Scale-invariant online learning

Michat Kempka Wojciech Kottowski

IDSS Seminar, 27.11.2018

1/22

Online learning example: travel time estimation

e At every timestamp ¢, navigation software
needs to predict travel time y; at a given
road segment

e Given feature vector z; € R? representing
current traffic conditions, predict 7; = x, w;
with a linear model

e Observe real y; and measure prediction loss,
eg (yr — 277&)2

e Improve model parameters w; — w1

2/22

Online learning example: spam filtering

e At every timestamp ¢, spam filter needs to
classify an incoming email as spam/no-spam
(v € {+1,-1})

e Given feature vector x; € R representing
email’s body, predict 7; = =/ w; with a
linear model

e Receive feedback y; from a user and
measure prediction loss, e.g. logistic loss
log(1 4 e~ ¥¥t)

e Improve model parameters w; — w41

3/22

Online learning with linear models

At each trial t =1,...,T"
Nature reveals input instance x; € R?

Learner predicts with a linear model ; = x, w;, where w; € R?
Nature reveals label 3,

Learner suffers loss ¢(y, 1)

4/22

Online learning with linear mogslsr————
prediction!

At each trial t =1,...,T

Nature reveals input instance x; €]I/

Learner predicts with a linear model ; = x, w;, where w; € R?
Nature reveals label 3,

Learner suffers loss ¢(y, 1)

4/22

Online learning with linear models

At each trial t =1,...,T"
Nature reveals input instance x; € R?

Learner predicts with a linear model ; = x, w;, where w; € R?
Nature reveals label 3,

Learner suffers loss ¢(y, 3;), convex and L-Lipschitz in 3,
ya

/

L-Lipschitz = (sub)derivative bounded by L

Loss function 2y, 7)) 05l(y,Yy) L
logistic log (14 e¥) T 1
hinge max{0,1 —yy} —yllyy<1] 1
absolute |y — v sen(y —y) 1

Without loss of generality assume L =1

4/22

Online learning with linear models

At each trial t =1,...,T"
Nature reveals input instance x; € R?

Learner predicts with a linear model ; = x, w;, where w; € R?
Nature reveals label 3,

Learner suffers loss ¢(y, 3;), convex and L-Lipschitz in 3,

No stochastic assumptions on the data sequence (x,y;) are made

Minimize regret relative to oracle weight vector w* € R%:

T T
regretT(w*) = Zg(yta m;rwt) - Zg(ytvx:w*)7
t=1 t=1

Goal: sublinear regret for any w* and any data sequence (x¢, y;)

4/22

Stochastic Gradient Descent (SGD)

e Fixed learning rate

w1 = wy — nVy, where Vi = Vi, 0 (yy, w:wt)

Make a small step along
negative gradient of the loss

5/22

Stochastic Gradient Descent (SGD)

e Fixed learning rate
Wi = W — NV, where Vi = Vo, ((ys, @) wy)

IIw*H2

regretp(w*) < U Z V4|2 (starting at w; = 0)

5/22

Stochastic Gradient Descent (SGD)

e Fixed learning rate
Wi = W — NV, where Vi = Vo, ((ys, @) wy)

IIw*H2

regretp(w*) < U Z V4|2 (starting at w; = 0)

f[w”]]

Optimal in-hindsight tuning n* = —————
. . S Y A A
to minimize the regret (impossible in practice)

5/22

Stochastic Gradient Descent (SGD)

e Fixed learning rate

w1 = wy — nVy, where Vi = Vi, 0 (yy, w:wt)

[|w™||
regrety(w*) < [lw”|| Vel for ' = ————
zt: ANIE

5/22

Stochastic Gradient Descent (SGD)

e Fixed learning rate

w1 = wy — nVy, where Vi = Vi, 0 (yy, w:wt)

. . [|w™||
regrety(w*) < [lw”|| Vel for ' = ————
zt: V2o IVe?

e Separate fixed learning rate per feature

Wi, = Wi — M Vi,

Each feature has its
own learning rate

5/22

Stochastic Gradient Descent (SGD)

e Fixed learning rate

w1 = wy — nVy, where Vi = Vi, 0 (yy, w:wt)
regrety(w?) < Jwll [STIVAE for gt = — L
7 > V]|
e Separate fixed learning rate per feature
Wit1,i = Wi — N Vi,
d w*Q n; T
regretp(w*) < Z <2;7 + 51 Z V§Z> (w1 =0)
i=1 v t=1

5/22

Stochastic Gradient Descent (SGD)

e Fixed learning rate

Wit = Wy — NV, where V; = thg(yty w:'wt)
regrety(w?) < 'l [STIV2 for = —
7 2 Vel
e Separate fixed learning rate per feature

W10 = Wi — 0 Vi,
d w*2) T

regretp(w*) < Z < i, 0 ZV§Z> (w1 = 0)
— 27’]1‘ 2 — ’
=1 t=1

[Optimal in-hindsight tuning 7} = \/%]

5/22

Stochastic Gradient Descent (SGD)

e Fixed learning rate
w1 = wy — nVy, where Vi = Vi, 0 (yy, w:wt)

w*
regretp(w*) <] [SOIVAE for gt = I
t

V2 IVil?

e Separate fixed learning rate per feature

Wiyl = Wi — 1 Vi,
d

*
regretp(w*) < Z <|wf| ZV?J for) = _wil
i=1 t V2 Vi

Better than the previous bound
(single tuning per feature)

5/22

Stochastic Gradient Descent (SGD)

e Fixed learninpg===t

Can we get the optimal SGD regret bound:
Wy d wt)
* 2 w*
regretp(zz_; <‘w’ | Zt: Vm) %
B Ce [1Ve]
e Separate fixd with some a'1daptive tuning strategy?

=4

Wiyl = Wi — 1 Vi,

d
regretp(w”™) < Z <|w;*| Z Vfl> for 1} = \w |
i=1 t \/ EL vz%,z

5/22

Stochastic Gradient Descent (SGD)

e Fixed learning rate
w1 = wy — nVy, where Vi = Vi, 0 (yy, w:wt)

[w

2 Vil

*
regrety(w?) < Jw'l SV for g — — L)
t
e Separate fixed learning rate per feature

Wiyl = Wi — 1 Vi,
d

*
regrety(w*) < Z <|wf| ZV?J for nf = L
i=1 ¢ v 2o Vi
e Adaptive learning rate per feature (AdaGrad [Duchi et al., 2011])

i
Wil = Wi — Nit Vi, where 7; 4 = 5
\ Vet 2 Vi

Tuning the learning rate mimics
the optimal tuning

5/22

Stochastic Gradient Descent (SGD)

e Fixed learning rate

w1 = wy — nVy, where Vi = Vi, 0 (yy, w:wt)
regretp(w?) < Jwtl [SIVE forr = —d
t AN

e Separate fixed learning rate per feature

Wiyl = Wi — 1 Vi,

d
regrety(w*) < Z(lwfl ngi) for g = L

e Adaptive learning rate per feature (AdaGrad [Duchi et al., 2011])
i

Vet Zize Vi
regretp(w”*) < Z(

: 771-) €+ Z V%’i
i=1 771 t 5/22

Wil = Wi — Nit Vi, where 7; 4 =

Stochastic Gradient Descent (SGD)

e Fixed learning rate

w1 = wy — nVy, where Vi = Vi, 0 (yy, w:wt)

[|w™||
regrety(w*) < [lw”|| Vel for ' = ————
zt: ANIE

e Separate fixed learning rate per feature

Wi, = Wi — M Vi,
d
regrety (w*) < Z <|w:| Not there ye.t: still requires to tune n;
Pt \ depending on unknown w*!
v E
e Adaptive learning rate per feature (AdaGrad [D//chi et al., 2011])

i

Vet X< Vi
* .
regretT(w*) < Z (maxt ‘wz Wit

2
S—ty) e+ V2,
i=1 i t 5/22

| — L

W1, = Wei — Mit Vi, where 7); ;

Feature scales

Wil = Wi — M Vig

6/22

Feature scales

Wil = Wi — M Vig

oy, y
By the chain rule V; = Vo, £(ys, &, w;) = (gi’y)
\J_z
gt

Wi, = Wt — 1igtTti

/

For example, for squared-error loss:
T,.\2 T
Vo, (Yt —wy)" = 2(y: — wy T¢) T4
—_——

R !
=z wy

gt

6/22

Feature scales

Wil = Wi — M Vig
. ol(ye, Y
By the chain rule V; = V., £(y1, a:tth) = M T
8y @t:m:wt
—_————
gt
Wi, = Wt — 1igtTti

Suppose feature i has a physical unit [X;], while the label and prediction
are dimensionless (like in, e.g., classification)
= i-th weight coordinate w; must have unit 1/[X]

6/22

Feature scales

Wil = Wi — M Vig
Ol(y, Y
By the chain rule V; = V., £(y1, a:tth) = M T
8y g’jt::nt we
1/[X] 1/[Xi] —

)
Wi, = Wei — 1igtTti

(units do not match!)

Suppose feature i has a physical unit [X;], while the label and prediction
are dimensionless (like in, e.g., classification)
= i-th weight coordinate w; must have unit 1/[X;]

6/22

Feature scales

Wil = Wi — M Vig
oy, y
By the chain rule V; = V,,, ¢(yt,a:t wy) M €T
8y Y= m:wt
ool
Wty1i = - mgtwtlA

/
[. .. unless [n;] = 1/[Xi]2]

Suppose feature i has a physical unit [X;], while the label and prediction
are dimensionless (like in, e.g., classification)
= i-th weight coordinate w; must have unit 1/[X;]

6/22

Feature scales

Wil = Wi — M Vig
oy, y
By the chain rule Vt Vo l(yt,a:t wy) M €T
8y Y= m:wt
Wty1i = — NigtTt

/
[. .. unless [n;] = 1/[Xi]2]

Suppose feature i has a physical unit [X;], while the label and prediction
are dimensionless (like in, e.g., classification)
= i-th weight coordinate w; must have unit 1/[X]

Learning rate should compensate units on each coordinate! (in fact, the
[wi

Vi
Single learning rate is unable to compensate units.

optimal in-hindsight tuning 7, = achieves exactly that)

6/22

Feature scales

AdaGrad [Duchi et al., 2011]:

! Vi

Wiyl = Wi — 5 ,
Vet < Vi

7/22

Feature scales

AdaGrad [DUC@\,—] 201@/\[/_] ' ’
Wet14 = Wi —
\/W

Learning rate still needs to compensate units, but cannot do so for all
coordinates at the same time

7/22

Feature scales

AdaGrad [Ducw\l_] 201@/\[/_] ' ’
Wet14 = Wi —
\/W

Learning rate still needs to compensate units, but cannot do so for all
coordinates at the same time

e Also applies to RMSprop [Tieleman and Hinton, 2012] and Adam
[Kingma and Ba, 2014]

e Heuristically solved by Adadelta [Zeiler, 2012]

7/22

Feature scales

AdaGrad [Ducw\l_] 201@/\[/_] ' ’
Wet14 = Wi —
\/W

Learning rate still needs to compensate units, but cannot do so for all
coordinates at the same time

e Also applies to RMSprop [Tieleman and Hinton, 2012] and Adam
[Kingma and Ba, 2014]

e Heuristically solved by Adadelta [Zeiler, 2012]

Motivation: fully adaptive algorithms need to resolve this scaling issue

7/22

Scale invariance

A natural symmetry in the linear problems

Rescaling the features followed by the inverse scaling of the weights keep
the predictions (and hence losses) invariant:

, -1 T T
Vi, b X = @iy wi v oa; w; - T,w—T,w

8/22

Scale invariance

A natural symmetry in the linear problems

[Rescaling the features followed by the inverse scaling of the weights keep)
the predictions (and hence losses) invariant:

Vtoxps Ay, we Aw — xfwe) w

for any diagonal matrix A

8/22

Scale invariance

A natural symmetry in the linear problems

[Rescaling the features followed by the inverse scaling of the weights keep)
the predictions (and hence losses) invariant:

Vtoxps Ay, we Aw — xfwe) w

for any diagonal matrix A

In particular: if w* is optimal (loss-minimizer) for sequence {(z,y:)} L,
then A~lw* is optimal for sequence {(Ax¢, y:)}l,

8/22

Scale invariance

A natural symmetry in the linear problems

[Rescaling the features followed by the inverse scaling of the weights keep)
the predictions (and hence losses) invariant:

Vtoxps Ay, we Aw — xfwe) w

for any diagonal matrix A

In particular: if w* is optimal (loss-minimizer) for sequence {(z,y:)} L,
then A~lw* is optimal for sequence {(Ax¢, y:)}l,

Example: minimizing squared error loss:

w* = <tha::)il thyt
t t

8/22

Scale invariance

A natural symmetry in the linear problems

[Rescaling the features followed by the inverse scaling of the weights keep)
the predictions (and hence losses) invariant:

Vtoxps Ay, we Aw — xfwe) w

for any diagonal matrix A

In particular: if w* is optimal (loss-minimizer) for sequence {(z,y:)} L,
then A~lw* is optimal for sequence {(Ax¢, y:)}l,

Example: minimizing squared error loss:

w* = (ZAa:t (Axy)) ZAmtyt

8/22

Scale invariance

A natural symmetry in the linear problems

[Rescaling the features followed by the inverse scaling of the weights keep)
the predictions (and hence losses) invariant:

Vtoxps Ay, we Aw — xfwe) w

for any diagonal matrix A

In particular: if w* is optimal (loss-minimizer) for sequence {(z,y:)} L,
then A~lw* is optimal for sequence {(Ax¢, y:)}l,

Example: minimizing squared error loss:

w* = A_1<Za:tm2—)71A_1Athyt
t t

8/22

Scale invariance

A natural symmetry in the linear problems

[Rescaling the features followed by the inverse scaling of the weights keep)
the predictions (and hence losses) invariant:

Vtoxps Ay, we Aw — xfwe) w

for any diagonal matrix A

In particular: if w* is optimal (loss-minimizer) for sequence {(z,y:)} L,
then A~lw* is optimal for sequence {(Ax¢, y:)}l,

Example: minimizing squared error loss:

—1
w* = A_1<Za:tm2—> Z:ctyt = A lw*
t t

8/22

Scale invariance

A natural symmetry in the linear problems

[Rescaling the features followed by the inverse scaling of the weights keep)
the predictions (and hence losses) invariant:

Vtoxps Ay, we Aw — xfwe) w

for any diagonal matrix A

In particular: if w* is optimal (loss-minimizer) for sequence {(z,y:)} L,
then A~lw* is optimal for sequence {(Ax¢, y:)}l,

A learning algorithm is scale-invariant if it returns the same predictions
under arbitrary rescaling of the data:

Vi oz Az = wi— ATlw, = tha:tr—>tha:t

8/22

Scale invariance

A natural symmetry in the linear problems

[Rescaling the features followed by the inverse scaling of the weights keep)
the predictions (and hence losses) invariant:

Vtoxps Ay, we Aw — xfwe) w

for any diagonal matrix A

In particular: if w* is optimal (loss-minimizer) for sequence {(z,y:)} L,
then A~lw* is optimal for sequence {(Ax¢, y:)}l,

A learning algorithm is scale-invariant if it return no initial data
under arbitrary rescaling of the data: normalization required!

Vt oz Ay — w— AT'wy = w, Ty — w,

8/22

Scale invariance

A natural symmetry in the linear problems

[Rescaling the features followed by the inverse scaling of the weights keep)
the predictions (and hence losses) invariant:

Vtoxps Ay, we Aw — xfwe) w

for any diagonal matrix A

In particular: if w* is optimal (loss-minimizer) for sequence {(z,y:)} L,
then A~lw* is optimal for sequence {(Ax¢, y:)}l,

A learning algorithm is scale-invariant if it return no initial data
under arbitrary rescaling of the data: normalization required!

Vi oz Az = wi— ATlw, = tha:tb—>tha:t

Motivation: A fully adaptive algorithm needs to be scale-invariant

8/22

Past work
Scale-invariant algorithms with bounded predictions

[Ross et al., 2013, Orabona et al., 2015]

Assumption: |z ;w;| < C for all i,t for some constant C

regrety (w*) = o<dx/CTT>

9/22

Past work

Scale-invariant algorithms with bounded predictions
[Ross et al., 2013, Orabona et al., 2015]

Assumption: |z ;w;| < C for all i,t for some constant C

)

Compare with optimal SGD regret:

i (1wt ZV)

1=

9/22

Past worlc21 = S~ (v u7,)?
t

Scale-invariant algorithms with bounded p d = Z
[Ross et al., 2013, Orabona et al., 2015] ‘

Assumption: |z ;w}| < C for all 7, for some co%nt C

)

Compare with optimal SGD regret:

i (1wt ZV)

1=

9/22

Past work

Scale-invariant algorithms with bounded predictions
[Ross et al., 2013, Orabona et al., 2015]

Assumption: |z ;w;| < C for all i,t for some constant C

regrety (w*) = o<d\/CTT>

[Luo et al., 2016] considers a more general version of scale invariance, but

also with bounded predictions

9/22

Past work

Scale-invariant algorithms with bounded predictions
[Ross et al., 2013, Orabona et al., 2015]

Assumption: |z ;w}| < C for all i,t for some constant C'
regrety(w*) = O(d\/ CQT>

[Luo et al., 2016] considers a more general version of scale invariance, but
also with bounded predictions

Some more recent work on unconstrained online learning:
[McMahan and Streeter, 2010, McMahan and Abernethy, 2013,
Orabona, 2013, Cutkosky and Boahen, 2017,

Cutkosky and Orabona, 2018]

/22

Past work

Scale-invariant algorithms with bounded predictions
[Ross et al., 2013, Orabona et al., 2015]

Assumption: |z ;w}| < C for all i,t for some constant C'
regrety(w*) = O(d\/ CQT>

[Luo et al., 2016] considers a more general version of scale invariance, but
also with bounded predictions

Some more recent work on unconstrained online learning:
[McMahan and Streeter, 2010, McMahan and Abernethy, 2013,
Orabona, 2013, Cutkosky and Boahen, 2017,

Cutkosky and Orabona, 2018]

Prior to this work: [Kottowski, 2017]

/22

Scale-invariant algorithms

[Scale Invariant Online Learning, Algorithm 1: ScInOL;]

10/22

Scale-invariant algorithms

[Scale Invariant Online Learning, Algorithm 1: ScInOL;]

Parameter: e =1

10/22

Scale-invariant algorithms

[Scale Invariant Online Learning, Algorithm 1: ScInOL;]

Parameter: e =1

Keep track of data statistics:
_) 2 2 C .
Mt,i = 1513;(‘xj,7,|’ St,i = Z vj,i’ Gt,z = Z v],z

- J<t J<t
Max@um value Sum of.squared [Sum of gradients]
at a given feature gradients

10/22

Scale-invariant algorithms

[Scale Invariant Online Learning, Algorithm 1: ScInOL;]

Parameter: e =1
Keep track of data statistics:
_) 2 2 C .
Mt,i - Iglgé’(‘$j71|, St,i - Z v]”i, Gtﬂ == Z VN

J<t J<t

e(SZ , +M?2, .
51+ M) “)} with Bp; = €

and an auxilary variable f;; = min{f;_1 ;, pop
ti

10/22

Scale-invariant algorithms

[Scale Invariant Online Learning, Algorithm 1: ScInOL;]

Parameter: e =1

Keep track of data statistics:
_) 2 2 C .
Mt,i = 15125{ ‘$j77,|’ St,i = Z vj,i’ Gt,z = Z v],z

J<t J<t
. . . e(S? . +M?2, .
and an auxilary variable 3;; = min{8;_1, %} with Bo; =€
ti
sgn(6; _ G
Wy = /Bt,i & (Z) <e|91‘/2 _ 1) , where 0; = ~

2/ S 1+ M, VS + M

10/22

Scale-invariant algorithms

[Scale Invariant Online Learning, Algorithm 1: ScInOL;]

Parameter: e =1
Keep track of data statistics:

_ 2 _
t,i—lg,lgf\ﬂfj,il, S?=> V3. Gu=> Vi

J<t J<t

+M; .
and/An auxl| 2 Bt = min{ 5 1z7 S ;2 r 50,z‘ =€

sgn(6;) .
_ g, 2 su6) (o2 -

\/—]\42 ,where@-\/w
]

10/22

Scale-invariant algorithms

[Scale Invariant Online Learning, Algorithm 1: ScInOL;]

Parameter: e =1
Keep track of data statistics:
Mt,i = mgg{‘l‘gﬂh SI?Z ZV”, Gt,i = Zv%l
= j<t j<t

6(5371 z‘+Mt2i) -
T} with By; =€

wei = Brg sgn(0;) <e|9i‘/2 B 1) . where 6 — Gii

, 24/ SE 1+ M, \/ SE i+ M,
regret,(w Z O (]w \/mfux :U?l + Z V%Z> ,
t

where O(-) hides logarithmic factors

and an auxilary variable f;; = min{f;_1 ;,

10/22

Scale-invariant algorithms

[Scale Invariant Online Learning, Algorithm 1: ScInOL;]

Parameter: e =1

Keep track of data statistics:
_ . 2 R .
Mt,i = I?gic‘xj,z|’ Stz Zv] i Gt,z = Zv],z

j<t j<t
. . . Sy +ME, .
and an auxilary variable 3;; = min{8;_1, W} with Bo; =€
t,i
sgn([OptimaI up to logarithmic terms] e
we; = Pt 5 — e = 5 5
2\/St—1,i + My, // Si—q;+ M,

regret,(w Z 0] (]w \/mfux :U?l + Z V%Z> ;
t

where O(-) hides logarithmic factors

10/22

Scale-invariant algorithms

[Scale Invariant Online Learning, Algorithm 1: ScInOL;

Algorithm 1: ScInOL (¢)

Initialization: S2, G, M; < 0,8; < ¢ (i=1,...,d)
fort=1,...,7T do
Receive ; € R
fori=1,...,ddo
AL‘%—IH&X{A4L’$LA}
if 24; # 0 then 3; «+ min{3;, (5% + Mf)/(:r?zt)}
Wy = 72% <e|9i\/2 — 1), where 6; = 7\/51%71\43
Predict with 7; = :c;r'wt,l-, receive loss ¢;(y;) and compute
gt = 3@&@})
fori=1,...,ddo
Gi G — g1y
S < 87 + (giwe)?

11/22

Scale-invariant algorithms

[Scale Invariant Online Learning, Algorithm 2: ScInOLy]

A more aggressive update, but with weaker guarantees

12/22

Scale-invariant algorithms

[Scale Invariant Online Learning, Algorithm 2: ScInOLy]

A more aggressive update, but with weaker guarantees
Parameter: ¢ =1
_ 2 _ 2 _
My = max |z, SF; = d Vi Gui=)Y_ Vi
= J<t J<t

and a reward variable 1 ; = € — ngt Viw;i

12/22

Scale-invariant algorithms

[Scale Invariant Online Learning, Algorithm 2: ScInOLy

A more aggressive update, but with weaker guarantees
Parameter: e =1
Mt,i = max |33j,i|, StZZ = Z V?’i, Gt,i = Z v]’,i
I=t = i<t
and a reward variable 1 ; = € — ngt Viw;i

sgn(6;) min{|6;], 1} Gii

Wi = Mt—1,i 5 = where 0, = ’

\/ St2—1,i + M1€21

12/22

Scale-invariant algorithms

[Scale Invariant Online Learning, Algorithm 2: ScInOLy

A more aggressive update, but with weaker guarantees

Parameter: e =1

i = max|a:]z| S Zvﬂ’ Gii = Zvj,i

J<t Jj<t

and a |pward v’ - qu V;iw;
“sgn(6

) min{|6;], 1} G

)

where 0, =

2 St—l,i+Mt,i E St—l,i+Mt,i

12/22

Scale-invariant algorithms

[Scale Invariant Online Learning, Algorithm 2: ScInOLy]

A more aggressive update, but with weaker guarantees
Parameter: e =1
Mt,i = max|3:j7i|, Stgz ZVW Gt,i = ZVM
I=t i<t i<t
and a reward variable 1 ; = € — qu Viw;i

sgn(6;) min{|6;|, 1} where 0 — G

= Mt—1,i e
2\/ St2 1,2 +Mt21 St2—1,z'+Mtz,i

d

regrety(w ZO(”LUZ’ max:nm—i—zv)

but the coefficients in the logarithmic factors depend on the ratio between
the largest and (non-zero) smallest feature values.

12/22

Scale-invariant algorithms

[Scale Invariant Online Learning, Algorithm 1: ScInOLy

Algorithm 2: ScInOL;(¢)

Initialization: S?, G, M; < 0,m; < € (i=1,...,d)
fort=1,...,7T do
Receive ; € R?
fori=1,...,ddo
M; + maX{Mi, |£Ut77;|}

wy s — 58n(0) min{|0s[,1} where 6; = Gy
b= Ty ez T /S22

Predict with y; = %th,z‘. receive loss ¢;(y;) and compute
9t = 05, 6:(r)
fori=1,...,ddo
Gi + Gi — g1y
SP S7 + (gewe)?
Ni < Mi — GtTi Wi

13/22

Artificial data experiment

Experimental setup:
e x € R* with x; ~ N(0,0;), 0y € {2710,... 210}
e y ~ Bernoulli(p(x)), where p = sigmoid(x "w*) with w} = :l:a%_
e Linear models with cross entropy (logistic) loss

e Algorithms run on a sequence of 5000 examples and tested on 100K
examples (repeated 10 times for stability)

Algorithms:
e SGD (with learning rate ~ 1/+/t), AdaGrad, Adam
e NAG (Normalized Adaptive Gradient) [Ross et al., 2013]
e Scale-free Mirror Descent [Orabona et al., 2015]
e Algorithms from this work

All algorithms (except the last one) have their learning rates set to values
from {0.001,0.005,0.01,0.05,0.1,0.5,1,5,10}

14 /22

cross entropy

Artificial data experiment

Artificial data

— sGD
s M —— AdaGrad
10 %m— Adam
v

—— NAG
—— Orabona i
ScinOL 1 ~
ScinoL 2 ¢

104 -

102 - A ~ \r—r—\\jﬁ/ A S
: - Y, I OEECAAC AL A o AN AN\
| SUNAEA AN E QA ARSI YA I
- YN ARSI DA DA
107 - DN AT s

0 1000 2000 3000 4000 5000

iterations 15 /22

cross entropy

Artificial data experiment

Artificial data (zoom)

0.6 -

\%%AY'! A PN WATS N

o
U
\

)

0.4-

0.3-

1000 2000 3000
iterations

o -

S — R TR
‘V\J\ /,“" “ “
V \V\,«‘!!'>‘ /

R

A

4000

VY

SGD N
AdaGrad
Adam -
NAG
Orabona
ScinOL1

SSJnOL i,/

5000

Experiment - datasets

] Name! features | records | classes | scale?
Bank 53 41188 2 6.05E+4-05
Census 381 299285 | 2 1.81E4-06
Covertype | 54 581012 | 7 1.31E+4-06
Madelon 500 2600 2 1.09E4-00
MNIST 728 70000 10 5.83E+03
Shuttle 9 58000 7 7.46E+00

datasets (excluding MNIST) available in the UCI repository

2

computed as a ratio of highest to lowest positive Ly norms of features

16 /22

https://archive.ics.uci.edu/ml/datasets.html

Experiment - algorithms

SGD with decreasing 1 (as ~ 1/+/%)
AdaGrad

Adam

NAG

COCOB [Orabona and Tommasi, 2017]
ScInOL,

ScInOLs

All but 3 last algorithms tested with different learning rates: 1.0, 0.1, 0.01,
0.001, 0.0001

17/22

Experiment - setup

logistic regression initialized with zeros, trained on cross entropy
minibatch size = 1 (online GD)
test error measured after each training epoch

each configuration run 10 times (pale strokes of graph lines signify +
standard deviations)

for algorithms with varying learning rate configurations, only the best
ones are shown

18 /22

cross entropy

2.0~

ey
wv
'

-
o
\

0.5-

Experiment - results

MNIST

AdaGrad
Adam
CoCob
NAG
ScinOL 1
ScInOL 2
SGD

titettt

h’E'=.-l-'-.-'-.-.-'-.-'—.—.—.—'-.—'—'—U—'—'—'—‘-‘-.-.-.4

500000 1000000 1500000
iterations

19 /22

Cross entropy

Experiment - results

UCI Bank
0.7 -
0.6 -
—+— AdaGrad
0.5- —+— Adam
—»— CoCob
—u— NAG
0.4 - ~+ ScinOL1
—¥— ScInOL 2
T e
0.2 -
50000 100000 150000 200000 250000
iterations

19/22

Experiment - results

UCI Census

0.6 -

AdaGrad
Adam
CoCob
NAG
ScinOL 1
SclnOL 2
SGD

Frotit

o©
IN)
)

500000 1000000 1500000 2000000

iterations 19/22

cross entropy

Experiment - results

UCI Covertype

2.00 -
1.75 -
—+— AdaGrad
1.50 - —+— Adam
—»— CoCob
—u— NAG
1.25- ~+ ScinOL 1
—¥— ScInOL 2
—4— SGD
1.00 -
0'75 _i A! o A . A A A A
1000000 2000000 3000000

iterations

19/22

cross entropy

60 -

10000

Experiment - results

UCI Madelon

20000

30000
iterations

40000

AdaGrad
Adam
CoCob
NAG
ScinOL 1
ScIinOL 2
SGD

——
——
——
—.—
—i—
—
——

19/22

cross entropy

2.0-

Experiment - results

Shuttle

iy
wv
'

=
o
\

0.5-

—+— AdaGrad
—e— Adam
—»— CoCob
—=— NAG
ScinOL 1
—¥— ScInOL 2
—4— SGD

200000 400000 600000
iterations 10/22

Future work

adjustments for batchsize > 1

adjustments for deep models and comparison with
batch-normalization

analysis of 'dirty tricks' used in COCOB algorithm which seem to be
responsible for its good performance

20/22

References |

Cutkosky, A. and Boahen, K. A. (2017). Online learning without prior information. In
Conference on Learning Theory (COLT), pages 643-677. PMLR.

Cutkosky, A. and Orabona, F. (2018). Black-box reductions for parameter-free online
learning in banach spaces. In Conference on Learning Theory (COLT), volume 75, pages
1493-1529. PMLR.

Duchi, J. C., Hazan, E., and Singer, Y. (2011). Adaptive subgradient methods for online

learning and stochastic optimization. Journal of Machine Learning Research, 12:2121-2159.

Kingma, D. P. and Ba, J. (2014). Adam: A method for stochastic optimization. CoRR,
abs/1412.6980.

Kottowski, W. (2017). Scale-invariant unconstrained online learning. In Algorithmic Learning
Theory (ALT), volume 76, pages 412-433. PMLR.

Luo, H., Agarwal, A., Cesa-Bianchi, N., and Langford, J. (2016). Efficient second order
online learning by sketching. In Neural Information Processing Systems (NIPS), pages
902-910. Curran Associates, Inc.

McMahan, H. B. and Abernethy, J. (2013). Minimax optimal algorithms for unconstrained
linear optimization. In Advances in Neural Information Processing Systems (NIPS) 26, pages
2724-2732.

21/22

References |l

McMahan, H. B. and Streeter, M. J. (2010). Adaptive bound optimization for online convex
optimization. In Conference on Learning Theory (COLT), pages 244-256.

Orabona, F. (2013). Dimension-free exponentiated gradient. In Advances in Neural
Information Processing Systems (NIPS) 26, pages 1806-1814.

Orabona, F., Crammer, K., and Cesa-Bianchi, N. (2015). A generalized online mirror descent
with applications to classification and regression. Machine Learning, 99(3):411-435.

Orabona, F. and Tommasi, T. (2017). Training deep networks without learning rates through
coin betting. In Advances in Neural Information Processing Systems (NIPS) 30, pages
2157-2167.

Ross, S., Mineiro, P., and Langford, J. (2013). Normalized online learning. In Proc. of the
29th Conference on Uncertainty in Artificial Intelligence (UAI), pages 537-545.

Tieleman, T. and Hinton, G. (2012). Lecture 6.5—RmsProp: Divide the gradient by a
running average of its recent magnitude. COURSERA: Neural Networks for Machine
Learning.

Zeiler, M. D. (2012). ADADELTA: an adaptive learning rate method. CoRR, abs/1212.5701.

22/22

