
Scale-invariant online learning

Micha l Kempka Wojciech Kot lowski

IDSS Seminar, 27.11.2018

1 / 22

Online learning example: travel time estimation

• At every timestamp t, navigation software
needs to predict travel time yt at a given
road segment

• Given feature vector xt ∈ Rd representing
current traffic conditions, predict ŷt = x>t wt

with a linear model

• Observe real yt and measure prediction loss,
e.g. (yt − ŷt)2

• Improve model parameters wt → wt+1

2 / 22

Online learning example: spam filtering

• At every timestamp t, spam filter needs to
classify an incoming email as spam/no-spam
(yt ∈ {+1,−1})
• Given feature vector xt ∈ Rd representing

email’s body, predict ŷt = x>t wt with a
linear model

• Receive feedback yt from a user and
measure prediction loss, e.g. logistic loss
log(1 + e−ytŷt)

• Improve model parameters wt → wt+1

3 / 22

Online learning with linear models

At each trial t = 1, . . . , T :
Nature reveals input instance xt ∈ Rd
Learner predicts with a linear model ŷt = x>t wt, where wt ∈ Rd
Nature reveals label yt
Learner suffers loss `(yt, ŷt)

, convex and L-Lipschitz in ŷt

revealed before
prediction!

L-Lipschitz = (sub)derivative bounded by L

Loss function `(y, ŷ) ∂ŷ`(y, ŷ) L

logistic log
(
1 + e−yŷ

) −y
1+eyŷ 1

hinge max{0, 1− yŷ} −y1[yŷ ≤ 1] 1

absolute |ŷ − y| sgn(ŷ − y) 1

Without loss of generality assume L = 1

No stochastic assumptions on the data sequence (xt, yt) are made

Minimize regret relative to oracle weight vector w? ∈ Rd:

regretT (w
?) =

T∑
t=1

`(yt,x
>
t wt)−

T∑
t=1

`(yt,x
>
t w

?),

Goal: sublinear regret for any w? and any data sequence (xt, yt)

4 / 22

Online learning with linear models

At each trial t = 1, . . . , T :
Nature reveals input instance xt ∈ Rd
Learner predicts with a linear model ŷt = x>t wt, where wt ∈ Rd
Nature reveals label yt
Learner suffers loss `(yt, ŷt)

, convex and L-Lipschitz in ŷt

revealed before
prediction!

L-Lipschitz = (sub)derivative bounded by L

Loss function `(y, ŷ) ∂ŷ`(y, ŷ) L

logistic log
(
1 + e−yŷ

) −y
1+eyŷ 1

hinge max{0, 1− yŷ} −y1[yŷ ≤ 1] 1

absolute |ŷ − y| sgn(ŷ − y) 1

Without loss of generality assume L = 1

No stochastic assumptions on the data sequence (xt, yt) are made

Minimize regret relative to oracle weight vector w? ∈ Rd:

regretT (w
?) =

T∑
t=1

`(yt,x
>
t wt)−

T∑
t=1

`(yt,x
>
t w

?),

Goal: sublinear regret for any w? and any data sequence (xt, yt)

4 / 22

Online learning with linear models

At each trial t = 1, . . . , T :
Nature reveals input instance xt ∈ Rd
Learner predicts with a linear model ŷt = x>t wt, where wt ∈ Rd
Nature reveals label yt
Learner suffers loss `(yt, ŷt), convex and L-Lipschitz in ŷt

revealed before
prediction!

L-Lipschitz = (sub)derivative bounded by L

Loss function `(y, ŷ) ∂ŷ`(y, ŷ) L

logistic log
(
1 + e−yŷ

) −y
1+eyŷ 1

hinge max{0, 1− yŷ} −y1[yŷ ≤ 1] 1

absolute |ŷ − y| sgn(ŷ − y) 1

Without loss of generality assume L = 1

No stochastic assumptions on the data sequence (xt, yt) are made

Minimize regret relative to oracle weight vector w? ∈ Rd:

regretT (w
?) =

T∑
t=1

`(yt,x
>
t wt)−

T∑
t=1

`(yt,x
>
t w

?),

Goal: sublinear regret for any w? and any data sequence (xt, yt)

4 / 22

Online learning with linear models

At each trial t = 1, . . . , T :
Nature reveals input instance xt ∈ Rd
Learner predicts with a linear model ŷt = x>t wt, where wt ∈ Rd
Nature reveals label yt
Learner suffers loss `(yt, ŷt), convex and L-Lipschitz in ŷt

revealed before
prediction!

L-Lipschitz = (sub)derivative bounded by L

Loss function `(y, ŷ) ∂ŷ`(y, ŷ) L

logistic log
(
1 + e−yŷ

) −y
1+eyŷ 1

hinge max{0, 1− yŷ} −y1[yŷ ≤ 1] 1

absolute |ŷ − y| sgn(ŷ − y) 1

Without loss of generality assume L = 1

No stochastic assumptions on the data sequence (xt, yt) are made

Minimize regret relative to oracle weight vector w? ∈ Rd:

regretT (w
?) =

T∑
t=1

`(yt,x
>
t wt)−

T∑
t=1

`(yt,x
>
t w

?),

Goal: sublinear regret for any w? and any data sequence (xt, yt)

4 / 22

Stochastic Gradient Descent (SGD)

• Fixed learning rate

wt+1 = wt − η∇t, where ∇t = ∇wt`(yt,x
>
t wt)

Make a small step along
negative gradient of the loss

regretT (w
?) ≤ ‖w

?‖2

2η
+

η

2

T∑
t=1

‖∇t‖2 (starting at w1 = 0)

• Separate fixed learning rate per feature

wt+1,i = wt,i − ηi∇t,i,

regretT (w
?) ≤

d∑
i=1

(
w?i

2

2ηi
+

ηi
2

T∑
t=1

∇2
t,i

)
(w1 = 0)

• Adaptive learning rate per feature (AdaGrad [Duchi et al., 2011])

wt+1,i = wt,i − ηi,t∇t,i, where ηi,t =
ηi√

ε+
∑

j≤t∇2
j,i

regretT (w
?) ≤

d∑
i=1

(maxt |w?i − wi,t|2

2ηi
+ηi

)√
ε+

∑
t

∇2
t,i

5 / 22

Stochastic Gradient Descent (SGD)

• Fixed learning rate

wt+1 = wt − η∇t, where ∇t = ∇wt`(yt,x
>
t wt)

regretT (w
?) ≤ ‖w

?‖2

2η
+

η

2

T∑
t=1

‖∇t‖2 (starting at w1 = 0)

• Separate fixed learning rate per feature

wt+1,i = wt,i − ηi∇t,i,

regretT (w
?) ≤

d∑
i=1

(
w?i

2

2ηi
+

ηi
2

T∑
t=1

∇2
t,i

)
(w1 = 0)

• Adaptive learning rate per feature (AdaGrad [Duchi et al., 2011])

wt+1,i = wt,i − ηi,t∇t,i, where ηi,t =
ηi√

ε+
∑

j≤t∇2
j,i

regretT (w
?) ≤

d∑
i=1

(maxt |w?i − wi,t|2

2ηi
+ηi

)√
ε+

∑
t

∇2
t,i

5 / 22

Stochastic Gradient Descent (SGD)

• Fixed learning rate

wt+1 = wt − η∇t, where ∇t = ∇wt`(yt,x
>
t wt)

regretT (w
?) ≤ ‖w

?‖2

2η
+

η

2

T∑
t=1

‖∇t‖2 (starting at w1 = 0)

Optimal in-hindsight tuning η? = ‖w?‖√∑
t ‖∇t‖2

to minimize the regret (impossible in practice)

• Separate fixed learning rate per feature

wt+1,i = wt,i − ηi∇t,i,

regretT (w
?) ≤

d∑
i=1

(
w?i

2

2ηi
+

ηi
2

T∑
t=1

∇2
t,i

)
(w1 = 0)

• Adaptive learning rate per feature (AdaGrad [Duchi et al., 2011])

wt+1,i = wt,i − ηi,t∇t,i, where ηi,t =
ηi√

ε+
∑

j≤t∇2
j,i

regretT (w
?) ≤

d∑
i=1

(maxt |w?i − wi,t|2

2ηi
+ηi

)√
ε+

∑
t

∇2
t,i

5 / 22

Stochastic Gradient Descent (SGD)

• Fixed learning rate

wt+1 = wt − η∇t, where ∇t = ∇wt`(yt,x
>
t wt)

regretT (w
?) ≤ ‖w?‖

√∑
t

‖∇t‖2 for η? =
‖w?‖√∑
t ‖∇t‖2

• Separate fixed learning rate per feature

wt+1,i = wt,i − ηi∇t,i,

regretT (w
?) ≤

d∑
i=1

(
w?i

2

2ηi
+

ηi
2

T∑
t=1

∇2
t,i

)
(w1 = 0)

• Adaptive learning rate per feature (AdaGrad [Duchi et al., 2011])

wt+1,i = wt,i − ηi,t∇t,i, where ηi,t =
ηi√

ε+
∑

j≤t∇2
j,i

regretT (w
?) ≤

d∑
i=1

(maxt |w?i − wi,t|2

2ηi
+ηi

)√
ε+

∑
t

∇2
t,i

5 / 22

Stochastic Gradient Descent (SGD)

• Fixed learning rate

wt+1 = wt − η∇t, where ∇t = ∇wt`(yt,x
>
t wt)

regretT (w
?) ≤ ‖w?‖

√∑
t

‖∇t‖2 for η? =
‖w?‖√∑
t ‖∇t‖2

• Separate fixed learning rate per feature

wt+1,i = wt,i − ηi∇t,i,

Each feature has its
own learning rate

regretT (w
?) ≤

d∑
i=1

(
w?i

2

2ηi
+

ηi
2

T∑
t=1

∇2
t,i

)
(w1 = 0)

• Adaptive learning rate per feature (AdaGrad [Duchi et al., 2011])

wt+1,i = wt,i − ηi,t∇t,i, where ηi,t =
ηi√

ε+
∑

j≤t∇2
j,i

regretT (w
?) ≤

d∑
i=1

(maxt |w?i − wi,t|2

2ηi
+ηi

)√
ε+

∑
t

∇2
t,i

5 / 22

Stochastic Gradient Descent (SGD)

• Fixed learning rate

wt+1 = wt − η∇t, where ∇t = ∇wt`(yt,x
>
t wt)

regretT (w
?) ≤ ‖w?‖

√∑
t

‖∇t‖2 for η? =
‖w?‖√∑
t ‖∇t‖2

• Separate fixed learning rate per feature

wt+1,i = wt,i − ηi∇t,i,

regretT (w
?) ≤

d∑
i=1

(
w?i

2

2ηi
+

ηi
2

T∑
t=1

∇2
t,i

)
(w1 = 0)

• Adaptive learning rate per feature (AdaGrad [Duchi et al., 2011])

wt+1,i = wt,i − ηi,t∇t,i, where ηi,t =
ηi√

ε+
∑

j≤t∇2
j,i

regretT (w
?) ≤

d∑
i=1

(maxt |w?i − wi,t|2

2ηi
+ηi

)√
ε+

∑
t

∇2
t,i

5 / 22

Stochastic Gradient Descent (SGD)

• Fixed learning rate

wt+1 = wt − η∇t, where ∇t = ∇wt`(yt,x
>
t wt)

regretT (w
?) ≤ ‖w?‖

√∑
t

‖∇t‖2 for η? =
‖w?‖√∑
t ‖∇t‖2

• Separate fixed learning rate per feature

wt+1,i = wt,i − ηi∇t,i,

regretT (w
?) ≤

d∑
i=1

(
w?i

2

2ηi
+

ηi
2

T∑
t=1

∇2
t,i

)
(w1 = 0)

Optimal in-hindsight tuning η?i =
|w?

i |√∑
t∇2

t,i

• Adaptive learning rate per feature (AdaGrad [Duchi et al., 2011])

wt+1,i = wt,i − ηi,t∇t,i, where ηi,t =
ηi√

ε+
∑

j≤t∇2
j,i

regretT (w
?) ≤

d∑
i=1

(maxt |w?i − wi,t|2

2ηi
+ηi

)√
ε+

∑
t

∇2
t,i

5 / 22

Stochastic Gradient Descent (SGD)

• Fixed learning rate

wt+1 = wt − η∇t, where ∇t = ∇wt`(yt,x
>
t wt)

regretT (w
?) ≤ ‖w?‖

√∑
t

‖∇t‖2 for η? =
‖w?‖√∑
t ‖∇t‖2

• Separate fixed learning rate per feature

wt+1,i = wt,i − ηi∇t,i,

regretT (w
?) ≤

d∑
i=1

(
|w?i |

√∑
t

∇2
t,i

)
for η?i =

|w?i |√∑
t∇2

t,i

Better than the previous bound
(single tuning per feature)

• Adaptive learning rate per feature (AdaGrad [Duchi et al., 2011])

wt+1,i = wt,i − ηi,t∇t,i, where ηi,t =
ηi√

ε+
∑

j≤t∇2
j,i

regretT (w
?) ≤

d∑
i=1

(maxt |w?i − wi,t|2

2ηi
+ηi

)√
ε+

∑
t

∇2
t,i

5 / 22

Stochastic Gradient Descent (SGD)

• Fixed learning rate

wt+1 = wt − η∇t, where ∇t = ∇wt`(yt,x
>
t wt)

regretT (w
?) ≤ ‖w?‖

√∑
t

‖∇t‖2 for η? =
‖w?‖√∑
t ‖∇t‖2

• Separate fixed learning rate per feature

wt+1,i = wt,i − ηi∇t,i,

regretT (w
?) ≤

d∑
i=1

(
|w?i |

√∑
t

∇2
t,i

)
for η?i =

|w?i |√∑
t∇2

t,i

Can we get the optimal SGD regret bound:

d∑
i=1

(
|w?i |

√∑
t

∇2
t,i

)
with some adaptive tuning strategy?

• Adaptive learning rate per feature (AdaGrad [Duchi et al., 2011])

wt+1,i = wt,i − ηi,t∇t,i, where ηi,t =
ηi√

ε+
∑

j≤t∇2
j,i

regretT (w
?) ≤

d∑
i=1

(maxt |w?i − wi,t|2

2ηi
+ηi

)√
ε+

∑
t

∇2
t,i

5 / 22

Stochastic Gradient Descent (SGD)

• Fixed learning rate

wt+1 = wt − η∇t, where ∇t = ∇wt`(yt,x
>
t wt)

regretT (w
?) ≤ ‖w?‖

√∑
t

‖∇t‖2 for η? =
‖w?‖√∑
t ‖∇t‖2

• Separate fixed learning rate per feature

wt+1,i = wt,i − ηi∇t,i,

regretT (w
?) ≤

d∑
i=1

(
|w?i |

√∑
t

∇2
t,i

)
for η?i =

|w?i |√∑
t∇2

t,i

• Adaptive learning rate per feature (AdaGrad [Duchi et al., 2011])

wt+1,i = wt,i − ηi,t∇t,i, where ηi,t =
ηi√

ε+
∑

j≤t∇2
j,i

Tuning the learning rate mimics
the optimal tuning

regretT (w
?) ≤

d∑
i=1

(maxt |w?i − wi,t|2

2ηi
+ηi

)√
ε+

∑
t

∇2
t,i

5 / 22

Stochastic Gradient Descent (SGD)

• Fixed learning rate

wt+1 = wt − η∇t, where ∇t = ∇wt`(yt,x
>
t wt)

regretT (w
?) ≤ ‖w?‖

√∑
t

‖∇t‖2 for η? =
‖w?‖√∑
t ‖∇t‖2

• Separate fixed learning rate per feature

wt+1,i = wt,i − ηi∇t,i,

regretT (w
?) ≤

d∑
i=1

(
|w?i |

√∑
t

∇2
t,i

)
for η?i =

|w?i |√∑
t∇2

t,i

• Adaptive learning rate per feature (AdaGrad [Duchi et al., 2011])

wt+1,i = wt,i − ηi,t∇t,i, where ηi,t =
ηi√

ε+
∑

j≤t∇2
j,i

regretT (w
?) ≤

d∑
i=1

(maxt |w?i − wi,t|2

2ηi
+ηi

)√
ε+

∑
t

∇2
t,i

5 / 22

Stochastic Gradient Descent (SGD)

• Fixed learning rate

wt+1 = wt − η∇t, where ∇t = ∇wt`(yt,x
>
t wt)

regretT (w
?) ≤ ‖w?‖

√∑
t

‖∇t‖2 for η? =
‖w?‖√∑
t ‖∇t‖2

• Separate fixed learning rate per feature

wt+1,i = wt,i − ηi∇t,i,

regretT (w
?) ≤

d∑
i=1

(
|w?i |

√∑
t

∇2
t,i

)
for η?i =

|w?i |√∑
t∇2

t,i

• Adaptive learning rate per feature (AdaGrad [Duchi et al., 2011])

wt+1,i = wt,i − ηi,t∇t,i, where ηi,t =
ηi√

ε+
∑

j≤t∇2
j,i

regretT (w
?) ≤

d∑
i=1

(maxt |w?i − wi,t|2

2ηi
+ηi

)√
ε+

∑
t

∇2
t,i

Not there yet: still requires to tune ηi
depending on unknown w?!

5 / 22

Feature scales

wt+1,i = wt,i − ηi∇t,i

By the chain rule ∇t = ∇wt`(yt,x
>
t wt) =

∂`(yt, ŷ)

∂ŷ︸ ︷︷ ︸
gt

∣∣∣
ŷt=x>t wt

xt:

wt+1,i = wt,i − ηigtxt,i

Suppose feature i has a physical unit [Xi], while the label and prediction
are dimensionless (like in, e.g., classification)
=⇒ i-th weight coordinate wi must have unit 1/[Xi]

1/[Xi] 1/[Xi]

dimensionless

[Xi]

Learning rate should compensate units on each coordinate! (in fact, the

optimal in-hindsight tuning ηi =
|w?

i |√∑
t∇2

t,i

achieves exactly that)

Single learning rate is unable to compensate units.

6 / 22

Feature scales

wt+1,i = wt,i − ηi∇t,i

By the chain rule ∇t = ∇wt`(yt,x
>
t wt) =

∂`(yt, ŷ)

∂ŷ︸ ︷︷ ︸
gt

∣∣∣
ŷt=x>t wt

xt:

wt+1,i = wt,i − ηigtxt,i

For example, for squared-error loss:
∇wt(yt −w>t xt)

2 = 2(yt −w>t xt)︸ ︷︷ ︸
gt

xt

Suppose feature i has a physical unit [Xi], while the label and prediction
are dimensionless (like in, e.g., classification)
=⇒ i-th weight coordinate wi must have unit 1/[Xi]

1/[Xi] 1/[Xi]

dimensionless

[Xi]

Learning rate should compensate units on each coordinate! (in fact, the

optimal in-hindsight tuning ηi =
|w?

i |√∑
t∇2

t,i

achieves exactly that)

Single learning rate is unable to compensate units.

6 / 22

Feature scales

wt+1,i = wt,i − ηi∇t,i

By the chain rule ∇t = ∇wt`(yt,x
>
t wt) =

∂`(yt, ŷ)

∂ŷ︸ ︷︷ ︸
gt

∣∣∣
ŷt=x>t wt

xt:

wt+1,i = wt,i − ηigtxt,i

Suppose feature i has a physical unit [Xi], while the label and prediction
are dimensionless (like in, e.g., classification)
=⇒ i-th weight coordinate wi must have unit 1/[Xi]

1/[Xi] 1/[Xi]

dimensionless

[Xi]

Learning rate should compensate units on each coordinate! (in fact, the

optimal in-hindsight tuning ηi =
|w?

i |√∑
t∇2

t,i

achieves exactly that)

Single learning rate is unable to compensate units.

6 / 22

Feature scales

wt+1,i = wt,i − ηi∇t,i

By the chain rule ∇t = ∇wt`(yt,x
>
t wt) =

∂`(yt, ŷ)

∂ŷ︸ ︷︷ ︸
gt

∣∣∣
ŷt=x>t wt

xt:

wt+1,i = wt,i − ηigtxt,i

Suppose feature i has a physical unit [Xi], while the label and prediction
are dimensionless (like in, e.g., classification)
=⇒ i-th weight coordinate wi must have unit 1/[Xi]

1/[Xi] 1/[Xi]

dimensionless

[Xi]

units do not match!

Learning rate should compensate units on each coordinate! (in fact, the

optimal in-hindsight tuning ηi =
|w?

i |√∑
t∇2

t,i

achieves exactly that)

Single learning rate is unable to compensate units.

6 / 22

Feature scales

wt+1,i = wt,i − ηi∇t,i

By the chain rule ∇t = ∇wt`(yt,x
>
t wt) =

∂`(yt, ŷ)

∂ŷ︸ ︷︷ ︸
gt

∣∣∣
ŷt=x>t wt

xt:

wt+1,i = wt,i − ηigtxt,i

Suppose feature i has a physical unit [Xi], while the label and prediction
are dimensionless (like in, e.g., classification)
=⇒ i-th weight coordinate wi must have unit 1/[Xi]

1/[Xi] 1/[Xi]

dimensionless

[Xi]

. . . unless [ηi] = 1/[Xi]
2

Learning rate should compensate units on each coordinate! (in fact, the

optimal in-hindsight tuning ηi =
|w?

i |√∑
t∇2

t,i

achieves exactly that)

Single learning rate is unable to compensate units.

6 / 22

Feature scales

wt+1,i = wt,i − ηi∇t,i

By the chain rule ∇t = ∇wt`(yt,x
>
t wt) =

∂`(yt, ŷ)

∂ŷ︸ ︷︷ ︸
gt

∣∣∣
ŷt=x>t wt

xt:

wt+1,i = wt,i − ηigtxt,i

Suppose feature i has a physical unit [Xi], while the label and prediction
are dimensionless (like in, e.g., classification)
=⇒ i-th weight coordinate wi must have unit 1/[Xi]

1/[Xi] 1/[Xi]

dimensionless

[Xi]

. . . unless [ηi] = 1/[Xi]
2

Learning rate should compensate units on each coordinate! (in fact, the

optimal in-hindsight tuning ηi =
|w?

i |√∑
t∇2

t,i

achieves exactly that)

Single learning rate is unable to compensate units.
6 / 22

Feature scales

AdaGrad [Duchi et al., 2011]:

wt+1,i = wt,i −
η√

ε+
∑

j≤t∇2
j,i

∇t,i

1/[Xi] 1/[Xi] [Xi]

[Xi]

1/[Xi] ?

Learning rate still needs to compensate units, but cannot do so for all
coordinates at the same time

• Also applies to RMSprop [Tieleman and Hinton, 2012] and Adam
[Kingma and Ba, 2014]

• Heuristically solved by Adadelta [Zeiler, 2012]

Motivation: fully adaptive algorithms need to resolve this scaling issue

7 / 22

Feature scales

AdaGrad [Duchi et al., 2011]:

wt+1,i = wt,i −
η√

ε+
∑

j≤t∇2
j,i

∇t,i

1/[Xi] 1/[Xi] [Xi]

[Xi]

1/[Xi] ?

Learning rate still needs to compensate units, but cannot do so for all
coordinates at the same time

• Also applies to RMSprop [Tieleman and Hinton, 2012] and Adam
[Kingma and Ba, 2014]

• Heuristically solved by Adadelta [Zeiler, 2012]

Motivation: fully adaptive algorithms need to resolve this scaling issue

7 / 22

Feature scales

AdaGrad [Duchi et al., 2011]:

wt+1,i = wt,i −
η√

ε+
∑

j≤t∇2
j,i

∇t,i

1/[Xi] 1/[Xi] [Xi]

[Xi]

1/[Xi] ?

Learning rate still needs to compensate units, but cannot do so for all
coordinates at the same time

• Also applies to RMSprop [Tieleman and Hinton, 2012] and Adam
[Kingma and Ba, 2014]

• Heuristically solved by Adadelta [Zeiler, 2012]

Motivation: fully adaptive algorithms need to resolve this scaling issue

7 / 22

Feature scales

AdaGrad [Duchi et al., 2011]:

wt+1,i = wt,i −
η√

ε+
∑

j≤t∇2
j,i

∇t,i

1/[Xi] 1/[Xi] [Xi]

[Xi]

1/[Xi] ?

Learning rate still needs to compensate units, but cannot do so for all
coordinates at the same time

• Also applies to RMSprop [Tieleman and Hinton, 2012] and Adam
[Kingma and Ba, 2014]

• Heuristically solved by Adadelta [Zeiler, 2012]

Motivation: fully adaptive algorithms need to resolve this scaling issue

7 / 22

Scale invariance

A natural symmetry in the linear problems

Rescaling the features followed by the inverse scaling of the weights keep
the predictions (and hence losses) invariant:

∀i, t xt,i 7→ aixt,i wi 7→ a−1i wi =⇒ x>t w 7→ x>t w

In particular: if w? is optimal (loss-minimizer) for sequence {(xt, yt)}Tt=1,
then A−1w? is optimal for sequence {(Axt, yt)}Tt=1

A learning algorithm is scale-invariant if it returns the same predictions
under arbitrary rescaling of the data:

∀t xt 7→ Axt =⇒ wt 7→ A−1wt =⇒ w>t xt 7→ w>t xt

no initial data
normalization required!

Motivation: A fully adaptive algorithm needs to be scale-invariant

8 / 22

Scale invariance

A natural symmetry in the linear problems

Rescaling the features followed by the inverse scaling of the weights keep
the predictions (and hence losses) invariant:

∀t xt 7→ A−1xt, w 7→ Aw =⇒ x>t w 7→ x>t w

for any diagonal matrix A

In particular: if w? is optimal (loss-minimizer) for sequence {(xt, yt)}Tt=1,
then A−1w? is optimal for sequence {(Axt, yt)}Tt=1

A learning algorithm is scale-invariant if it returns the same predictions
under arbitrary rescaling of the data:

∀t xt 7→ Axt =⇒ wt 7→ A−1wt =⇒ w>t xt 7→ w>t xt

no initial data
normalization required!

Motivation: A fully adaptive algorithm needs to be scale-invariant

8 / 22

Scale invariance

A natural symmetry in the linear problems

Rescaling the features followed by the inverse scaling of the weights keep
the predictions (and hence losses) invariant:

∀t xt 7→ A−1xt, w 7→ Aw =⇒ x>t w 7→ x>t w

for any diagonal matrix A

In particular: if w? is optimal (loss-minimizer) for sequence {(xt, yt)}Tt=1,
then A−1w? is optimal for sequence {(Axt, yt)}Tt=1

A learning algorithm is scale-invariant if it returns the same predictions
under arbitrary rescaling of the data:

∀t xt 7→ Axt =⇒ wt 7→ A−1wt =⇒ w>t xt 7→ w>t xt

no initial data
normalization required!

Motivation: A fully adaptive algorithm needs to be scale-invariant

8 / 22

Scale invariance

A natural symmetry in the linear problems

Rescaling the features followed by the inverse scaling of the weights keep
the predictions (and hence losses) invariant:

∀t xt 7→ A−1xt, w 7→ Aw =⇒ x>t w 7→ x>t w

for any diagonal matrix A

In particular: if w? is optimal (loss-minimizer) for sequence {(xt, yt)}Tt=1,
then A−1w? is optimal for sequence {(Axt, yt)}Tt=1

Example: minimizing squared error loss:

w? =
(∑

t

xtx
>
t

)−1∑
t

xtyt

A learning algorithm is scale-invariant if it returns the same predictions
under arbitrary rescaling of the data:

∀t xt 7→ Axt =⇒ wt 7→ A−1wt =⇒ w>t xt 7→ w>t xt

no initial data
normalization required!

Motivation: A fully adaptive algorithm needs to be scale-invariant

8 / 22

Scale invariance

A natural symmetry in the linear problems

Rescaling the features followed by the inverse scaling of the weights keep
the predictions (and hence losses) invariant:

∀t xt 7→ A−1xt, w 7→ Aw =⇒ x>t w 7→ x>t w

for any diagonal matrix A

In particular: if w? is optimal (loss-minimizer) for sequence {(xt, yt)}Tt=1,
then A−1w? is optimal for sequence {(Axt, yt)}Tt=1

Example: minimizing squared error loss:

w? 7→
(∑

t

Axt(Axt)
>
)−1∑

t

Axtyt

A learning algorithm is scale-invariant if it returns the same predictions
under arbitrary rescaling of the data:

∀t xt 7→ Axt =⇒ wt 7→ A−1wt =⇒ w>t xt 7→ w>t xt

no initial data
normalization required!

Motivation: A fully adaptive algorithm needs to be scale-invariant

8 / 22

Scale invariance

A natural symmetry in the linear problems

Rescaling the features followed by the inverse scaling of the weights keep
the predictions (and hence losses) invariant:

∀t xt 7→ A−1xt, w 7→ Aw =⇒ x>t w 7→ x>t w

for any diagonal matrix A

In particular: if w? is optimal (loss-minimizer) for sequence {(xt, yt)}Tt=1,
then A−1w? is optimal for sequence {(Axt, yt)}Tt=1

Example: minimizing squared error loss:

w? 7→ A−1
(∑

t

xtx
>
t

)−1
A−1A

∑
t

xtyt

A learning algorithm is scale-invariant if it returns the same predictions
under arbitrary rescaling of the data:

∀t xt 7→ Axt =⇒ wt 7→ A−1wt =⇒ w>t xt 7→ w>t xt

no initial data
normalization required!

Motivation: A fully adaptive algorithm needs to be scale-invariant

8 / 22

Scale invariance

A natural symmetry in the linear problems

Rescaling the features followed by the inverse scaling of the weights keep
the predictions (and hence losses) invariant:

∀t xt 7→ A−1xt, w 7→ Aw =⇒ x>t w 7→ x>t w

for any diagonal matrix A

In particular: if w? is optimal (loss-minimizer) for sequence {(xt, yt)}Tt=1,
then A−1w? is optimal for sequence {(Axt, yt)}Tt=1

Example: minimizing squared error loss:

w? 7→ A−1
(∑

t

xtx
>
t

)−1∑
t

xtyt = A−1w?

A learning algorithm is scale-invariant if it returns the same predictions
under arbitrary rescaling of the data:

∀t xt 7→ Axt =⇒ wt 7→ A−1wt =⇒ w>t xt 7→ w>t xt

no initial data
normalization required!

Motivation: A fully adaptive algorithm needs to be scale-invariant

8 / 22

Scale invariance

A natural symmetry in the linear problems

Rescaling the features followed by the inverse scaling of the weights keep
the predictions (and hence losses) invariant:

∀t xt 7→ A−1xt, w 7→ Aw =⇒ x>t w 7→ x>t w

for any diagonal matrix A

In particular: if w? is optimal (loss-minimizer) for sequence {(xt, yt)}Tt=1,
then A−1w? is optimal for sequence {(Axt, yt)}Tt=1

A learning algorithm is scale-invariant if it returns the same predictions
under arbitrary rescaling of the data:

∀t xt 7→ Axt =⇒ wt 7→ A−1wt =⇒ w>t xt 7→ w>t xt

no initial data
normalization required!

Motivation: A fully adaptive algorithm needs to be scale-invariant

8 / 22

Scale invariance

A natural symmetry in the linear problems

Rescaling the features followed by the inverse scaling of the weights keep
the predictions (and hence losses) invariant:

∀t xt 7→ A−1xt, w 7→ Aw =⇒ x>t w 7→ x>t w

for any diagonal matrix A

In particular: if w? is optimal (loss-minimizer) for sequence {(xt, yt)}Tt=1,
then A−1w? is optimal for sequence {(Axt, yt)}Tt=1

A learning algorithm is scale-invariant if it returns the same predictions
under arbitrary rescaling of the data:

∀t xt 7→ Axt =⇒ wt 7→ A−1wt =⇒ w>t xt 7→ w>t xt

no initial data
normalization required!

Motivation: A fully adaptive algorithm needs to be scale-invariant

8 / 22

Scale invariance

A natural symmetry in the linear problems

Rescaling the features followed by the inverse scaling of the weights keep
the predictions (and hence losses) invariant:

∀t xt 7→ A−1xt, w 7→ Aw =⇒ x>t w 7→ x>t w

for any diagonal matrix A

In particular: if w? is optimal (loss-minimizer) for sequence {(xt, yt)}Tt=1,
then A−1w? is optimal for sequence {(Axt, yt)}Tt=1

A learning algorithm is scale-invariant if it returns the same predictions
under arbitrary rescaling of the data:

∀t xt 7→ Axt =⇒ wt 7→ A−1wt =⇒ w>t xt 7→ w>t xt

no initial data
normalization required!

Motivation: A fully adaptive algorithm needs to be scale-invariant

8 / 22

Past work

Scale-invariant algorithms with bounded predictions
[Ross et al., 2013, Orabona et al., 2015]

Assumption: |xt,iw?i | ≤ C for all i, t for some constant C

regretT (w
?) = O

(
d
√
C2T

)

Compare with optimal SGD regret:
d∑
i=1

(
|w?i |

√∑
t

∇2
t,i

)

C2T =⇒
∑
t

(∇t,iw?t,i)2

d =⇒
∑
i

[Luo et al., 2016] considers a more general version of scale invariance, but
also with bounded predictions

Some more recent work on unconstrained online learning:
[McMahan and Streeter, 2010, McMahan and Abernethy, 2013,
Orabona, 2013, Cutkosky and Boahen, 2017,
Cutkosky and Orabona, 2018]

Prior to this work: [Kot lowski, 2017]

9 / 22

Past work

Scale-invariant algorithms with bounded predictions
[Ross et al., 2013, Orabona et al., 2015]

Assumption: |xt,iw?i | ≤ C for all i, t for some constant C

regretT (w
?) = O

(
d
√
C2T

)

Compare with optimal SGD regret:
d∑
i=1

(
|w?i |

√∑
t

∇2
t,i

)

C2T =⇒
∑
t

(∇t,iw?t,i)2

d =⇒
∑
i

[Luo et al., 2016] considers a more general version of scale invariance, but
also with bounded predictions

Some more recent work on unconstrained online learning:
[McMahan and Streeter, 2010, McMahan and Abernethy, 2013,
Orabona, 2013, Cutkosky and Boahen, 2017,
Cutkosky and Orabona, 2018]

Prior to this work: [Kot lowski, 2017]

9 / 22

Past work

Scale-invariant algorithms with bounded predictions
[Ross et al., 2013, Orabona et al., 2015]

Assumption: |xt,iw?i | ≤ C for all i, t for some constant C

regretT (w
?) = O

(
d
√
C2T

)

Compare with optimal SGD regret:
d∑
i=1

(
|w?i |

√∑
t

∇2
t,i

)

C2T =⇒
∑
t

(∇t,iw?t,i)2

d =⇒
∑
i

[Luo et al., 2016] considers a more general version of scale invariance, but
also with bounded predictions

Some more recent work on unconstrained online learning:
[McMahan and Streeter, 2010, McMahan and Abernethy, 2013,
Orabona, 2013, Cutkosky and Boahen, 2017,
Cutkosky and Orabona, 2018]

Prior to this work: [Kot lowski, 2017]

9 / 22

Past work

Scale-invariant algorithms with bounded predictions
[Ross et al., 2013, Orabona et al., 2015]

Assumption: |xt,iw?i | ≤ C for all i, t for some constant C

regretT (w
?) = O

(
d
√
C2T

)

Compare with optimal SGD regret:
d∑
i=1

(
|w?i |

√∑
t

∇2
t,i

)

C2T =⇒
∑
t

(∇t,iw?t,i)2

d =⇒
∑
i

[Luo et al., 2016] considers a more general version of scale invariance, but
also with bounded predictions

Some more recent work on unconstrained online learning:
[McMahan and Streeter, 2010, McMahan and Abernethy, 2013,
Orabona, 2013, Cutkosky and Boahen, 2017,
Cutkosky and Orabona, 2018]

Prior to this work: [Kot lowski, 2017]

9 / 22

Past work

Scale-invariant algorithms with bounded predictions
[Ross et al., 2013, Orabona et al., 2015]

Assumption: |xt,iw?i | ≤ C for all i, t for some constant C

regretT (w
?) = O

(
d
√
C2T

)

Compare with optimal SGD regret:
d∑
i=1

(
|w?i |

√∑
t

∇2
t,i

)

C2T =⇒
∑
t

(∇t,iw?t,i)2

d =⇒
∑
i

[Luo et al., 2016] considers a more general version of scale invariance, but
also with bounded predictions

Some more recent work on unconstrained online learning:
[McMahan and Streeter, 2010, McMahan and Abernethy, 2013,
Orabona, 2013, Cutkosky and Boahen, 2017,
Cutkosky and Orabona, 2018]

Prior to this work: [Kot lowski, 2017]

9 / 22

Past work

Scale-invariant algorithms with bounded predictions
[Ross et al., 2013, Orabona et al., 2015]

Assumption: |xt,iw?i | ≤ C for all i, t for some constant C

regretT (w
?) = O

(
d
√
C2T

)

Compare with optimal SGD regret:
d∑
i=1

(
|w?i |

√∑
t

∇2
t,i

)

C2T =⇒
∑
t

(∇t,iw?t,i)2

d =⇒
∑
i

[Luo et al., 2016] considers a more general version of scale invariance, but
also with bounded predictions

Some more recent work on unconstrained online learning:
[McMahan and Streeter, 2010, McMahan and Abernethy, 2013,
Orabona, 2013, Cutkosky and Boahen, 2017,
Cutkosky and Orabona, 2018]

Prior to this work: [Kot lowski, 2017]

9 / 22

Scale-invariant algorithms

Scale Invariant Online Learning, Algorithm 1: ScInOL1

Parameter: ε = 1

Keep track of data statistics:

Mt,i = max
j≤t
|xj,i|, S2

t,i =
∑
j≤t
∇2
j,i, Gt,i =

∑
j≤t
∇j,i

Maximum value
at a given feature

Sum of squared
gradients

Sum of gradients

and an auxilary variable βt,i = min{βt−1,i,
ε(S2

t−1,i+M
2
t,i)

x2t,it
} with β0,i = ε

wt,i = βt,i
sgn(θi)

2
√
S2
t−1,i +M2

t,i

(
e|θi|/2 − 1

)
, where θi =

Gt,i√
S2
t−1,i +M2

t,i

1/[Xi]

unitless

√
[Xi]2

unitless

[Xi]

√
[Xi]2

regretT (w
?) =

d∑
i=1

Õ

(
|w?i |

√
max
t
x2t,i +

∑
t

∇2
t,i

)
,

where Õ(·) hides logarithmic factors

Optimal up to logarithmic terms

10 / 22

Scale-invariant algorithms

Scale Invariant Online Learning, Algorithm 1: ScInOL1

Parameter: ε = 1

Keep track of data statistics:

Mt,i = max
j≤t
|xj,i|, S2

t,i =
∑
j≤t
∇2
j,i, Gt,i =

∑
j≤t
∇j,i

Maximum value
at a given feature

Sum of squared
gradients

Sum of gradients

and an auxilary variable βt,i = min{βt−1,i,
ε(S2

t−1,i+M
2
t,i)

x2t,it
} with β0,i = ε

wt,i = βt,i
sgn(θi)

2
√
S2
t−1,i +M2

t,i

(
e|θi|/2 − 1

)
, where θi =

Gt,i√
S2
t−1,i +M2

t,i

1/[Xi]

unitless

√
[Xi]2

unitless

[Xi]

√
[Xi]2

regretT (w
?) =

d∑
i=1

Õ

(
|w?i |

√
max
t
x2t,i +

∑
t

∇2
t,i

)
,

where Õ(·) hides logarithmic factors

Optimal up to logarithmic terms

10 / 22

Scale-invariant algorithms

Scale Invariant Online Learning, Algorithm 1: ScInOL1

Parameter: ε = 1

Keep track of data statistics:

Mt,i = max
j≤t
|xj,i|, S2

t,i =
∑
j≤t
∇2
j,i, Gt,i =

∑
j≤t
∇j,i

Maximum value
at a given feature

Sum of squared
gradients

Sum of gradients

and an auxilary variable βt,i = min{βt−1,i,
ε(S2

t−1,i+M
2
t,i)

x2t,it
} with β0,i = ε

wt,i = βt,i
sgn(θi)

2
√
S2
t−1,i +M2

t,i

(
e|θi|/2 − 1

)
, where θi =

Gt,i√
S2
t−1,i +M2

t,i

1/[Xi]

unitless

√
[Xi]2

unitless

[Xi]

√
[Xi]2

regretT (w
?) =

d∑
i=1

Õ

(
|w?i |

√
max
t
x2t,i +

∑
t

∇2
t,i

)
,

where Õ(·) hides logarithmic factors

Optimal up to logarithmic terms

10 / 22

Scale-invariant algorithms

Scale Invariant Online Learning, Algorithm 1: ScInOL1

Parameter: ε = 1

Keep track of data statistics:

Mt,i = max
j≤t
|xj,i|, S2

t,i =
∑
j≤t
∇2
j,i, Gt,i =

∑
j≤t
∇j,i

Maximum value
at a given feature

Sum of squared
gradients

Sum of gradients

and an auxilary variable βt,i = min{βt−1,i,
ε(S2

t−1,i+M
2
t,i)

x2t,it
} with β0,i = ε

wt,i = βt,i
sgn(θi)

2
√
S2
t−1,i +M2

t,i

(
e|θi|/2 − 1

)
, where θi =

Gt,i√
S2
t−1,i +M2

t,i

1/[Xi]

unitless

√
[Xi]2

unitless

[Xi]

√
[Xi]2

regretT (w
?) =

d∑
i=1

Õ

(
|w?i |

√
max
t
x2t,i +

∑
t

∇2
t,i

)
,

where Õ(·) hides logarithmic factors

Optimal up to logarithmic terms

10 / 22

Scale-invariant algorithms

Scale Invariant Online Learning, Algorithm 1: ScInOL1

Parameter: ε = 1

Keep track of data statistics:

Mt,i = max
j≤t
|xj,i|, S2

t,i =
∑
j≤t
∇2
j,i, Gt,i =

∑
j≤t
∇j,i

Maximum value
at a given feature

Sum of squared
gradients

Sum of gradients

and an auxilary variable βt,i = min{βt−1,i,
ε(S2

t−1,i+M
2
t,i)

x2t,it
} with β0,i = ε

wt,i = βt,i
sgn(θi)

2
√
S2
t−1,i +M2

t,i

(
e|θi|/2 − 1

)
, where θi =

Gt,i√
S2
t−1,i +M2

t,i

1/[Xi]

unitless

√
[Xi]2

unitless

[Xi]

√
[Xi]2

regretT (w
?) =

d∑
i=1

Õ

(
|w?i |

√
max
t
x2t,i +

∑
t

∇2
t,i

)
,

where Õ(·) hides logarithmic factors

Optimal up to logarithmic terms

10 / 22

Scale-invariant algorithms

Scale Invariant Online Learning, Algorithm 1: ScInOL1

Parameter: ε = 1

Keep track of data statistics:

Mt,i = max
j≤t
|xj,i|, S2

t,i =
∑
j≤t
∇2
j,i, Gt,i =

∑
j≤t
∇j,i

Maximum value
at a given feature

Sum of squared
gradients

Sum of gradients

and an auxilary variable βt,i = min{βt−1,i,
ε(S2

t−1,i+M
2
t,i)

x2t,it
} with β0,i = ε

wt,i = βt,i
sgn(θi)

2
√
S2
t−1,i +M2

t,i

(
e|θi|/2 − 1

)
, where θi =

Gt,i√
S2
t−1,i +M2

t,i

1/[Xi]

unitless

√
[Xi]2

unitless

[Xi]

√
[Xi]2

regretT (w
?) =

d∑
i=1

Õ

(
|w?i |

√
max
t
x2t,i +

∑
t

∇2
t,i

)
,

where Õ(·) hides logarithmic factors

Optimal up to logarithmic terms

10 / 22

Scale-invariant algorithms

Scale Invariant Online Learning, Algorithm 1: ScInOL1

Parameter: ε = 1

Keep track of data statistics:

Mt,i = max
j≤t
|xj,i|, S2

t,i =
∑
j≤t
∇2
j,i, Gt,i =

∑
j≤t
∇j,i

Maximum value
at a given feature

Sum of squared
gradients

Sum of gradients

and an auxilary variable βt,i = min{βt−1,i,
ε(S2

t−1,i+M
2
t,i)

x2t,it
} with β0,i = ε

wt,i = βt,i
sgn(θi)

2
√
S2
t−1,i +M2

t,i

(
e|θi|/2 − 1

)
, where θi =

Gt,i√
S2
t−1,i +M2

t,i

1/[Xi]

unitless

√
[Xi]2

unitless

[Xi]

√
[Xi]2

regretT (w
?) =

d∑
i=1

Õ

(
|w?i |

√
max
t
x2t,i +

∑
t

∇2
t,i

)
,

where Õ(·) hides logarithmic factors

Optimal up to logarithmic terms

10 / 22

Scale-invariant algorithms

Scale Invariant Online Learning, Algorithm 1: ScInOL1

Parameter: ε = 1

Keep track of data statistics:

Mt,i = max
j≤t
|xj,i|, S2

t,i =
∑
j≤t
∇2
j,i, Gt,i =

∑
j≤t
∇j,i

Maximum value
at a given feature

Sum of squared
gradients

Sum of gradients

and an auxilary variable βt,i = min{βt−1,i,
ε(S2

t−1,i+M
2
t,i)

x2t,it
} with β0,i = ε

wt,i = βt,i
sgn(θi)

2
√
S2
t−1,i +M2

t,i

(
e|θi|/2 − 1

)
, where θi =

Gt,i√
S2
t−1,i +M2

t,i

1/[Xi]

unitless

√
[Xi]2

unitless

[Xi]

√
[Xi]2

regretT (w
?) =

d∑
i=1

Õ

(
|w?i |

√
max
t
x2t,i +

∑
t

∇2
t,i

)
,

where Õ(·) hides logarithmic factors

Optimal up to logarithmic terms

10 / 22

Scale-invariant algorithms

Scale Invariant Online Learning, Algorithm 1: ScInOL1

Algorithm 1: ScInOL1(ε)

Initialization: S2
i , Gi,Mi ← 0, βi ← ε (i = 1, . . . , d)

for t = 1, . . . , T do
Receive xt ∈ Rd
for i = 1, . . . , d do

Mi ← max{Mi, |xt,i|}
if xt,i 6= 0 then βi ← min{βi, ε(S2

i +M2
i)/(x

2
t,it)}

wt,i =
βisgn(θi)

2
√
S2
i +M

2
i

(
e|θi|/2 − 1

)
, where θi =

Gi√
S2
i +M

2
i

Predict with ŷt = x>t wt,i, receive loss `t(ŷt) and compute
gt = ∂ŷt`t(ŷt)
for i = 1, . . . , d do

Gi ← Gi − gtxt,i
S2
i ← S2

i + (gtxt,i)
2

11 / 22

Scale-invariant algorithms

Scale Invariant Online Learning, Algorithm 2: ScInOL2

A more aggressive update, but with weaker guarantees

Parameter: ε = 1

Mt,i = max
j≤t
|xj,i|, S2

t,i =
∑
j≤t
∇2
j,i, Gt,i =

∑
j≤t
∇j,i

and a reward variable ηt,i = ε−
∑

j≤t∇j,iwj,i

wt,i = ηt−1,i
sgn(θi)min{|θi|, 1}

2
√
S2
t−1,i +M2

t,i

, where θi =
Gt,i√

S2
t−1,i +M2

t,i

1/[Xi]

unitless

√
[Xi]2

unitless

[Xi]

√
[Xi]2

regretT (w
?) =

d∑
i=1

Õ

(
|w?i |

√
max
t
x2t,i +

∑
t

∇2
t,i

)
,

but the coefficients in the logarithmic factors depend on the ratio between
the largest and (non-zero) smallest feature values.

12 / 22

Scale-invariant algorithms

Scale Invariant Online Learning, Algorithm 2: ScInOL2

A more aggressive update, but with weaker guarantees

Parameter: ε = 1

Mt,i = max
j≤t
|xj,i|, S2

t,i =
∑
j≤t
∇2
j,i, Gt,i =

∑
j≤t
∇j,i

and a reward variable ηt,i = ε−
∑

j≤t∇j,iwj,i

wt,i = ηt−1,i
sgn(θi)min{|θi|, 1}

2
√
S2
t−1,i +M2

t,i

, where θi =
Gt,i√

S2
t−1,i +M2

t,i

1/[Xi]

unitless

√
[Xi]2

unitless

[Xi]

√
[Xi]2

regretT (w
?) =

d∑
i=1

Õ

(
|w?i |

√
max
t
x2t,i +

∑
t

∇2
t,i

)
,

but the coefficients in the logarithmic factors depend on the ratio between
the largest and (non-zero) smallest feature values.

12 / 22

Scale-invariant algorithms

Scale Invariant Online Learning, Algorithm 2: ScInOL2

A more aggressive update, but with weaker guarantees

Parameter: ε = 1

Mt,i = max
j≤t
|xj,i|, S2

t,i =
∑
j≤t
∇2
j,i, Gt,i =

∑
j≤t
∇j,i

and a reward variable ηt,i = ε−
∑

j≤t∇j,iwj,i

wt,i = ηt−1,i
sgn(θi)min{|θi|, 1}

2
√
S2
t−1,i +M2

t,i

, where θi =
Gt,i√

S2
t−1,i +M2

t,i

1/[Xi]

unitless

√
[Xi]2

unitless

[Xi]

√
[Xi]2

regretT (w
?) =

d∑
i=1

Õ

(
|w?i |

√
max
t
x2t,i +

∑
t

∇2
t,i

)
,

but the coefficients in the logarithmic factors depend on the ratio between
the largest and (non-zero) smallest feature values.

12 / 22

Scale-invariant algorithms

Scale Invariant Online Learning, Algorithm 2: ScInOL2

A more aggressive update, but with weaker guarantees

Parameter: ε = 1

Mt,i = max
j≤t
|xj,i|, S2

t,i =
∑
j≤t
∇2
j,i, Gt,i =

∑
j≤t
∇j,i

and a reward variable ηt,i = ε−
∑

j≤t∇j,iwj,i

wt,i = ηt−1,i
sgn(θi)min{|θi|, 1}

2
√
S2
t−1,i +M2

t,i

, where θi =
Gt,i√

S2
t−1,i +M2

t,i

1/[Xi]

unitless

√
[Xi]2

unitless

[Xi]

√
[Xi]2

regretT (w
?) =

d∑
i=1

Õ

(
|w?i |

√
max
t
x2t,i +

∑
t

∇2
t,i

)
,

but the coefficients in the logarithmic factors depend on the ratio between
the largest and (non-zero) smallest feature values.

12 / 22

Scale-invariant algorithms

Scale Invariant Online Learning, Algorithm 2: ScInOL2

A more aggressive update, but with weaker guarantees

Parameter: ε = 1

Mt,i = max
j≤t
|xj,i|, S2

t,i =
∑
j≤t
∇2
j,i, Gt,i =

∑
j≤t
∇j,i

and a reward variable ηt,i = ε−
∑

j≤t∇j,iwj,i

wt,i = ηt−1,i
sgn(θi)min{|θi|, 1}

2
√
S2
t−1,i +M2

t,i

, where θi =
Gt,i√

S2
t−1,i +M2

t,i

1/[Xi]

unitless

√
[Xi]2

unitless

[Xi]

√
[Xi]2

regretT (w
?) =

d∑
i=1

Õ

(
|w?i |

√
max
t
x2t,i +

∑
t

∇2
t,i

)
,

but the coefficients in the logarithmic factors depend on the ratio between
the largest and (non-zero) smallest feature values.

12 / 22

Scale-invariant algorithms

Scale Invariant Online Learning, Algorithm 1: ScInOL2

Algorithm 2: ScInOL2(ε)

Initialization: S2
i , Gi,Mi ← 0, ηi ← ε (i = 1, . . . , d)

for t = 1, . . . , T do
Receive xt ∈ Rd
for i = 1, . . . , d do

Mi ← max{Mi, |xt,i|}
wt,i =

sgn(θi)min{|θi|,1}
2
√
S2
i +M

2
i

ηi, where θi =
Gi√
S2
i +M

2
i

Predict with ŷt = x>t wt,i, receive loss `t(ŷt) and compute
gt = ∂ŷt`t(ŷt)
for i = 1, . . . , d do

Gi ← Gi − gtxt,i
S2
i ← S2

i + (gtxt,i)
2

ηi ← ηi − gtxt,iwt,i
13 / 22

Artificial data experiment

Experimental setup:

• x ∈ R21 with xi ∼ N(0, σi), σi ∈ {2−10, . . . , 210}
• y ∼ Bernoulli(p(x)), where p = sigmoid(x>w?) with w?i = ± 1

σi

• Linear models with cross entropy (logistic) loss

• Algorithms run on a sequence of 5 000 examples and tested on 100K
examples (repeated 10 times for stability)

Algorithms:

• SGD (with learning rate ∼ 1/
√
t), AdaGrad, Adam

• NAG (Normalized Adaptive Gradient) [Ross et al., 2013]

• Scale-free Mirror Descent [Orabona et al., 2015]

• Algorithms from this work

All algorithms (except the last one) have their learning rates set to values
from {0.001, 0.005, 0.01, 0.05, 0.1, 0.5, 1, 5, 10}

14 / 22

Artificial data experiment

0 1000 2000 3000 4000 5000
iterations

100

101

102

103

104

105

cr
os

s e
nt

ro
py

Artificial data
SGD
AdaGrad
Adam
NAG
Orabona
ScInOL 1
ScInOL 2

15 / 22

Artificial data experiment

0 1000 2000 3000 4000 5000
iterations

0.3

0.4

0.5

0.6

cr
os

s e
nt

ro
py
Artificial data (zoom)

SGD
AdaGrad
Adam
NAG
Orabona
ScInOL 1
ScInOL 2

15 / 22

Experiment - datasets

Name1 features records classes scale2

Bank 53 41188 2 6.05E+05
Census 381 299285 2 1.81E+06
Covertype 54 581012 7 1.31E+06
Madelon 500 2600 2 1.09E+00
MNIST 728 70000 10 5.83E+03
Shuttle 9 58000 7 7.46E+00

1datasets (excluding MNIST) available in the UCI repository
2computed as a ratio of highest to lowest positive L2 norms of features

16 / 22

https://archive.ics.uci.edu/ml/datasets.html

Experiment - algorithms

• SGD with decreasing η (as ∼ 1/
√
t)

• AdaGrad

• Adam

• NAG

• COCOB [Orabona and Tommasi, 2017]

• ScInOL1

• ScInOL2

All but 3 last algorithms tested with different learning rates: 1.0, 0.1, 0.01,
0.001, 0.0001

17 / 22

Experiment - setup

• logistic regression initialized with zeros, trained on cross entropy

• minibatch size = 1 (online GD)

• test error measured after each training epoch

• each configuration run 10 times (pale strokes of graph lines signify ±
standard deviations)

• for algorithms with varying learning rate configurations, only the best
ones are shown

18 / 22

Experiment - results

500000 1000000 1500000
iterations

0.5

1.0

1.5

2.0

cr
os

s e
nt

ro
py

MNIST

AdaGrad
Adam
CoCob
NAG
ScInOL 1
ScInOL 2
SGD

19 / 22

Experiment - results

50000 100000 150000 200000 250000
iterations

0.2

0.3

0.4

0.5

0.6

0.7

cr
os

s e
nt

ro
py

UCI Bank

AdaGrad
Adam
CoCob
NAG
ScInOL 1
ScInOL 2
SGD

19 / 22

Experiment - results

500000 1000000 1500000 2000000
iterations

0.2

0.4

0.6

cr
os

s e
nt

ro
py

UCI Census

AdaGrad
Adam
CoCob
NAG
ScInOL 1
ScInOL 2
SGD

19 / 22

Experiment - results

1000000 2000000 3000000
iterations

0.75

1.00

1.25

1.50

1.75

2.00

cr
os

s e
nt

ro
py

UCI Covertype

AdaGrad
Adam
CoCob
NAG
ScInOL 1
ScInOL 2
SGD

19 / 22

Experiment - results

0 10000 20000 30000 40000 50000
iterations

0

20

40

60

cr
os

s e
nt

ro
py

UCI Madelon
AdaGrad
Adam
CoCob
NAG
ScInOL 1
ScInOL 2
SGD

19 / 22

Experiment - results

200000 400000 600000
iterations

0.5

1.0

1.5

2.0

cr
os

s e
nt

ro
py

Shuttle

AdaGrad
Adam
CoCob
NAG
ScInOL 1
ScInOL 2
SGD

19 / 22

Future work

• adjustments for batchsize > 1

• adjustments for deep models and comparison with
batch-normalization

• analysis of ’dirty tricks’ used in COCOB algorithm which seem to be
responsible for its good performance

20 / 22

References I

I Cutkosky, A. and Boahen, K. A. (2017). Online learning without prior information. In
Conference on Learning Theory (COLT), pages 643–677. PMLR.

I Cutkosky, A. and Orabona, F. (2018). Black-box reductions for parameter-free online
learning in banach spaces. In Conference on Learning Theory (COLT), volume 75, pages
1493–1529. PMLR.

I Duchi, J. C., Hazan, E., and Singer, Y. (2011). Adaptive subgradient methods for online
learning and stochastic optimization. Journal of Machine Learning Research, 12:2121–2159.

I Kingma, D. P. and Ba, J. (2014). Adam: A method for stochastic optimization. CoRR,
abs/1412.6980.

I Kot lowski, W. (2017). Scale-invariant unconstrained online learning. In Algorithmic Learning
Theory (ALT), volume 76, pages 412–433. PMLR.

I Luo, H., Agarwal, A., Cesa-Bianchi, N., and Langford, J. (2016). Efficient second order
online learning by sketching. In Neural Information Processing Systems (NIPS), pages
902–910. Curran Associates, Inc.

I McMahan, H. B. and Abernethy, J. (2013). Minimax optimal algorithms for unconstrained
linear optimization. In Advances in Neural Information Processing Systems (NIPS) 26, pages
2724–2732.

21 / 22

References II

I McMahan, H. B. and Streeter, M. J. (2010). Adaptive bound optimization for online convex
optimization. In Conference on Learning Theory (COLT), pages 244–256.

I Orabona, F. (2013). Dimension-free exponentiated gradient. In Advances in Neural
Information Processing Systems (NIPS) 26, pages 1806–1814.

I Orabona, F., Crammer, K., and Cesa-Bianchi, N. (2015). A generalized online mirror descent
with applications to classification and regression. Machine Learning, 99(3):411–435.

I Orabona, F. and Tommasi, T. (2017). Training deep networks without learning rates through
coin betting. In Advances in Neural Information Processing Systems (NIPS) 30, pages
2157–2167.

I Ross, S., Mineiro, P., and Langford, J. (2013). Normalized online learning. In Proc. of the
29th Conference on Uncertainty in Artificial Intelligence (UAI), pages 537–545.

I Tieleman, T. and Hinton, G. (2012). Lecture 6.5—RmsProp: Divide the gradient by a
running average of its recent magnitude. COURSERA: Neural Networks for Machine
Learning.

I Zeiler, M. D. (2012). ADADELTA: an adaptive learning rate method. CoRR, abs/1212.5701.

22 / 22

