
RAIRO-Oper. Res. 50 (2016) 351–361 RAIRO Operations Research
DOI: 10.1051/ro/2015039 www.rairo-ro.org

HIGH-ORDER STATISTICAL COMPRESSOR FOR LONG-TERM STORAGE
OF DNA SEQUENCING DATA ∗

Marek Chlopkowski
1
, Maciej Antczak

1
, Michal Slusarczyk

1
,

Aleksander Wdowinski
1
, Michal Zajaczkowski

1
and Marta Kasprzak

1,2

Abstract. We present a specialized compressor designed for efficient data storage of FASTQ files
produced by high-throughput DNA sequencers. Since the method has been optimized for compression
quality, it is especially suitable for long-term storage and for genome research centers processing huge
amount of data (counted in petabytes). The proposed compressor uses high-order statistical models
for range encoding, similar to Markov models, but the whole input is considered in building a symbol
context. Compression of DNA reads is performed according to LZ-style with the use of the 5–7th order
model, while nucleotides’ scores are encoded with the 3rd order model.

Mathematics Subject Classification. 68P20, 68P30, 68W32, 92D20.

Received September 8, 2015. Accepted September 21, 2015.

1. Introduction

In computer science, compression is a process of transforming an input data stream into an output stream
of lower size by removing redundancy [18]. It is used for reducing costs of data storage and shortening data
transmission time. Most known and often used measures, which characterize efficiency of compression algorithms,
are compression speed and compression ratio. The former is defined as

CS =
Sin

t
,

where Sin is the size of the input data stream (in megabytes) and t stands for overall processing time (in
seconds). Compression ratio (also called quality) is measured as

CR =
Sout

Sin
· 100%,

where Sout is the compressed stream size [17]. Optimization of one of these criteria usually leads to deterioration
of the other. Most compression algorithms offer parametrization, where a user can choose a better ratio at the

Keywords. High-throughput DNA sequencing, data compression, FASTQ files.

∗ The research has been supported by grant No. 2012/05/B/ST6/03026 from the National Science Centre, Poland, and by grant
DS 09/91/DSPB/0570 from the Institute of Computing Science, Poznan University of Technology.
1 Institute of Computing Science, Poznan University of Technology, Piotrowo 2, 60-965 Poznan, Poland.
marta@cs.put.poznan.pl
2 Institute of Bioorganic Chemistry, Polish Academy of Sciences, Poznan, Poland

Article published by EDP Sciences c© EDP Sciences, ROADEF, SMAI 2016

http://dx.doi.org/10.1051/ro/2015039
http://www.rairo-ro.org
http://www.edpsciences.org

352 M. CHLOPKOWSKI ET AL.

expense of the compression time, or vice versa. Methods designed for long-term data storage can further optimize
compression quality at cost of processing time, which is still cost efficient.

As DNA sequencing technology cost is getting lower, the amount of produced raw sequencing data is con-
sequently growing. Nowadays, genome research centers are processing data counted in petabytes. Currently
available assembly algorithms, which aim is to combine together high-throughput sequencing data in order to
produce longer sequences (parts of a genome), often do not provide results of satisfying quality for data sets
of a current size, or they may even be technically incapable to accept such sets at the input. Thus, it is a
good idea to store raw sequencing data for further analysis with new, improved assembly software [7]. The
available hardware infrastructure that stores such data is shrinking so fast, that there is a great need to develop
high-quality compression algorithms that will allow to reduce significantly the dynamics of this process.

FASTQ format for storing sequencing information is commonly accepted and utilized by biological and
bioinformatics communities. It is a standard for, among others, Illumina DNA sequencers. Nowadays, most of
popular data warehouses that store DNA sequencing data use gzip compression format (e.g. ENA at the Euro-
pean Bioinformatics Institute [4], DDBJ [20], or 1000 Genomes [1]). Files compressed in this format are usually
much larger than the ones compressed by a specialized software. Our aim is to provide a specialized algorithm
that outperforms currently available programs in compression ratio, thus allows for significant reduction of data
storage costs.

We present a new lossless compressor designed for long-term data storage of files in FASTQ format. Our
method is optimized to provide the best compression quality. Its processing time actually cannot be satisfactory
in comparison with others, but it pays off in long term data storage (as shown in Sect. 5). Moreover, the
optimization of processing time is the subject of our ongoing research on deep parallelization of the algorithm.
We compare our algorithm with the currently available software specialized for lossless compression of FASTQ
files: DSRC [6,15], Quip [12] and SCALCE [8], and with general-purpose compressors, namely 7-zip, bzip2 and
gzip.

The organization of the paper is as follows. In the next section the FASTQ format is described. The proposed
algorithm is presented in Section 3. Computational tests are summarized in Section 4, while Section 5 contains
analysis of storage costs estimated on the basis of these tests. Concluding remarks and the outline of future
work are presented in Section 6.

2. General concept behind compression of sequencing data

FASTQ is a file format commonly used for storing data produced by high-throughput DNA sequencers. A
file holds a set of records, one for each DNA sequence (called a read). Every record is composed of the following
components [5]:

• sequence identifier – character ‘@’ followed by unique sequence identifier and optional description,
• sequence of nucleotides – for DNA it is a sequence of characters ACGTN or acgtn (N stands for an unknown

nucleotide); it can be written in a single or multiple lines,
• quality score tag – character ‘+’, which can be optionally followed by a repeated sequence identifier,
• quality score – ASCII-encoded quality values obtained for every nucleotide of the sequence (encoding stan-

dard depends on a sequencing technology used); this can also be written in multiple lines.

According to Illumina’s sequencing software documentation [10,11] all the aforementioned components are single
lines (thus, a record always takes four lines) and the sequence identifier line consists of:

(1) character ‘@’,
(2) instrument identifier,
(3) run number on the instrument,
(4) flowcell identifier,
(5) lane number,
(6) tile number,

HIGH-ORDER STATISTICAL COMPRESSOR FOR LONG-TERM STORAGE OF DNA SEQUENCING DATA 353

Table 1. Compression of FASTQ files by 7-zip compressor, when a file is compressed as a whole
or as a set of files corresponding to the separated components, i.e. 3 files containing identifiers,
sequences and quality scores, respectively. The compression ratio is given in parentheses

File name Size [MB] Compressed size [MB] Compressed size [MB]
for original file for separated components

SRR027520 1 4586 1307 (28.5%) 1195 (26.1%)
SRR065390 1 8411 1792 (21.3%) 1547 (18.4%)
ERR022075 1 6789 1160 (17.1%) 946 (13.9%)

(7) X coordinate of cluster,
(8) Y coordinate of cluster,
(9) read number (1/2 for paired-end experiment),
(10) information on filtering (Y/N),
(11) control number,
(12) barcode sequence (if used).

The read number is preceded by a space and the remaining fields (except the first two) are separated by colons.
Fields 3, 5–9, and 11 are numerical. An example record is presented below.

@EAS139:136:FC706VJ:2:5:1000:12850 1:Y:18:ATCACG
AAGGCATTCGTAGAGAGATTTCCAACTTGAAAAAAA
+
BBBBCCCC?<A?BC?7@@???????DBBA@@@@A@@

Each of the components contains data of different characteristic, including different alphabets. Therefore, a
natural concept is to compress each of them separately. Even a simple operation of writing each component
to a different file skipping new line characters (but including separators) and then compressing them using a
general-purpose data compressor, leads to the reduction of output size as shown in Table 1.

New compressors dedicated for DNA sequencing data (e.g. DSRC [6, 15], Quip [12], SCALCE [8]) exploit
distinct algorithms for different components. This leads to further improvements in comparison to the simple
transformation presented above.

3. The algorithm

There are two main approaches to data compression: statistical and dictionary ones. The goal of statistical
methods is to assign possibly shortest codewords to most frequent symbols observed at the input data stream.
The symbol frequencies are used to build a statistical model, which is next encoded with variable size codes
(i.e. Huffman codes [9]) or arithmetic/range encoding. Both statistical model and encoding method affect the
compression ratio. Dictionary compression allows for a further improvement of quality by replacing repeated
substrings with dictionary tokens [17]. Depending on the implementation, a token can be a numerical index
of a substring stored in the dictionary (see methods based on LZ78 algorithm [21, 24]), information about an
earlier substring occurrence (i.e. distance-length pair used in LZ77-based methods [23]) or any other kind of
data allowing decoder to identify a repeated substring. LZ78-based methods employ a specialized data structure
(list, hash table, suffix tree) for the construction of the dictionary, which is also taken into consideration by
a decoder. In LZ77 more sophisticated data structures for finding matching substrings are applied, but the
decoder does not need to be aware of its details (since it gets the information on the distance in a stream).

In our work we apply high-order statistical models in conjunction with range encoding, this approach improves
compression quality in comparison to the Huffman method [22]. The concept of statistical models is similar

354 M. CHLOPKOWSKI ET AL.

to Markov models [17], except that the symbol context is constructed on the basis of the whole input data
stream. We also take advantage of the dictionary approach and a sorting-based algorithm for finding repeated
information together with LZ77-based token encoding. Data encoding for statistical models is done with the use
of range encoder implementation based on a published code [14, 22].

Our algorithm reads the whole input file three times. First, the preprocessing phase is performed for gathering
basic information about the content of the file – recognizing alphabets and identifier patterns, storing records
for finding LZ matches – that, among others, leads to saving space required by models. The second pass is for
building optimal (static) statistical models based on global symbol frequencies. During the third reading the
data encoding is performed on the basis of models constucted earlier (static models need to be stored within
compressed data).

In the following subsections particular concepts integrated in the algorithm are described in details.

3.1. Sequence ID compression

As mentioned in Section 2, a sequence identifier line contains several fields and most of them are numerical.
The order of those parts and their number depend on the machinery and software used to produce a FASTQ
file. A natural concept would be to encode numerical fields as binary numbers (i.e. 32-bit integers). A further
analysis shows that values of certain fields retain a particular pattern of modification. The read numbers (if
included) and the pair of coordinates X,Y usually increase throughout all the file, where Y coordinate is reset
to a lower value on every change of X.

Our algorithm parses every ID line and extracts a string pattern. Afterwards, the pattern consists of the same
formatting characters as used in sprintf function of C programming language (with optional width specifiers).
In practice, we usually get 1–4 patterns: from one pattern for not filtered single reads up to four different
patterns in files containing paired-end reads with filtering information. For example, the identifier

@ERR022075.1 EAS600 70:5:1:1158:949/1
is converted into

@ERR%.6ld.%ld EAS%ld %ld:%ld:%ld:%ld:%ld/%ld.
During the parsing procedure numerical field values are converted into binary numbers for further statistical

compression with the 1st order statistical model. This is done by encoding a difference to the corresponding
value from the preceding record. In most cases it allows us to obtain a significant gain in compression ratio.
This method is able to compress the identifier part of a file to 2–4% of its original size. At the output, the
identifiers are encoded as the pattern index and the number of numerical fields followed by field values. The
decoder simply reads the information and performs fprintf function with field values as parameters.

3.2. Reads compression

For reads compression we apply a dictionary approach followed by statistical compression of the information
about LZ matches and unmatched parts of reads. First, all reads and their reverse complementary equivalents
are stored in memory (during the first reading of the input file) with additional information about corresponding
record index. The reverse complements are two DNA strings, which can be mutually transformed by reading
from the end and translating A to T (and vice versa) and C to G (and vice versa), for example AGGTAG and
CTACCT. In fact, a read in a FASTQ file may represent its reverse complement as well, due to properties of
the sequencing procedure used to produce the file. We included reverse complements in order to improve the
results of the matching procedure. The routine creates pointer tables, one for every considered shift of input
strings, which aim is to enable a fast comparison of their substrings. Entries in the tables point to the considered
locations in the reads and their reverse complements, here the starting positions in strings belong to the interval
〈0; 14〉 with step 2. The pointers in each table are sorted to get the lexicographical order of the substrings.

Afterwards, a set of longest common substrings is identified, at most one element (match) for each input
record. When no match is found at a given record index, a whole read is compressed with the use of the 5–7th

HIGH-ORDER STATISTICAL COMPRESSOR FOR LONG-TERM STORAGE OF DNA SEQUENCING DATA 355

order statistical model (called DNA model). Otherwise, a special character is encoded on the basis of the DNA
model, followed by match information encoded with different models (0 and 1st order), which is then followed
by remaining characters from the particular read (if any). The match information is represented by the following
components: the length of the common substring, the coincidence of directions of its appearances, the offset in
the earlier read, and the distance between the reads. For example, the read

ACGTCGTTTGGCGCCCTTGGTCGATT

with the reverse complementary match of length 20 starting at the 3rd nucleotide will be encoded as
AC 0,1,20,4,15342 GATT

using a statistical encoder, where:

• ‘0’ is a special character for indicating the match description,
• ‘1’ means the match is found with a reverse complementary read (‘0’ otherwise),
• ‘20’ stands for the length of the common substring,
• ‘4’ represents the starting position (offset) in the earlier matched read,
• ‘15342’ is the difference between indices of the current and matched reads (distance).

Since there is at most one match per record, the compression quality is improved when the distance is encoded
as shown above, instead of encoding huge distances in bytes in a raw sequencing file.

The encoding stage is performed during the last reading iteration of the input file. The algorithm reads DNA
sequences nucleotide by nucleotide and compresses every non-matched nucleotide with the DNA model. If a
match is encountered, a series of additional models is being engaged. The special symbol ‘0’ is still encoded
with the DNA model. Every next field needs a separate model (see Fig. 1). The last field – the distance from
the reference read – is encoded even with four independent models (dist1–dist4), one for each byte representing
its value.

3.3. Score compression

The values representing quality scores also possess some properties, which, when rightly exploited, lead to
improving compression quality. Actually, the quality score at ith position is usually close to value at position
i − 1 [13]. This observation is, among others, applied in Quip [12], where the differences between neighboring
scores are encoded. We exploit this property by the use of the 3rd order statistical model for direct values, where
probability of ith score depends on three preceding values (at positions i− 1, i− 2 and i− 3) (see Fig. 2). This
approach, realized by our implementation of the statistical models and the range encoder [22], allowed us to
improve the results in comparison to the approach of encoding differences. As nucleotide quality scores usually
degrade with growing indexes, the context of the statistical model is reset at the beginning of each line. This
concept ensures that the probability of a value at the first position in a line is independent of values at the end
of the preceding line.

4. Results

The proposed algorithm, FastQComp, was encoded in the standard C++ programming language (C++11) and
compiled by GCC–4.9.2. Moreover, the source code management system Git was used to support non-linear
team workflow.

In order to validate quality and time efficiency of our solution, we performed a computational experiment
using publicly available files coming from six sequencing experiments as shown in Tables 2 and 3. Table 2
contains our basic dataset, while Table 3 presents an extension of the dataset where larger FASTQ files origina-
ted from other species are considered. The latter files were used in additional tests with specialized compressors
only.

356 M. CHLOPKOWSKI ET AL.

0000024582: AC GTCGTTTGGCGCCCTTGGTC GATT

0000009240: GAAGGACCAAGGGCGCCAAACGACAA

i = Δ

Encode nucleotide
using DNA model

Increment i by length

YES

NO

NO

YES

match length = 20
distance

Statistical
encoding

Start

End

match length = 20

offset = 4

Δ = 2

Statistical
encoding

LZ style
encoding

Read nucleotide
from position i+1

Increment i by 1

End of line

thEncode 4 distance byte
using dist4 model

rdEncode 3 distance byte
using dist3 model

ndEncode 2 distance byte
using dist2 model

stEncode 1 distance byte
using dist1 model

Encode offset
using offset model

Encode match length
using length model

Encode direction (0/1)
using RC model

Encode 0’
using DNA model

’

Set i to 0

Figure 1. Encoding a read on the basis of the match information.

FastQComp was compared to other specialized FASTQ compressors: Quip [12], SCALCE [8], and the latest
version of DSRC [15]. All programs were executed in the following modes for best possible quality of lossless
compression:

• dsrc2 c -d3 -q2 -b1024
• quip -a
• scalce -bin -T8

It should be mentioned, that SCALCE does not offer quite lossless compression, because it discards additional
information from identifier lines (a part after the gap) and does not preserve the original order of input records –
the records are reordered to improve the compression ratio. Nevertheless, it is present here, because the remaining
information is strictly encoded and the program is very efficient.

HIGH-ORDER STATISTICAL COMPRESSOR FOR LONG-TERM STORAGE OF DNA SEQUENCING DATA 357

BBBBCCCC?<A?BC?7@@???????DBBA@@@@A@@

context length = 3

???? 4

???D 1
....

???@ 0
???A 0
???B 0
???C 0

@@@@ 1
@@@A 1
....
@@A@ 1
....
@A@@ 0
....

BBBB 1
BBBC 1
....
BBCC 1
....
BCCC 1
....

+1=1

Figure 2. Counting scores for the 3rd order model construction.

Table 2. Dataset A: raw FASTQ files.

File No. File name Source Size [MB]

1 ERR022075 1 Escherichia coli [DDBJ] 6789
2 ERR022075 2 6876
3 SRR065390 1 Caenorhabditis elegans [ENA] 8411
4 SRR065390 2 8411
5 SRR359032 1 Metagenomic DNA [DDBJ] 5362
6 SRR359032 2 5362
7 SRR027520 1 Homo sapiens [1000 Genomes] 4586
8 SRR027520 2 4586

Table 3. Dataset B: large raw FASTQ files.

File No. File name Source Size [MB]

9 ERR268195 1 Picea abies [DDBJ] 23 188
10 ERR268198 1 28 007
11 ERR268210 1 26 867
12 SRR327341 1 Mus musculus [DDBJ] 27 438
13 SRR328541 1 16 685
14 SRR329036 1 17 562

In the comparison, general-purpose compressing tools have been also involved, since they are commonly used
in practice by biologists and bioinformaticians. We considered the following tools: gzip v. 1.3.12, bzip2 v. 1.0.5,
and 7-zip (64) v. 9.20, that were also executed with parameters allowing for best possible compression ratio.
The tests were performed on Linux server with Intel Xeon X5670 CPU @2.93 GHz and 42 GB RAM.

The results of the comparison are presented in the following tables. Table 4 contains the values of compression
ratio obtained for dataset A, where the overall ratio is calculated as the sum of the sizes of all compressed files

358 M. CHLOPKOWSKI ET AL.

Table 4. Comparison of compression ratio (dataset A).

File No. FastQComp SCALCE Quip DSRC 2.0 7-zip bzip2 gzip

1 10.51% 11.09% 11.52% 16.94% 17.09% 22.62% 27.38%
2 11.60% 12.24% 11.99% 17.74% 18.25% 23.73% 28.60%
3 11.64% 13.27% 16.00% 17.03% 21.31% 22.50% 27.18%
4 12.20% 13.79% 16.37% 17.35% 21.64% 22.85% 27.54%
5 12.64% 13.02% 12.99% 17.89% 18.57% 24.09% 28.86%
6 13.20% 13.50% 13.54% 18.47% 19.16% 24.72% 29.66%
7 22.37% 23.68% 22.24% 22.82% 28.51% 29.25% 34.75%
8 22.83% 24.19% 22.73% 23.36% 29.25% 29.99% 35.62%

Overall 13.84% 14.86% 15.51% 18.52% 21.24% 24.45% 29.36%

Table 5. Comparison of compression time [s] (dataset A).

File No. FastQComp SCALCE Quip DSRC 2.0 7-zip bzip2 gzip

1 1135 169 86 62 2702 757 1531
2 1246 178 85 62 2817 780 1439
3 2449 279 95 87 3395 832 2398
4 2318 278 93 93 3667 804 2299
5 1089 157 459 73 2197 582 888
6 1127 161 460 69 2208 600 978
7 1996 193 337 80 2038 487 722
8 1960 196 348 78 2073 546 658

Average 1665 201 246 76 2637 674 1364

Table 6. Comparison of decompression time [s] (dataset A).

File No. FastQComp SCALCE Quip DSRC 2.0 7-zip bzip2 gzip

1 719 117 555 68 150 297 59
2 746 120 556 71 155 339 69
3 1024 163 702 84 194 373 78
4 1138 168 698 85 207 372 81
5 580 92 456 65 126 245 53
6 631 93 455 64 129 246 54
7 858 101 398 74 147 248 47
8 857 106 403 73 150 253 50

Average 819 120 528 73 157 297 61

divided by the sum of the sizes of all raw files. Processing time, counted as the wall time elapsed during
computations, is shown in Tables 5 and 6.

FastQComp provides the best compression ratio for six greatest files, for two smallest ones Quip achieved
slightly better outcomes. The latter files appeared to be less compressible regardless of a program used. The
overall compression ratio falls below 14% for FastQComp only and it is over 1% higher compression quality
than the one of SCALCE. Let us recall, that SCALCE does not offer a “truly” lossless compression and that
favorizes it in terms of the output size. In practice, the results mean that using FastQComp to store this small

HIGH-ORDER STATISTICAL COMPRESSOR FOR LONG-TERM STORAGE OF DNA SEQUENCING DATA 359

Table 7. Comparison of compression ratio (dataset B).

File No. FastQComp SCALCE Quip DSRC 2.0

9 14.58% 14.89% 15.19% 16.62%
10 14.94% 15.31% 15.60% 17.05%
11 15.55% 15.93% 16.14% 17.60%
12 7.81% 8.48% 9.07% 9.71%
13 11.42% 11.56% 15.59% 16.92%
14 12.14% 12.72% 16.20% 17.25%

Overall 12.83% 13.24% 14.43% 15.65%

set of FASTQ files leads to saving 0.5 GB of disk space in comparison to SCALCE and 0.8 GB comparing to
Quip. In comparison to bzip2 and gzip, it is 5.2 and 7.6 GB of saved space for the considered files, respectively.

The compression time of our algorithm is significantly higher than the time needed by other FASTQ com-
pressors, but comparable to processing times of the general-purpose ones. As one can see, the programs coped
differently with particular files. Files 1–4 appeared to be much easier (in terms of time) for Quip than files 5–8,
and the other way round for gzip. Although the average time obtained for gzip is lower than for FastQComp,
the latter program processed files 1–2 faster. The results of decompression shown in Table 6 complete the
comparison.

Considering decompression time, gzip worked most efficiently, but DSRC definitely wins the comparison of
the total processing time. The difference between FastQComp and other specialized compressors, especially
Quip, is now much more acceptable than the corresponding difference of compression times. Summing up
the average compression and decompression times, FastQComp worked about three times longer than Quip.
However, FastQComp is still cost-effective in terms of a long-term data storage, to which purpose it was designed.
This aspect is discussed in Section 5.

Additional tests were performed for specialized compressors only, because the general-purpose ones proved to
be far behind them (concerning compression ratio). Larger FASTQ files originated from other species (Tab. 3)
were used in these tests, and the resulting compression ratio is presented in Table 7.

The ranking of the programs driven by the overall compression ratio is preserved with reference to the results
shown in Table 4. Particular files differ in the content and, as a result, in the ratio, but for every file the ranking
of the programs stays the same.

5. Simulation of costs of long-term data storage

Let us assume power cost at $0.2 per KWh, power consumption equal to 1000 W (which is far from the real
consumption, especially for server systems) and storage cost at $0.125 for 1 GB per month (according to [16]).
The resulting cost simulation is presented in Tables 8 and 9. Power consumption during compression is taken
into account and added to the cost of the first year of storage.

With only a few files gathered in the considered dataset, the savings are not so impressive, but when we
consider a 5000 times larger database of an estimated overall size 240 TB, they become the real issue.

6. Conclusions

The usage of data storage space is a very important measure when it comes to long-term storage of data from
high-throughput DNA sequencing experiments. We have shown that it is profitable to minimize the compression
ratio even at the cost of much longer processing, which is performed once for a FASTQ file. Our algorithm,
FastQComp, achieved better compression ratio than other compressors specialized for FASTQ files: DSRC, Quip
and SCALCE. Our further studies are focused on a deep parallelization of the algorithm, including GPGPU

360 M. CHLOPKOWSKI ET AL.

Table 8. Total cost of first year of storage calculated for dataset A.

Data Compression Compression Storage cost Total cost for
size [GB] time [h] cost [$] per year [$] first year [$]

Raw data 49.20 0.00 0.00 73.80 73.80
FastQComp 6.81 3.70 0.74 10.22 10.96
SCALCE 7.31 0.45 0.09 10.97 11.06
Quip 7.63 0.55 0.11 11.45 11.55
DSRC 2.0 9.11 0.17 0.03 13.67 13.70
7-zip 10.45 5.86 1.17 15.67 16.84
bzip2 12.03 1.50 0.30 18.04 18.34
gzip 14.45 3.03 0.61 21.67 22.28

Table 9. Simulation of costs of 10 years storage of FASTQ files. The basic dataset is composed
of files specified in Table 2 (dataset A). The overpayment in the last column is related to
FastQComp.

1 dataset 5000 datasets

Cost [$] % of FastQComp Cost [$] Overpayment [$]

Raw data 738.03 717% 3 690 148 3 175 673
FastQComp 102.90 100% 514 475 —
SCALCE 109.78 107% 548 877 34 402
Quip 114.56 111% 572 817 58 342
DSRC 2.0 136.69 133% 683 468 168 993
7-zip 157.90 153% 789 476 275 001
bzip2 180.71 176% 903 555 389 080
gzip 217.29 211% 1 086 473 571 998

processing, in order to reduce the processing time in a significant way. We will refer to some of our ideas of
dictionary construction on CUDA from [3].

The time optimization of the algorithm can be driven by nature of the data being processed. For every
data type, namely the sequence identifier, the sequence itself and the quality score line, a separated thread can
be used. This approach is very intuitive, but does not ensure a uniform load balancing. Actually, the sizes of
a sequence and its score line are equal, but much greater than the identifier’s length. This brings the expected
speedup close to 2, even for three threads, regardless of a computing environment. Thus, we are currently working
on the optimization driven by available resources of a computing environment: the number of cores, amount of
RAM, etc. To fully exploit a multicore infrastructure, we will create a pool of processing threads, where every
thread will process a particular set of reads (a block). The number of threads will depend on the number of cores
and the block size will depend on the currently available RAM. All lines describing a particular read, in the
appropriate order, will be assigned to the same thread. We plan two additional specialized threads for reading
and splitting the input file into blocks, and for storing compressed blocks in the output file, respectively.

Solutions implemented in FastQComp can be applied not only on the ground of pure compression, but also in
the process of DNA sequencing or resequencing, which could gain advantage from the direct usage of compressed
data [2,19]. Nowadays, one of the main challenges in bioinformatics is an efficient processing of huge data volumes
produced by biotechnological instruments. The information volume often exceeds the abilities of bioinformatics
software. The possibility of direct access to compressed files or the usage of packed data structures is a way to
tackle the problem and another subject of our studies.

HIGH-ORDER STATISTICAL COMPRESSOR FOR LONG-TERM STORAGE OF DNA SEQUENCING DATA 361

References

[1] G.R. Abecasis, D. Altshuler, A. Auton, L.D. Brooks, R.M. Durbin, R.A. Gibbs, M.E. Hurles and G.A. McVean, A map of
human genome variation from population-scale sequencing. Nature 467 (2010) 1061–1073.

[2] J. Blazewicz, M. Bryja, M. Figlerowicz, P. Gawron, M. Kasprzak, E. Kirton, D. Platt, J. Przybytek, A. Swiercz and
L. Szajkowski, Whole genome assembly from 454 sequencing output via modified DNA graph concept. Comput. Biol. Chem.
33 (2009) 224–230.

[3] M. Chlopkowski and R. Walkowiak, A general purpose lossless data compression method for GPU. J. Parallel Distrib. Comput.
75 (2015) 40–52.

[4] G. Cochrane et al. Facing growth in the European Nucleotide Archive. Nucleic Acids Res. 41 (2013) D30–D35.

[5] P.J.A. Cock, C.J. Fields, N. Goto, M.L. Heuer and P.M. Rice, The Sanger FASTQ file format for sequences with quality scores,
and the Solexa/Illumina FASTQ variants. Nucleic Acids Res. 38 (2010) 1767–1771.

[6] S. Deorowicz and S. Grabowski, Compression of DNA sequence reads in FASTQ format. Bioinform. 27 (2011) 860–862.

[7] S. Deorowicz and S. Grabowski, Data compression for sequencing data. Algorithms Mol. Biol. 8 (2013) 25.

[8] F. Hach, I. Numanagic, C. Alkan and S.C. Sahinalp, SCALCE: boosting sequence compression algorithms using locally con-
sistent encoding. Bioinform. 28 (2012) 3051–3057.

[9] D.A. Huffman. A method for the construction of minimum-redundancy codes. Proc. of the IRE 40 (1952) 1098–1101.

[10] Inc. Illumina, CASAVA v1.8 changes. [on-line] http://support.illumina.com/documentation.html, January (2011).

[11] Inc. Illumina, BaseSpace user guide. [on-line] http://support.illumina.com/documentation.html, May (2013).

[12] D.C. Jones, W.L. Ruzzo, X. Peng and M.G. Katze. Compression of next-generation sequencing reads aided by highly efficient
de novo assembly. Nucleic Acids Res. 40 (2012) e171.

[13] C. Kozanitis, C.T. Saunders, S. Kruglyak, V. Bafna and G. Varghese. Compressing genomic sequence fragments using SlimGene.
J. Comput. Biol. 18 (2011) 401–413.

[14] M. Nelson. [on-line] http://marknelson.us/1991/02/01/arithmetic-coding-statistical-modeling-data-compression/.

[15] L. Roguski and S. Deorowicz, DSRC 2 - industry-oriented compression of FASTQ files. Bioinform. 30 (2014) 2213–2215.

[16] D.S.H. Rosenthal, D. Rosenthal, E.L. Miller, I. Adams, M.W. Storer and E. Zadok, The economics of long-term digital storage.
In The Memory of the World in the Digital Age: Digitization and Preservation, September (2012).

[17] D. Salomon, Data Compression: The Complete Reference. With contributions by Giovanni Motta and David Bryant. Springer,
London (2007).

[18] C.E. Shannon, A mathematical theory of communication. The Bell Syst. Tech. J. 27 (1948) 379–423, 623–656.

[19] A. Swiercz, B. Bosak, M. Chlopkowski, A. Hoffa, M. Kasprzak, K. Kurowski, T. Piontek and J. Blazewicz, Preprocessing and
storing high-throughput sequencing data. Comput. Methods Sci. Technol. 20 (2014) 9–20.

[20] Y. Tateno, T. Imanishi, S. Miyazaki, K. Fukami-Kobayashi, N. Saitou, H. Sugawara and T. Gojobori, DNA Data Bank of
Japan (DDBJ) for genome scale research in life science. Nucleic Acids Res. 30 (2002) 27–30.

[21] T.A. Welch. A technique for high-performance data compression. Computer 17 (1984) 8–19.

[22] I.H. Witten, R.M. Neal and J.G. Cleary, Arithmetic coding for data compression. Commun. ACM 30 (1987) 520–540.

[23] J. Ziv and A. Lempel. A universal algorithm for sequential data compression. IEEE Trans. Inform. Theory 23 (1977) 337–343.

[24] J. Ziv and A. Lempel, Compression of individual sequences via variable-rate coding. IEEE Trans. Inform. Theory 24 (1978)
530–536.

http://support.illumina.com/documentation.html
http://support.illumina.com/documentation.html
http://marknelson.us/1991/02/01/arithmetic-coding-statistical-modeling-data-compression/

	Introduction
	General concept behind compression of sequencing data
	The algorithm
	Sequence ID compression
	Reads compression
	Score compression

	Results
	Simulation of costs of long-term data storage
	Conclusions
	References

