP. Left: original solution generated by the
gp.genGrow(pset,2,5) method. Right: a mutant created using the
gp.mutUniform(parent, toolbox.expr_mut, pset=pset) method, with earlier
toolbox.register("expr_mut", gp.genFull, min_=0, max_=2).

toolbox.decorate("mutate", gp.staticLimit(key=operator.attrgetter("height
"), max_value =11))

Since expressions or programs generated by GP are random in their character, it would be
di�cult to run them directly in the operating system � it is safer to interpret or evaluate
them in a virtual environment (e.g. in a virtual machine or �sandbox�). The evaluation
of the quality of a solution requires most often its calculation or its application in many
situations (di�erent argument values, di�erent robot locations, etc.).
Exception: MemoryError - Error in tree evaluation: Python cannot

evaluate a tree higher than 90.

Discussion: �tness landscape, global convexity and optimization e�ciency in GP.

Arti�cial Life � lecture script 29

3.5.1 Symbolic regression

Symbolic regression is a typical application of GP where we are looking for a function that
describes (�ts) as precisely as possible the given points. While in traditional regression
methods the form of the function sought is �xed (we only look for coe�cients), in GP it is
easy to manipulate the form of the function8 and even look for certain classes of functions
or for any functions � hence this regression method is called symbolic.
def target_function(x):

return x**2 - x # in a real application , this is what we look for!

def eval_expr(individual , points):
transform the tree expression into a callable function
func = toolbox.compile(expr=individual)
evaluate the mean squared error between the expression and the
target function
sqerrors = ((func(x) - target_function(x))**2 for x in points)
return math.fsum(sqerrors) / len(points),

toolbox.register("evaluate", eval_expr , points =[x/10. for x in range
(-10,11)])

The form of the expression that we look for is controlled by the appropriate selection of
elements in the set of functions F and the set of terminal symbols T , and by imposing
potential restrictions on the tree depth, the number of occurrences of functions from the F
set, etc.

Sample experiment #1: Find the expression that best describes the set of points belonging
to the function f(x) = x2 − x. Remember that in practice this function is unknown
and we want to discover it! Available to GP are functions that can be seen in the example
source codes above, i.e., x, also operators neg,+,−, ∗, /,max,min, sin, cos, and additionally,
constants −1, 0, 1.

8http://en.alife.pl/genetic-programming

Arti�cial Life � lecture script 30

http://en.alife.pl/genetic-programming

1.00 0.75 0.50 0.25 0.00 0.25 0.50 0.75 1.00

0.0

0.5

1.0

1.5

2.0 Target
Best expression

Figure 3.8: The best solution in the �rst generation (i.e., in a randomly generated popula-
tion).

mul(min(0, x), neg(1))

Arti�cial Life � lecture script 31

1.00 0.75 0.50 0.25 0.00 0.25 0.50 0.75 1.00

0.0

0.5

1.0

1.5

2.0 Target
Best expression

Figure 3.9: The best solution once the evolution �nished.

sub(x, add(min(min(min(0, x), mul(0, add(0, max(1, 0)))),

add(x, max(x, mul(add(0, x), neg(x))))), max(add(min(min(x, 0),

add(min(sin(x), x), max(sin(x), add(add(0, 0), sin(sin(sin(x))))))),

max(sin(add(min(sin(x), sin(sin(sin(sin(x))))), max(sin(sin(x)), -1))),

x)), x)))

After increasing population size and the number of generations: mul(add(-1, x), min(x,

x)). Similarly, after limiting the complexity of expressions (intensi�es search among simple
expressions): mul(add(-1, x), protectedDiv(x, 1)).

Arti�cial Life � lecture script 32

Sample experiment #2: Find a logic circuit that implements the XOR function, i.e.,
{x1, x2, y} = {(0, 0, 0); (0, 1, 1); (1, 0, 1); (1, 1, 0)}.
def nand(input1 , input2):

return not(input1 and input2)

def if_then_else(input , output1 , output2):
return output1 if input else output2

pset = gp.PrimitiveSetTyped("main", [bool , bool], bool) # let's use
strongly -typed GP as an example

pset.addPrimitive(operator.xor , [bool , bool], bool)
pset.addPrimitive(operator.or_ , [bool , bool], bool)
pset.addPrimitive(operator.and_ , [bool , bool], bool)
pset.addPrimitive(operator.not_ , [bool], bool)
pset.addPrimitive(nand , [bool , bool], bool) # custom
pset.addPrimitive(if_then_else , [bool , bool , bool], bool) # custom
pset.addTerminal(True , bool)

pset.renameArguments(ARG0="x1")
pset.renameArguments(ARG1="x2")

def eval_expr(individual):
transform the tree expression into a callable function
func = toolbox.compile(expr=individual)
evaluate the error between the expression and the target function
err = 0
for x1 in (False ,True):

for x2 in (False ,True):
target = x1^x2
actual = func(x1 ,x2)
if target != actual:

err += 1
return err ,

In this experiment, GENERATIONS=100 and POPSIZE=150, and in case of failure �
another attempt with POPSIZE=1500.

� All operators and the True constant as in the source code above:
xor(if_then_else(x2, True, x2), x1)

Arti�cial Life � lecture script 33

xor

if_then_else x1

x2 True x2

� Only if-then-else: no perfect solution found (lowest error = 1)

� Only if-then-else and not:
if_then_else(x1, not_(x2), x2)

if_then_else

x1 not_ x2

x2

� Only not and and: no perfect solution found (lowest error = 1)

� Only nand:
nand(nand(nand(x2, x1), x2), nand(x1, nand(x1, x2)))

nand

nand nand

nand x2 x1 nand

x2 x1 x1 x2

� Trio and, or, not:
and_(not_(and_(x2, x1)), or_(x1, x2))

and_

not_ or_

and_ x1 x2

x2 x1

Arti�cial Life � lecture script 34

Discussion: would it be bene�cial to simplify expressions during evolution?

Discussion: in which areas does GP have a chance to compete with humans, in which it can
surpass them, and in which it has no chance? Why?

Improving e�ectiveness: semantic GP (semantics = the set of results of an individual for the
set of tests) and geometric semantic GP (genetic operators take into account the topology
of the semantic space) [Bak+19].

Cf. earlier reminder on FDC, DPX, �How to intentionally develop (design) e�ective crossover
operators?�, and the embryogeny/mapping.

Sample experiment #3: Find an algorithm that trains a neural network...

Evolutionary architecture: �regularized evolution� (Fig. 2) [Rea+20].
Discoveries of evolution � Fig. 6:

Arti�cial Life � lecture script 35

If you have some time and you like SF, read https://www.teamten.com/lawrence/writings/
coding-machines/.

3.5.2 Hyper-heuristics and self-programming algorithms

The structure of the evolutionary algorithm (the selection technique, crossing over, mu-
tation, ...) may be controlled by GP (i.e., the structure may be subject to evolutionary
improvement) [BT96; OG03; Olt05]. GP can �construct� the optimization algorithm from
modules, including atypical architectures: many kinds of mutations, unusual operators that
in�uence just a part of the population, multiple selection processes in one step, etc., de-
pending on the degrees of freedom of GP.

Results are better than those produced by the traditional algorithm, but at a cost. . .

Compare: the No Free Lunch theorem and hyper-heuristics9 that search through the space
of heuristics and their combinations [Ros05; ÖBK08; Bur+10].

9http://en.wikipedia.org/wiki/Hyper-heuristic

Arti�cial Life � lecture script 36

https://www.teamten.com/lawrence/writings/coding-machines/
https://www.teamten.com/lawrence/writings/coding-machines/
http://en.wikipedia.org/wiki/Hyper-heuristic

Sample questions

Review the variants of evolutionary algorithms presented in earlier sections and
their abbreviations, and make sure you can distinguish them from one another
� recall their discriminating features.

3.6 Classi�er systems (CFS/LCS/GBML)

LCS is a simple example of a cognitive architecture. A cognitive architecture can mean:

� a theory about the structure of the human mind,

� an implementation of such a theory (used in AI) � a cognitive system or agent.

Possible functional criteria of such architectures include �exible behavior, real-time op-
eration, rationality, large knowledge base, learning, development, adaptation, modularity,
linguistic abilities, and self-awareness. Competencies and behaviors demonstrated by such
systems include � similarly to AGI � perception, memory, attention, actuation, social in-
teraction, planning, motivation, emotion, development and using knowledge e�ciently to
perform new tasks. Components include memory storage, control components, data repre-
sentation, and input/output devices [KT20]. More in Sect. 5.4.4.

John Holland envisioned a cognitive system [HR78] capable of classifying the goings on in
its environment, and then reacting to these goings on appropriately10. To build such a
system11 (see Fig. 3.10) we need

(1) an environment;

(2) receptors/sensors that tell our system about the goings on;

(3) e�ectors/actuators that let our system manipulate its environment; and

(4) the system itself that has (2) and (3) attached to it, and �lives� in (1).

CFS is quite a general and versatile architecture � consider the following three examples:

� (4) can be a real or simulated robot or creature: (1) is a world with �food� (something
bene�cial, reward) and �poison� (something detrimental, penalty), and a robot walking
(3) across this environment and trying to learn to distinguish (2) between these two
items, and to survive while maximizing reward.

10With minor updates and corrections, from https://www.cs.cmu.edu/Groups/AI/html/faqs/ai/genetic/part2/

faq-doc-5.html and from no longer available parts of online slides by Riccardo Poli.
11https://en.wikipedia.org/wiki/Learning_classifier_system

Arti�cial Life � lecture script 37

https://www.cs.cmu.edu/Groups/AI/html/faqs/ai/genetic/part2/faq-doc-5.html
https://www.cs.cmu.edu/Groups/AI/html/faqs/ai/genetic/part2/faq-doc-5.html
https://en.wikipedia.org/wiki/Learning_classifier_system

Environment

CFS, Agent
Classifier

List

Message
List

Inpu
t

Interface

O
utpu

t
Interface

Figure 3.10: The architecture of the classi�er system.

� (4) can be a computer. It has inputs (2), outputs (3), and a message passing system
in-between, converting certain input messages into output messages, according to a
set of rules, usually called a program.

� (4) can be a machine learning (ML) algorithm. Inputs (2) provide values of conditional
attributes, outputs (3) send out a value of the decision attribute, and a message passing
system in-between is the ML model that maps inputs to outputs (predicts outputs
based in inputs).

The input interface (2) generates messages � strings of symbols that are written on the
message list. Then these messages (internal and external) are matched against the condition-
part of all classi�ers (�if-then� rules), to �nd out which actions are to be triggered. The
message list is then emptied, and the encoded actions, themselves just messages, are posted
to the message list. Then, the output interface (3) checks the message list for messages
concerning the e�ectors. Then the cycle restarts.

You may start from scratch (from tabula rasa � without any knowledge) using a randomly
generated classi�er population, and let the system learn its program by induction. The
input stream are input patterns that must be repeated over and over again, to enable the
agent to classify its current situation/context and react on the goings on appropriately, as
in the example below:

IF small, flying object to the left THEN send @

IF small, flying object to the right THEN send %

IF small, flying object centered THEN send $

Arti�cial Life � lecture script 38

IF large, looming object THEN send !

IF no large, looming object THEN send *

IF * and @ THEN move head 15 degrees left

IF * and % THEN move head 15 degrees right

IF * and $ THEN move in direction head pointing

IF ! THEN move rapidly away from direction head pointing

Classi�er list is a list of classi�ers:

IF cond-1 AND cond-2 ... AND cond-N THEN action

cond-1, cond-2, ... cond-N / action

(we use a shorter notation, �,� means �AND�).

For now, let us assume the simplest language for messages and conditions � they will be
encoded by {0, 1, #}. In a real application, we would use the natural language (set of
symbols) � this is analogous to the GA/EP di�erence.

Arti�cial Life � lecture script 39

A message matches a condition if all its 0's and 1's are in the same positions as in the
condition string. A negated condition is satis�ed if no message in the message list matches
it:

Message List
Label Message

a 0101
b 1010
c 1111

Condition
~1###

Condition
1###

Condition
##00

Message List

1111

1010

0101

Condition Matched by Satis�ed Negation satis�ed
0101 a Yes No (∼0101)
1101 No Yes (∼1101)
#101 a Yes No (∼#101)
1### b, c Yes No (∼1###)
##00 No Yes (∼##00)
a, b, c Yes No (∼####)

In CFSs actions are strings of �xed length built from characters in the alphabet {0, 1, #};
their length is usually the same as that of messages. Action strings can be interpreted
as parameterized assertions (messages) that go into the message list. When a classi�er is
activated, a message is built using the following procedure:

� 0's and 1's in the action string are simply copied in the message

� #'s are substituted by the corresponding characters in the message that matches the
�rst condition in the condition part. For this reason the # character is also called the
pass-through operator.

Arti�cial Life � lecture script 40

Example:

Message List
Label Message

a 0101
b 1010
c 1111

Classi�er List
Label Classi�er

i #11#, ∼#110 / 00##
ii ###1, ∼#110 / ###0
iii ##1#, ∼1110 / 0##0

The following set of messages will be produced:

Message Reason
0011 Posted by i, c matches cond-1
0100 Posted by ii, a matches cond-1
1110 Posted by ii, c matches cond-1
0010 Posted by iii, b matches cond-1
0110 Posted by iii, c matches cond-1

The only actions allowed in the basic CFS are assertions, so messages (facts) cannot be
explicitly deleted. However, as the message list is of �nite size, old messages can be over-
written. Many classi�ers can be activated in parallel by the messages in the message list. A
classi�er can post as many messages as the number of messages matching its �rst condition.
Con�ict resolution is only necessary if the active classi�ers can produce more messages than
entries in the message list.

3.6.1 Input and output interfaces

The input interface can be thought of as a mechanism by which the CFS can obtain in-
formation about the environment. The messages posted by the input interface are often
descriptions of the state of a set of (binary) detectors that can sense various features of the
environment.

Arti�cial Life � lecture script 41

4:1
MUX

D0

D1

D2

D3

S1S0

D Out

Figure 3.11: Simple examples of CFS control: a robot with eight proximity sensors and a
4:1 multiplexer.

The output interface can be realized by any procedure capable of selecting (deleting) and
using some messages in the message list. Usually we imagine that the bits in a message
picked up by the output interface represent (and control) the state of a set of e�ectors which
act on the environment, for example to control the actions of a robot.

In any case the output interface must be able to recognize which messages are input messages
posted by the input interface, which are internal messages posted by classi�ers, and messages
meant to be output messages. This is obtained by using tags usually consisting of two
additional bits in the messages that are interpreted in a special way. An example convention:

Tag Interpretation
01 Internal Message
11 Internal Message
00 Output Message
10 Input Message

Or:

bit 1: Input/Output (from/to)
bit 2: Inside/Outside

For example, a CFS which controls a robot (Fig. 3.11, left) might have some classi�ers
devoted to obstacle avoidance, like

10 1####### / 00 0100 0000

10 ##1##### / 00 0001 0000

Arti�cial Life � lecture script 42

10 ####1### / 00 1000 0000

10 ######1# / 00 0010 0000

The conditions of these simple classi�ers just check whether there is an obstacle in front,
on the right, on the back, on the left, respectively. The action-strings have the following
interpretation:

� The �rst two bits indicate that the messages are for the e�ectors in the output interface

� The following four bits indicate which movement (forward, backward, right, left) is
appropriate to avoid the obstacle

� The other bits are padding.

In the case of the 6-bit 4:1 multiplexer (Fig. 3.11, right), the following classi�er list would
provide the correct behavior:

10 00 0### / 00 0 00000

10 00 1### / 00 1 00000

10 01 #0## / 00 0 00000

10 01 #1## / 00 1 00000

10 10 ##0# / 00 0 00000

10 10 ##1# / 00 1 00000

10 11 ###0 / 00 0 00000

10 11 ###1 / 00 1 00000

� The �rst two bits of the conditions mean �input message�

� The next two bits of the conditions are interpreted as address (i.e., selector) bits

� The other characters of the conditions as checks for the state of the data lines

� The �rst two bits of the action are interpreted as the �output message� tags

� The third bit as the output of the multiplexer

� The remaining bits as padding.

3.6.2 Main cycle

1. Activate the input interface and post the input messages it generates to the message
list.

2. Perform the matching of all the conditions of all classi�ers against the message list.

Arti�cial Life � lecture script 43

3. Activate the �reable classi�ers (those whose conditions are satis�ed) and add the
messages they generate to the message list.

4. Activate the output interface, i.e. remove the output messages from the message list
and perform the actions they describe; go to 1.

In the previous two examples we have considered non-overlapping rulesets, i.e. sets of clas-
si�ers in which one and only one classi�er is active in the presence of a given message in the
message list. An alternative, more parsimonious way of using classi�ers is to organize them
to form a default hierarchy, in which some very general classi�ers provide the default be-
havior for the system. Other, more speci�c classi�ers re�ne such a behavior in the presence
of messages improperly handled by the default ones.

For example, for the 6-bit multiplexer we could use:

10 00 0### / 00 0 00000

10 01 #0## / 00 0 00000

10 10 ##0# / 00 0 00000

10 11 ###0 / 00 0 00000

10 ## #### / 00 1 00000

�Unless there is a 0 on the data line currently addressed, set the output to 1�

Default hierarchies are not only more parsimonious ways of programming CFSs, they also
make the �search� for a good program much easier (for example we can successively re�ne
the hierarchy). This is very important when we introduce learning and rule discovery in
CFSs.

3.6.3 Learning Classi�er Systems (LCS)

The real power of CFSs derives from the possibility of adding adaptation mechanisms to the
basic architecture, so that they can learn to behave appropriately in the environment12 or,
more simply, to perform useful tasks. There are two ways in which we can adapt (i.e. improve
the performance of) a CFS:

� Adaptation by credit assignment: changing the way existing classi�ers are used.

� Adaptation by rule discovery: introducing new classi�ers in the system.

12http://en.alife.pl/learning-classifier-system

Arti�cial Life � lecture script 44

http://en.alife.pl/learning-classifier-system

3.6.4 Good and bad classi�ers

Not all the classi�ers active at a given cycle will in general produce a message which will lead
(directly or after additional processing) to a good action. For example, if a CFS controls an
autonomous agent who has to �nd a source of energy (i.e. food) to survive, some classi�ers
will post actions which will lead to get some food; others will post actions which will delay
the search for food. In summary, in a CFS there are usually some classi�ers which are better
than the others.

3.6.5 The need for competition

Unfortunately, the basic CFS is absolutely, blindly fair and gives to all the �reable classi�ers
the same chances of posting messages, and therefore of in�uencing the overall behavior of
the system. To maximize the performance of a CFS it would be nice to give higher priority
to the messages posted by good classi�ers and low priority to the others. Even better � to
prevent low quality classi�ers from posting their messages at all if other, better classi�ers
are �reable. This behavior could be obtained if the classi�ers had to compete to post their
messages, basing on some measure of quality of classi�ers.

3.6.6 Quality of classi�ers

There may be several properties of classi�ers on which a quality measure can be based. The
two most important ones are:

� The usefulness of the classi�er in determining the good performance of the whole
system: strength.

� The relevance of a classi�er in a particular situation: the speci�city of the classi�er =
its (length � number_of_#'s) / length.

Strength and speci�city are usually combined into a single measure, the bid a classi�er
makes in the auction (competition):

bid = k·strength·speci�city (k is a constant ≈ 0.1)

� To maintain parallelism, in the auction there must be more than one winner.

� To avoid premature convergence, we use a noisy (probabilistic) auction, in which
classi�ers have a bid-proportionate winning probability.

Arti�cial Life � lecture script 45

� As a classi�er's speci�city is a constant, the strengths associated to classi�ers are the
only quantities that can be varied to in�uence the auction and therefore the behavior
of a CFS.

3.6.7 Adaptation by credit assignment

A learning algorithm for CFS should be capable of modifying the strengths of classi�ers
to optimize the behavior of the system as a whole. To do that, the algorithm will need
to have some kind of information about the quality of the behavior of the system. This
information will come from the environment, e.g. from an external observer (a teacher), or
from some other part of the system, e.g. from an internal variable representing the level of
energy of the system. The simplest (more biologically plausible) form of behavioral-quality
information would be a scalar value, termed reward, whose sign tells the learning algorithm
whether the actions of the system are good (positive reward) or bad (negative reward or
punishment) and whose magnitude may be �xed (e.g. +1, −1, 0) or variable. If rewards
only are available, the learning algorithm will have to solve the so-called credit assignment
problem: which classi�ers are responsible (and to which extent) for the good or bad overall
behavior of the system?

3.6.8 The Bucket Brigade algorithm

The bucket brigade (pol. brygada kubeªkowa/wiaderkowa) algorithm is a parallel, domain-
independent, local credit-assignment-based learning algorithm:

1. If there is a reward (or punishment), add it to the strength of all the classi�ers active
in the current major cycle.

2. Make each active classi�er pay its bid to the classi�ers that prepared the stage for it
(i.e. posted messages matched by its conditions).

The stage-preparing classi�ers had to pay (invest) their bids in the previous cycle (when
they were active). In this cycle they get back their �money�. In turn, the classi�ers that
prepared the stage for the stage-preparing classi�er received some money two cycles earlier,
and so on. Good classi�ers are rewarded often so their strengths tend to grow. So, they
will make bigger bids, and so they will pay more to their stage-preparing classi�ers. In
turn those classi�ers will be able to pay more to their stage-preparing classi�ers, and so on.
During time, strength is propagated backwards, and each classi�er receives the correct share
of credit for the good (or bad) behavior of the system as a whole. With time, strengths
reach a (nearly) constant equilibrium value.

Arti�cial Life � lecture script 46

Components of the classi�er evaluation

The strength of the classi�er in the next step t + 1 can be expressed as a function of its
current strength S(t), its bid B (payments to other rules), taxes T , and reward R (income):

S(t+ 1) = S(t) +R(t)− T (t)−B(t)

The amount of R is one of the parameters of the system, and the initial value of S(0) is a
property of each rule initially included in the classi�er set. The bid depends on strength:

B = Cbid · S

Cbid is a system parameter and determines the fraction of strength that becomes the bid
(e.g. 10%). Taxes are required to remove unproductive classi�ers. Such classi�ers are never
activated because their conditions are not matched, but given some initial strength they
would exist in the system forever. The fact that they never match any messages may mean
that they are redundant. There are two types of taxes � turnover and �xed (paying just
for existing). The �rst type is only paid by rules that were activated. The second type is
paid by all rules. If a rule pays the tax all the time and it cannot increase its strength (by
receiving a part of the o�er of the winning classi�er, or the reward from the environment),
then its strength will decrease to 0. Turnover and �xed taxes are a fraction of the rule
strength, S. The speci�c fraction size is the system parameter.

3.6.9 Adaptation by rule discovery

In addition to credit assignment, in order to learn we need a way to introduce new classi�ers
to the system. Evolutionary algorithm can be used to optimize and adapt a CFS in two
ways:

� Considering the classi�er list as a single individual whose chromosome is obtained by
concatenating the conditions and actions of all classi�ers (the �Pittsburgh� (�Pitt�)
approach, De Jong)

� Considering each classi�er as a separate individual (the �Michigan� approach, Hol-
land).

In the Pittsburgh approach, the �tness of each CFS is determined by observing the behavior
of the system for a certain amount of time or on some test data. The EA optimizes the
CFS by breeding and making compete di�erent sets of classi�ers. The Michigan approach
requires a �tness measure for each classi�er. If used with the bucket brigade algorithm, the
strength of the classi�er can be taken as its �tness. In this case, the EA optimizes the CFS
by breeding and making compete and co-operate di�erent classi�ers.

Arti�cial Life � lecture script 47

3.6.10 Summary

The description above concerned the classic GBML idea (analogous in its simplicity to a
GA). In practice, the components of the system and its entire architecture are adapted to
the problem at hand. Modi�cations and improvements of LCS systems concern language
(using a large number of symbols increases the expressive power of a grammar), representa-
tion (the complexity of rules), genetic operators, reward mechanisms (e.g., integration with
reinforcement learning algorithms), etc. Applications are very diverse due to the universal-
ity of the idea itself � for example, the exploration of an unknown environment by a robot,
control systems, di�cult games (e.g. poker), the construction of semantic networks, learning
the rules of conduct in medical diagnosis and treatment, and many others.

In general, for complex problems, LCS/GBML systems give better results than traditional
classi�cation systems and traditional machine learning algorithms. In their operation, we
see analogies to deep and recursive neural networks, but contrary to NNs, LCSs o�er a
symbolic form of knowledge which is in some applications easier to interpret.

Arti�cial Life � lecture script 48

Chapter 4

Other nature-inspired
optimization techniques

4.1 Ant systems, ant colony optimization (AS, ACO)
and swarm intelligence

The behavior of social insects in general, and of ant colonies in particular, has since long time
fascinated researchers in ethology and animal behavior, who have proposed many models
to explain their capabilities. Ant algorithms have been proposed as a novel computational
model that replaces the traditional emphasis on control, preprogramming, and centralization
with designs featuring autonomy, emergence, and distributed functioning. These designs are
proving �exible and robust, able to adapt quickly to changing environments and to continue
functioning even when individual elements fail.

Ant algorithms are a part of Swarm Intelligence (pol. inteligencja grupowa/zbiorowa/roju).
A particularly successful research direction in ant algorithms is known as �ant colony opti-
mization�1 (ACO). ACO has been applied successfully to a large number of di�cult combi-
natorial problems like the quadratic assignment (QAP) and the traveling salesman (TSP)
problems, to routing in telecommunications networks, to scheduling problems. In ACO, the
discrete optimization problem is mapped onto a graph called construction graph in such a
way that feasible solutions to the original problem correspond to paths in the construction
graph.

An �Ant System� (AS) � a particular ant colony optimization algorithm � was introduced

1https://en.wikipedia.org/wiki/Ant_colony_optimization_algorithms

49

https://en.wikipedia.org/wiki/Ant_colony_optimization_algorithms

in 1992, and was inspired by the observation of the behavior of ant colonies: emergence2 of
global properties following the mutual interaction among many elementary agents perform-
ing simple actions. The algorithm is easy to parallelize. How do ants �nd the shortest route
between two points, being almost blind and having very simple individual capacities? By
pheromone deposition3: each ant moves at random unless they feel the pheromone � then
they follow the marked path and leave new pheromone. The collective e�ect is a positive
feedback. Two aspects are present: exploration and exploitation. Pheromone is simulated
by a global knowledge structure, which is updated by �ants�. This knowledge is used in the
construction of solutions during the iterative optimization process.

Swarm intelligence ⊃ ant algorithms ⊃ ACO ⊃ {AS, Ant-Q, Max-Min-AS, Ant Colony
System, . . . }

Applying AS to solve TSP: at any given time, each city has a certain number of ants, which
choose another unvisited city with a probability that is a function of distance to that city
(the smaller, the higher the probability) and the amount of pheromone between the cities
(the higher, the higher the probability). There are several mechanisms for modifying the
amount of pheromone [DCG99]: ant-density � while building a solution, a constant amount,
ant-quantity � while building a solution, a variable amount depending on the quality of the
added fragments, and the most e�ective: ant-cycle � variable amount, after completing the
entire solution.

An example of applying AS to solve a problem that does not resemble TSP � the attribute
selection problem [SB06]: for example, cities are attributes and paths are subsets of at-
tributes; in this approach, we do not have to visit all the cities, and their order does not
matter. So in general, instead of speaking about the �distance to some city�, we speak about
the attractiveness of adding some part of the solution.

Some parameters in ACO:

� m: number of ants (agents) � population size,

� pheromone persistence ρ < 1 (evaporation is 1− ρ),

� α: pheromone importance,

� . . .
2https://en.wikipedia.org/wiki/Emergence
3This is a form of stigmergy: https://en.wikipedia.org/wiki/Stigmergy

Arti�cial Life � lecture script 50

https://en.wikipedia.org/wiki/Emergence
https://en.wikipedia.org/wiki/Stigmergy

4.2 Particle swarm optimization (PSO)

Introduced in 1995, it is quite similar to EAs. A group (�population� or �swarm�) of solutions
(�particles�) moves (��ies�) in the space of solutions seeking better and better areas.4 There
is no selection or crossing over. Each particle remembers the best solution it has discovered
so far, and knows the best solution found by its neighbors (or the entire swarm). The
movement of each particle in each step depends on its speed, whose vector is changed in
the direction of (randomly weighted) best remembered solutions5. PSO usually converges
faster than EAs.

4.3 Other swarm-intelligent optimization algorithms

Other algorithms inspired by nature are proposed (and some animals are still unused):

� Arti�cial immune systems � AIS, 1994

� Arti�cial bee colony � ABC, 2005

� Glowworm swarm optimization � GSO, 2005

� Fire�y algorithm � FA, 2008

� Cuckoo search � CS, 2009

� Gravitational search algorithms � GSA, 2009; charged system search � CSS, 2010

� Krill herd algorithm � KH, 2012

� and more: https://en.wikipedia.org/wiki/List_of_metaphor-based_metaheuristics

...but these algorithms are all about the exploration vs. exploitation tradeo�.

Sample questions

� What is emergence? Give examples of natural occurrences (physics, bi-
ology) and arti�cial implementations (engineering).

� What is stigmergy? Give examples of natural occurrences (biology) and
arti�cial implementations (engineering).

4https://en.wikipedia.org/wiki/Particle_swarm_optimization
5http://en.alife.pl/particle-swarm-optimization

Arti�cial Life � lecture script 51

https://en.wikipedia.org/wiki/List_of_metaphor-based_metaheuristics
https://en.wikipedia.org/wiki/Particle_swarm_optimization
http://en.alife.pl/particle-swarm-optimization

Chapter 5

Remaining aspects of arti�cial life

52

5.1 Modeling plants using L-systems

An L-system (a Lindenmayer system) is a type of a formal grammar, where all possible
rules are applied in each step of development. L-systems can be deterministic or stochastic,
context-insensitive or sensitive, and parametric or not.

� Basic information: https://en.wikipedia.org/wiki/L-system

� Comprehensive book [PL96] � �rst published in 1990, Lindenmayer1 & Prusinkiewicz2

� Basic 2D demo: http://en.alife.pl/lsyst/e/index.html

� Basic 3D demo: http://en.alife.pl/lsyst/e/ls_3d.html

� More advanced: modeling development [JPM00] and climbing [Knu09]; can also be
used to model di�erences in development in response to various environmental condi-
tions: temperature, humidity, sunlight, fertilization. . .

� Used not just for modeling plants [Bou+12], but also for robot morphologies, archi-
tectural design (buildings, cities) [PM01], games [EE17], generating music [WS05],
and in other applications, e.g. [Bie+18]. Can be evolved � available as `fL' genetic
encoding in Framsticks3.

5.2 Emergence in Boids

Boids are a simple example of emergent phenomena. From [Sip95]:

Another process predominating ALife systems is that of emergence (pol. emer-
gencja), where phenomena at a certain level arise from interactions at lower
levels. In physical systems, temperature and pressure are examples of emer-
gent phenomena. They occur in large ensembles of molecules and are due to
interactions at the molecular level. An individual molecule possesses neither
temperature nor pressure, which are higher-level, emergent phenomena.

ALife systems consist of a large collection of simple, basic units whose in-
teresting properties are those that emerge at higher levels (with no central con-
troller). One example is von Neumann's model, where the basic units are grid
cells (a CA, cellular automaton, Sect. 5.3) and the observed phenomena in-
volve composite objects consisting of several cells (for example, the universal

1https://en.wikipedia.org/wiki/Aristid_Lindenmayer
2https://en.wikipedia.org/wiki/Przemys%C5%82aw_Prusinkiewicz
3http://www.framsticks.com/a/al_genotype

Arti�cial Life � lecture script 53

https://en.wikipedia.org/wiki/L-system
http://en.alife.pl/lsyst/e/index.html
http://en.alife.pl/lsyst/e/ls_3d.html
https://en.wikipedia.org/wiki/Aristid_Lindenmayer
https://en.wikipedia.org/wiki/Przemys%C5%82aw_Prusinkiewicz
http://www.framsticks.com/a/al_genotype

constructing machine). Another example is Craig Reynolds' work on �ocking
behavior.

Reynolds wished to investigate how �ocks of birds �y, without central direc-
tion (that is, a leader). He created a virtual bird with basic �ight capability,
called a �boid�. The computerized world was populated with a collection of
boids, �ying in accordance with the following three rules:

� Collision Avoidance: Avoid collisions with nearby �ock-mates.
� Velocity Matching: Attempt to match velocity with nearby �ock-mates.
� Flock Centering: Attempt to stay close to nearby �ock-mates.

Each boid comprises a basic unit that �sees� only its nearby �ock-mates. The
three rules served as su�cient basis for the emergence of �ocking behavior. The
boids �ew as a cohesive group, and when obstacles appeared in their way they
spontaneously split into two subgroups, without any central guidance, rejoining
again after clearing the obstruction (as observed in nature). The boids algorithm
has been used to produce photorealistic imagery of bat swarms for the classical
motion pictures Batman Returns and Cli�hanger.

5.3 Spatio-temporal dynamics in Cellular Automata

Arti�cial Life � lecture script 54

From [Sip95]:

A machine in the cellular automata model is a collection of cells that can be
regarded as operating in unison. For example, if a square con�guration of four
black cells exists, that appears at each time step one cell to the right, then we
say that the square acts as a machine moving right.

Von Neumann used this simple model to describe a universal constructing
machine, which can read assembly instructions of any given machine, and con-
struct that machine accordingly. These instructions are a collection of cells
of various colors, as is the new machine after being assembled � indeed, any
compound element on the grid is simply a collection of cells.

Von Neumann's universal constructor can build any machine when given the
appropriate assembly instructions. If these consist of instructions for building
a universal constructor, then the machine can create a duplicate of itself; that
is, reproduce. Should we want the o�spring to reproduce as well, we must copy
the assembly instructions and attach them to it. Von Neumann showed that a
reproductive process is possible in arti�cial machines. (...)

One of von Neumann's main conclusions was that the reproductive process
uses the assembly instructions in two manners: as interpreted code (during
assembly), and as uninterpreted data (copying of assembly instructions to o�-
spring). During the following decade, it became clear that nature had �adopted�
von Neumann's conclusions. The process by which assembly instructions (that
is, DNA) are used to create a working machine (that is, proteins), indeed makes
dual use of information: as interpreted code (translation) and as uninterpreted
data (transcription).

Based on this video: https://www.youtube.com/watch?v=xP5-iIeKXE8, what can you
tell about the CA and the �game of life� rules?

Complexity of self-replicating systems estimated in [bits] despite di�erent environments [Mer97]:

� 800, C-program: more...

main(){char q=34,n=10,*a="main()

{char q=34,n=10,*a=%c%s%c;printf(a,q,a,q,n);}%c"; printf(a,q,a,q,n);}

� 500 000, Von Neumann's universal constructor about...

Arti�cial Life � lecture script 55

https://www.youtube.com/watch?v=xP5-iIeKXE8
https://en.wikipedia.org/wiki/Quine_(computing)
https://en.wikipedia.org/wiki/Von_Neumann_universal_constructor

� 500 000, Internet worm (1988) about...

� 8 000 000, Mycoplasma capricolum about...

� 100 000 000, Drexler's assembler about...

� 6 400 000 000, Human

� 100 000 000 000, NASA Lunar Manufacturing Facility

Related topics (optional):

� https://en.wikipedia.org/wiki/Garden_of_Eden_(cellular_automaton)

� https://en.wikipedia.org/wiki/Boolean_network

� https://en.wikipedia.org/wiki/Gene_regulatory_network#Boolean_network

5.4 Agent and environment

5.4.1 Complex Adaptive Systems (CAS), Multi-Agent Systems

(MAS)

CAS: https://en.wikipedia.org/wiki/Complex_adaptive_system

MAS: https://en.wikipedia.org/wiki/Multi-agent_system

Presentations or experiments during laboratory classes: StarLogo4, NetLogo5, Repast6.

5.4.2 Robotics: hierarchical control with layers

When designing robots operating in a (noisy) environment, e.g. walking around the building
and collecting garbage, the hierarchical structure of their brain (control system) is used. It
consists of �layers�. Each layer performs more complex functions than the lower layer. For
example: the �rst layer is responsible for avoiding obstacles. The second one � for movement
(random motion in the environment � a room, a building, etc.), and no longer deals with
avoiding obstacles. Higher layers can overrule the function of the lower layers by overriding
their operation, although the lower layers still work when we add the higher ones. Such an
architecture roughly resembles the structure of the human brain, in which primitive layers

4https://education.mit.edu/project/starlogo-tng/
5https://ccl.northwestern.edu/netlogo/
6https://repast.github.io/

Arti�cial Life � lecture script 56

https://en.wikipedia.org/wiki/Morris_worm
https://en.wikipedia.org/wiki/Mycoplasma_capricolum
https://en.wikipedia.org/wiki/Molecular_assembler
https://en.wikipedia.org/wiki/Garden_of_Eden_(cellular_automaton)
https://en.wikipedia.org/wiki/Boolean_network
https://en.wikipedia.org/wiki/Gene_regulatory_network#Boolean_network
https://en.wikipedia.org/wiki/Complex_adaptive_system
https://en.wikipedia.org/wiki/Multi-agent_system
https://education.mit.edu/project/starlogo-tng/
https://ccl.northwestern.edu/netlogo/
https://repast.github.io/

correspond to basic functions (e.g. breathing), and higher layers � to more complex functions
(e.g. abstract thinking). The hierarchical approach allows for incremental creation of robots
and their incremental optimization (by successively adding layers).

Each layer consists of behavior modules that communicate asynchronously without a central
controller.7 For example, the collision detection layer has sensor modules, danger detection
modules, and an engine system � and these modules communicate with each other to agree
on a decision that a�ects the behavior.

This method demonstrates the bottom-up approach typical of arti�cial life and situated,
embodied AI: starting with simple, elementary modules, gradually building up using evolu-
tion, emergence, and development8. Traditional AI employs the top-down methodology: a
complex behavior (e.g., playing chess) is analyzed and divided to build a system that will
ultimately re�ect the details of this behavior.

5.4.3 Levels of autonomy

In many applications of agents (Internet, simulations, robotics), the optimal level of their
autonomy is di�erent [MKT99] � depending on the application and requirements: speed of
operation, low cost, realism, safety, etc. Autonomy is in�uenced by independent behavior,
the range of allowed actions, perception, memory, reasoning, self-control, etc.

Level of
autonomy

Agent goes to a speci�c
location

Agent applies a speci�c
action

Guided
Agent needs to receive a list of
collision-free positions (exter-
nal control)

Agent needs to receive infor-
mation about the action to be
applied (external control)

Programmed
Agent is programmed to fol-
low a path while avoiding col-
lisions

Agent is programmed to ap-
ply the action in appropriate
circumstances

Autonomous1
Agent chooses a path to follow
to reach the goal

Agent decides how to apply
the action

Autonomous2 Agent decides if... Agent decides if...
Autonomous3 Agent decides what to do Agent decides what to do

It is agreed that we cannot yet construct robots with a su�ciently high level of autonomy
for certain applications, and progress is slow here. But do we really want it? �Just because
you can doesn't mean you should�.

7Cf. Elira's control architecture from a short story [Kom19].
8https://en.wikipedia.org/wiki/Artificial_intelligence,_situated_approach

Arti�cial Life � lecture script 57

https://en.wikipedia.org/wiki/Artificial_intelligence,_situated_approach

5.4.4 Cognitive architectures and arti�cial general intelligence

So far we encountered two very simple examples of cognitive architectures: a recurrent
neural network in an agent (Fig. 1.3) when we discussed situatedness and embodiment, and
a set of rules � LCS (Sect. 3.6).

Now let's broaden our view by brie�y reviewing the properties of more elaborate cognitive
architectures [KT20]. [youtube lecture video: pay particular attention to and learn about
the concepts marked in yellow]

5.5 Models of biological life � selected examples

During this course, we focused only on one of the two main goals of arti�cial life (as men-
tioned in Sect. 1.1) � on �enhancing our insight into applicable arti�cial models in order to
improve their performance�, as this goal is more important for computer science. We did
not talk much about the other goal � �increasing our understanding of nature by studying
existing biological phenomena�, so this section is left out.

Arti�cial Life � lecture script 58

Bibliography

[Ada98] Christoph Adami. Introduction to Arti�cial Life. Springer, 1998. isbn: 9780387946467. url:
https://books.google.pl/books?id=2wouAc-WOnYC.

[AK09] Andrew Adamatzky and Maciej Komosinski, eds. Arti�cial Life Models in Hardware. London:
Springer, 2009, p. 270. isbn: 978-1-84882-529-1. doi: 10.1007/978-1-84882-530-7. url:
http://www.springer.com/978-1-84882-529-1.

[Bak+19] Illya Bakurov et al. �A regression-like classi�cation system for geometric semantic genetic
programming�. In: Proceedings of the 11th International Joint Conference on Computational
Intelligence (IJCCI). Vol. 1. 2019, pp. 40�48. url: https://run.unl.pt/bitstream/10362/
87064/1/Regression_like_Classification_System_Geometric_Semantic_Genetic.pdf.

[Bed96] Mark A. Bedau. �The nature of life�. In: The philosophy of arti�cial life (1996), pp. 332�357.

[Ben99] Peter Bentley. Evolutionary design by computers. Morgan Kaufmann, 1999.

[Bie+18] Dongyang Bie et al. �Parametric L-systems-based modeling self-recon�guration of modular
robots in obstacle environments�. In: International Journal of Advanced Robotic Systems 15.1
(2018). url: https://journals.sagepub.com/doi/full/10.1177/1729881418754477.

[Bou+12] Frédéric Boudon et al. �L-Py: an L-system simulation framework for modeling plant archi-
tecture development based on a dynamic language�. In: Frontiers in plant science 3 (2012).
url: https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3362793/.

[BT96] Andreas Bölte and Ulrich Wilhelm Thonemann. �Optimizing simulated annealing sched-
ules with genetic programming�. In: European Journal of Operational Research 92.2 (1996),
pp. 402�416. issn: 0377-2217. doi: 10.1016/0377-2217(94)00350-5.

[Bur+10] E. K. Burker et al. �A classi�cation of hyper-heuristic approaches�. In: Handbook of Meta-
heuristics (2010), pp. 449�468.

[DCG99] Marco Dorigo, Gianni Di Caro, and Luca M. Gambardella. �Ant algorithms for discrete
optimization�. In: Arti�cial life 5.2 (1999), pp. 137�172. url: https://web2.qatar.cmu.
edu/~gdicaro/Papers/ArtificialLife-original.pdf.

[DJ75] Kenneth Alan De Jong. �Analysis of the behavior of a class of genetic adaptive systems�. PhD
thesis. University of Michigan, 1975. url: https://deepblue.lib.umich.edu/bitstream/
handle/2027.42/4507/bab6360.0001.001.pdf.

[Dom99] Paul Domjan. �Are Romance Novels Really Alive? A Discussion of the Supple Adaptation
View of Life�. In: Advances in Arti�cial Life. Ed. by Dario Floreano, Jean-Daniel Nicoud,
and Francesco Mondada. Springer, 1999, pp. 21�25. doi: 10.1007/3-540-48304-7_6.

59

https://books.google.pl/books?id=2wouAc-WOnYC
https://doi.org/10.1007/978-1-84882-530-7
http://www.springer.com/978-1-84882-529-1
https://run.unl.pt/bitstream/10362/87064/1/Regression_like_Classification_System_Geometric_Semantic_Genetic.pdf
https://run.unl.pt/bitstream/10362/87064/1/Regression_like_Classification_System_Geometric_Semantic_Genetic.pdf
https://journals.sagepub.com/doi/full/10.1177/1729881418754477
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3362793/
https://doi.org/10.1016/0377-2217(94)00350-5
https://web2.qatar.cmu.edu/~gdicaro/Papers/ArtificialLife-original.pdf
https://web2.qatar.cmu.edu/~gdicaro/Papers/ArtificialLife-original.pdf
https://deepblue.lib.umich.edu/bitstream/handle/2027.42/4507/bab6360.0001.001.pdf
https://deepblue.lib.umich.edu/bitstream/handle/2027.42/4507/bab6360.0001.001.pdf
https://doi.org/10.1007/3-540-48304-7_6

[EE17] Gustavo Santarsiere Etchebehere and Maria Amelia Eliseo. �L-Systems and Procedural Gen-
eration of Virtual Game Maze Sceneries�. In: Proceedings of Brazilian Symposium on Com-
puter Games and Digital Entertainment. 2017, pp. 602�605. url: https://www.sbgames.
org/sbgames2017/papers/ComputacaoShort/174978.pdf.

[FB90] J. Doyne Farmer and Alletta Belin. Arti�cial life: The coming evolution. Tech. rep. SFI work-
ing paper 1990�003. Santa Fe Institute, 1990. url: https://www.santafe.edu/research/
results/working-papers/artificial-life-the-coming-evolution.

[HR78] John H. Holland and Judith S. Reitman. �Cognitive systems based on adaptive algorithms�.
In: Pattern-directed inference systems. Elsevier, 1978, pp. 313�329.

[JMK20] Anders Jerkstrand, Keiichi Maeda, and Koji S. Kawabata. �A type Ia supernova at the
heart of superluminous transient SN 2006gy�. In: Science 367.6476 (2020), pp. 415�418. doi:
10.1126/science.aaw1469.

[JPM00] Catherine Jirasek, Przemyslaw Prusinkiewicz, and Bruno Moulia. �Integrating biomechanics
into developmental plant models expressed using L-systems�. In: Plant biomechanics (2000),
pp. 615�624. url: http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.364.
585&rep=rep1&type=pdf.

[KA09] Maciej Komosinski and Andrew Adamatzky, eds. Arti�cial Life Models in Software. 2nd.
London: Springer, 2009, p. 442. isbn: 978-1-84882-284-9. doi: 10.1007/978-1-84882-285-
6. url: http://www.springer.com/978-1-84882-284-9.

[KC06] Kyung-Joong Kim and Sung-Bae Cho. �A comprehensive overview of the applications of
arti�cial life�. In: Arti�cial Life 12.1 (2006), pp. 153�182.

[KM18] Maciej Komosinski and Konrad Miazga. �Comparison of the tournament-based convection
selection with the island model in evolutionary algorithms�. In: Journal of Computational
Science 32 (2018), pp. 106�114. issn: 1877-7503. doi: 10.1016/j.jocs.2018.10.001. url:
http://www.framsticks.com/files/common/ConvectionSelectionVsIslandModel.pdf.

[Knu09] Johan Knutzen. �Generating climbing plants using L-systems�. MA thesis. 2009. url: http:
//www.cse.chalmers.se/~uffe/xjobb/climbingplants.pdf.

[Kom19] Maciej Komosinski. Humann3ss. 2019. url: http://www.mooncoder.com/humann3ss.

[KT20] Iuliia Kotseruba and John K. Tsotsos. �40 years of cognitive architectures: core cognitive
abilities and practical applications�. In: Arti�cial Intelligence Review 53.1 (2020), pp. 17�94.
doi: 10.1007/s10462-018-9646-y.

[KU17] Maciej Komosinski and Szymon Ulatowski. �Multithreaded computing in evolutionary design
and in arti�cial life simulations�. In: The Journal of Supercomputing 73.5 (2017), pp. 2214�
2228. issn: 1573-0484. doi: 10.1007/s11227-016-1923-4. url: http://www.framsticks.
com/files/common/MultithreadedEvolutionaryDesign.pdf.

[Lan97] Christopher G. Langton. Arti�cial life: An overview. MIT Press, 1997.

[Life10] Jean Gayon et al., eds. De�ning life. Vol. 40. Origins of Life and Evolution of Biospheres 2.
Springer, 2010, pp. 119�244. url: https://cache.media.eduscol.education.fr/file/
Formation_continue_enseignants/52/2/Jean_Gayon_2_292522.pdf.

Arti�cial Life � lecture script 60

https://www.sbgames.org/sbgames2017/papers/ComputacaoShort/174978.pdf
https://www.sbgames.org/sbgames2017/papers/ComputacaoShort/174978.pdf
https://www.santafe.edu/research/results/working-papers/artificial-life-the-coming-evolution
https://www.santafe.edu/research/results/working-papers/artificial-life-the-coming-evolution
https://doi.org/10.1126/science.aaw1469
http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.364.585&rep=rep1&type=pdf
http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.364.585&rep=rep1&type=pdf
https://doi.org/10.1007/978-1-84882-285-6
https://doi.org/10.1007/978-1-84882-285-6
http://www.springer.com/978-1-84882-284-9
https://doi.org/10.1016/j.jocs.2018.10.001
http://www.framsticks.com/files/common/ConvectionSelectionVsIslandModel.pdf
http://www.cse.chalmers.se/~uffe/xjobb/climbingplants.pdf
http://www.cse.chalmers.se/~uffe/xjobb/climbingplants.pdf
http://www.mooncoder.com/humann3ss
https://doi.org/10.1007/s10462-018-9646-y
https://doi.org/10.1007/s11227-016-1923-4
http://www.framsticks.com/files/common/MultithreadedEvolutionaryDesign.pdf
http://www.framsticks.com/files/common/MultithreadedEvolutionaryDesign.pdf
https://cache.media.eduscol.education.fr/file/Formation_continue_enseignants/52/2/Jean_Gayon_2_292522.pdf
https://cache.media.eduscol.education.fr/file/Formation_continue_enseignants/52/2/Jean_Gayon_2_292522.pdf

[Mah92] Samir W. Mahfoud. �Crowding and preselection revisited�. In: Parallel problem solving from
nature. Ed. by R. Männer and B. Manderick. Vol. 2. Elsevier, 1992, pp. 27�36. url: http://
citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.52.3943&rep=rep1&type=pdf.

[Mer97] Ralph C. Merkle. �It's a small, small, small, small world�. In: MIT Technology Review (1997).
url: https://www.researchgate.net/profile/Ralph_Merkle/publication/228378235_
It's_a_small_small_small_small_world/links/0a85e53a224a7d10bd000000.pdf.

[MKT99] Soraia Raupp Musse, Marcelo Kallmann, and Daniel Thalmann. �Level of autonomy for
virtual human agents�. In: European Conference on Arti�cial Life. Springer, 1999, pp. 345�
349.

[NP99] Stefano Nol� and Domenico Parisi. �Exploiting the power of sensory-motor coordination�. In:
European Conference on Arti�cial Life. Springer, 1999, pp. 173�182.

[ÖBK08] E. Özcan, B. Bilgin, and E. E. Korkmaz. �A comprehensive analysis of hyper-heuristics�. In:
Intelligent Data Analysis 12.1 (2008), pp. 3�23.

[OG03] Mihai Oltean and Crina Gro³an. �Evolving evolutionary algorithms using multi expression
programming�. In: European Conference on Arti�cial Life. Springer. 2003, pp. 651�658. url:
https://www.researchgate.net/profile/Mihai_Oltean2/publication/226167912_
Evolving_Evolutionary_Algorithms_Using_Multi_Expression_Programming/links/
55dac32308aed6a199aaf916.pdf.

[Olt05] Mihai Oltean. �Evolving evolutionary algorithms using linear genetic programming�. In: Evo-
lutionary Computation 13.3 (2005), pp. 387�410. url: https://mihaioltean.github.io/
oltean_mit_draft_2005.pdf.

[PL96] Przemyslaw Prusinkiewicz and Aristid Lindenmayer. The algorithmic beauty of plants. Springer,
1996. url: http://algorithmicbotany.org/papers/abop/abop.pdf.

[PM01] Yoav I. H. Parish and Pascal Müller. �Procedural modeling of cities�. In: Proceedings of the
28th annual conference on Computer graphics and interactive techniques. 2001, pp. 301�308.
url: https://dl.acm.org/doi/abs/10.1145/383259.383292.

[RB99] Andreas Rechtsteiner and Mark A. Bedau. �A generic neutral model for quantitative compar-
ison of genotypic evolutionary activity�. In: European Conference on Arti�cial Life. Springer,
1999, pp. 109�118.

[Rea+20] Esteban Real et al. �AutoML-Zero: Evolving machine learning algorithms from scratch�. In:
International Conference on Machine Learning. PMLR. 2020, pp. 8007�8019. url: https:
//proceedings.mlr.press/v119/real20a/real20a.pdf.

[Ros05] P. Ross. �Hyper-heuristics�. In: Search Methodologies (2005), pp. 529�556.

[Rot06] Franz Rothlauf. Representations for genetic and evolutionary algorithms. Springer, 2006. doi:
10.1007/3-540-32444-5.

[SB06] Christine Solnon and Derek Bridge. �An ant colony optimization meta-heuristic for subset
selection problems�. In: System engineering using particle swarm optimization (2006), pp. 7�
29. url: https://liris.cnrs.fr/Documents/Liris-2279.pdf.

[Sch44] Erwin Schrödinger. What is life? The physical aspect of the living cell and mind. https:
//en.wikipedia.org/wiki/What_Is_Life%3F. Cambridge University Press, 1944. url:
http://old.biovip.com/UpLoadFiles/Aaron/Files/2005051204.pdf.

Arti�cial Life � lecture script 61

http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.52.3943&rep=rep1&type=pdf
http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.52.3943&rep=rep1&type=pdf
https://www.researchgate.net/profile/Ralph_Merkle/publication/228378235_It's_a_small_small_small_small_world/links/0a85e53a224a7d10bd000000.pdf
https://www.researchgate.net/profile/Ralph_Merkle/publication/228378235_It's_a_small_small_small_small_world/links/0a85e53a224a7d10bd000000.pdf
https://www.researchgate.net/profile/Mihai_Oltean2/publication/226167912_Evolving_Evolutionary_Algorithms_Using_Multi_Expression_Programming/links/55dac32308aed6a199aaf916.pdf
https://www.researchgate.net/profile/Mihai_Oltean2/publication/226167912_Evolving_Evolutionary_Algorithms_Using_Multi_Expression_Programming/links/55dac32308aed6a199aaf916.pdf
https://www.researchgate.net/profile/Mihai_Oltean2/publication/226167912_Evolving_Evolutionary_Algorithms_Using_Multi_Expression_Programming/links/55dac32308aed6a199aaf916.pdf
https://mihaioltean.github.io/oltean_mit_draft_2005.pdf
https://mihaioltean.github.io/oltean_mit_draft_2005.pdf
http://algorithmicbotany.org/papers/abop/abop.pdf
https://dl.acm.org/doi/abs/10.1145/383259.383292
https://proceedings.mlr.press/v119/real20a/real20a.pdf
https://proceedings.mlr.press/v119/real20a/real20a.pdf
https://doi.org/10.1007/3-540-32444-5
https://liris.cnrs.fr/Documents/Liris-2279.pdf
https://en.wikipedia.org/wiki/What_Is_Life%3F
https://en.wikipedia.org/wiki/What_Is_Life%3F
http://old.biovip.com/UpLoadFiles/Aaron/Files/2005051204.pdf

[Sip95] Moshe Sipper. �An introduction to arti�cial life�. In: Explorations in Arti�cial Life (special
issue of AI Expert) (1995), pp. 4�8.

[Tha+95] Daniel Thalmann et al. �Virtual and real humans interacting in the virtual world�. In: Proc.
International Conference on Virtual Systems and Multimedia95. 1995, pp. 48�57. url: https:
//infoscience.epfl.ch/record/102037/files/Thalmann_and_al_VSMM_95.pdf.

[TTG94] Demetri Terzopoulos, Xiaoyuan Tu, and Radek Grzeszczuk. �Arti�cial �shes: Autonomous
locomotion, perception, behavior, and learning in a simulated physical world�. In: Arti�cial
Life 1.4 (1994), pp. 327�351. url: https://citeseerx.ist.psu.edu/viewdoc/download?
doi=10.1.1.33.8131&rep=rep1&type=pdf.

[WS05] Peter Worth and Susan Stepney. �Growing music: musical interpretations of L-systems�. In:
Workshops on Applications of Evolutionary Computation. Springer. 2005, pp. 545�550. url:
https://www-users.cs.york.ac.uk/susan/bib/ss/nonstd/eurogp05.pdf.

Citing this script:

@booklet{MK-ALIFEscript,
title = {Artificial Life and Nature-Inspired Algorithms},
author = {Maciej Komosinski},
year = {2025},
note = {Lecture script},
url = {https://www.cs.put.poznan.pl/mkomosinski/lectures/MK_ArtLife.pdf}

}

Arti�cial Life � lecture script 62

https://infoscience.epfl.ch/record/102037/files/Thalmann_and_al_VSMM_95.pdf
https://infoscience.epfl.ch/record/102037/files/Thalmann_and_al_VSMM_95.pdf
https://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.33.8131&rep=rep1&type=pdf
https://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.33.8131&rep=rep1&type=pdf
https://www-users.cs.york.ac.uk/susan/bib/ss/nonstd/eurogp05.pdf

	Artificial Life – introduction
	Definition, methodology, goals
	Artificial life vs. artificial intelligence
	What life is and what it is not: definitions of life
	Research interests and applications

	Optimization
	Single-solution neighborhood search
	Adjusting parameter values; interactive and batch application

	Evolutionary algorithms
	Classification
	Genetic algorithms
	Algorithm structure and parameters
	Selection
	Crossover
	Mutation

	Evolutionary strategies
	Evolutionary programming
	Crossover and mutation vs. smoothness of the fitness landscape
	Embryogeny

	Genetic programming
	Symbolic regression
	Hyper-heuristics and self-programming algorithms

	Classifier systems (CFS/LCS/GBML)
	Input and output interfaces
	Main cycle
	Learning Classifier Systems (LCS)
	Good and bad classifiers
	The need for competition
	Quality of classifiers
	Adaptation by credit assignment
	The Bucket Brigade algorithm
	Adaptation by rule discovery
	Summary

	Other nature-inspired optimization techniques
	Ant systems, ant colony optimization (AS, ACO) and swarm intelligence
	Particle swarm optimization (PSO)
	Other swarm-intelligent optimization algorithms

	Remaining aspects of artificial life
	Modeling plants using L-systems
	Emergence in Boids
	Spatio-temporal dynamics in Cellular Automata
	Agent and environment
	Complex Adaptive Systems (CAS), Multi-Agent Systems (MAS)
	Robotics: hierarchical control with layers
	Levels of autonomy
	Cognitive architectures and artificial general intelligence

	Models of biological life – selected examples

