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ABSTRACT 
 
Experimental co-expression data and protein-protein interaction networks are 
frequently used to analyze the interactions among genes or proteins. Recent studies 
have investigated methods to integrate these two sources of information. We propose 
a new method to integrate co-expression data obtained through DNA microarray 
analysis (MA) and protein-protein interaction (PPI) network data, and apply it to 
Arabidopsis thaliana. The proposed method identifies small subsets of highly 
interacting proteins. Based on the analysis of the basis of co-localization and mRNA 
developmental expression, we show that these groups provide important biological 
insights; additionally, these subsets are significantly enriched with respect to KEGG 
Pathways and can be used to successfully predict whether proteins belong to known 
pathways. Thus, the method is able to provide relevant biological information and 
support the functional identification of complex genetic traits of economic value in 
plant agrigenomics research. The method has been implemented in a prototype 
software tool named CLAIM (CLuster Analysis Integration Method) and can be 
downloaded from http://bio.cs.put.poznan.pl/research_fields. CLAIM is based on the 
separate clustering of MA and PPI data; the clusters are merged in a special graph; 
cliques of this graph are subsets of strongly connected proteins. The proposed method 
was successfully compared with existing methods. CLAIM appears to be a useful semi-
automated tool for protein functional analysis and warrants further evaluation in 
agrigenomics research. 
 
 
 
 
INTRODUCTION  
The analysis of gene expression profiles derived from DNA microarray analysis (MA) or 
RNA-seq experiments is a popular approach to the search for genes involved in 
specified pathways, developmental stages or resistance to stress and pathogens. 
Moreover, the correlations between the expression profiles of individual genes are 
commonly used to infer functional relationships among them, under the assumption 
that two transcripts sharing a common expression profile are involved in common tasks 
(among others: Heyer et al., 1999; Stuart et al., 2003; Arisi et al., 2011). Similarity of 
the expression profiles of two genes in the sample space is usually calculated with 
correlation measures, such as the Pearson correlation coefficient (McShane et al., 
2002; Eisen etal., 1998). The correlation matrix can then be analyzed with clustering 
methods, or it can be used to generate a co-expression network where nodes represent 
genes and are connected with arcs associated with the value of their correlation. On 
such a network additional graph-based analysis can be conducted, such as the search 
for strongly connected components, cliques, or special nodes (e.g., hubs of the 
network).  
 
The information derived from a set of gene expression experiments can be extremely 
valuable, depending on the levels of interest and quality of the experiments.  However, 
the post-genomic era is marked by the rapid accumulation of other genomic resources 
as well: the whole genome sequences of many organisms, proteomic, metabolomics, 
epigenomic and interactomic data, to name but a few. The need for data integration is 
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a by-product of this increasing availability of large experimental data that are obtained 
and globally shared at a decreasing cost. Combining data from different steps of the 
expression of genomic information may be helpful in uncovering gene functions and 
regulatory mechanisms in the biological systems. Today’s agricultural genomics 
(agrigenomics) research focuses on the use of genomic technologies for crop and 
breedstock improvement, increasing resistance towards disease and infection, 
optimizing plant yield, as well as aiding their use in biofuels or pharmacy. However, 
priority agronomic traits are often genetically complex and interact with the 
environment. It is therefore highly desirable to combine various types of phenotypic 
analyses in order to extract additional information from the data and to increase 
precision in the marker discovery and association studies. Integration methods also 
allow for supporting analysis of a species of interest with functional data obtained for 
model organisms (De Bodt et al., 2009). 
 
The two data sources that so far have been most commonly integrated for meta-
analysis are the co-expression (mainly MA) data and protein-protein interaction (PPI) 
network data. A variety of methods combining these two datasets have been proposed. 
One of the main references in this field is the work described in Ulitsky and Shamir 
(2007), proposing an approach based on the search for clusters with high similarity in 
the MA data which are, at the same time, connected in the PPI network. The method, 
named MATISSE, has been widely used ever since, and several interesting biological 
results have been derived from it. The same authors also proposed a variation of their 
method (CEZANNE (Ulitsky and Shamir, 2009)) where, instead of a condition of simple 
connectivity in the PPI, a confidence score is used to weight the information contained 
in the PPI. Differently, in Tornow and Mewes (2003), the proposed method searches for 
modules in the protein interaction network with the superparamagnetic approach, and 
next evaluates the correlation strength in the gene expression. Based on the 
distribution of the correlation strength, the authors compute the probability that the 
observed strength is derived from random coincidence. In Pavlidis et al., (2002), the 
authors considered the problem of the classification of genes into functional groups 
according to gene expression and phylogenetic profiles with the SVM method. They 
investigated three different fashions of integration of the two data sources: before the 
classifying method, in between, and after the classification. In Shiga et al., (2007), a 
method was proposed where the integration between the co-expression and PPI is 
based on a probabilistic clustering model. In Peña-Castillo et al., (2008), the focus was 
directed towards the discovery of gene functions; a large body of mouse and human 
functional genomic data was assembled and analyzed by several teams of scientists 
using machine learning methods, showing that predictions of good quality can be 
obtained with a combination of different classifiers for a large portion of Gene 
Ontology (GO) terms. Among many interesting contributions, the authors confirmed 
that significant improvements can be obtained when co-expression data and PPI 
networks are integrated. In De Bodt et al., (2009), the adopted method is based on the 
identification of clusters and on the analysis of their conservation in the different 
species. The co-expression information was thus reinforced with co-localization and the 
similarity of its biological role. Wu et al. (Wu, 2012) also showed that the integration of 
gene expression and PPI networks provides important information for gene 
prioritization; in their study they proposed a computational method for the integration 
and successfully applied it to several breast cancer and lung cancer datasets. 
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A growing number of reports highlight the importance of biological data integration in 
a broader context and address this problem with various computational strategies. In 
Rogers et al., (2008), the authors combined transcriptomic and proteomic data to 
estimate the relationships between the mRNA and protein accumulation profiles in 
human breast cell lines. The adopted method is based on probabilistic clustering. An 
algorithm based on simultaneous clustering of multiple networks was proposed in 
Narayanan et al., (2010), to identify clusters according to different types of information. 
Li et al. (Li, 2012) constructed a dynamic PPI network, based on PPI data and a series of 
time-sequenced gene expression data; Wong et al. (Wong, 2012) proposed a very 
powerful method to extract information on protein functions from a large cross-
organism compendium of functional predictions and networks.  
 
The variety of emerging tools and lack of consensus over different approaches in this 
developing field confirm the importance of improving the methods that integrate 
different information sources. Nevertheless, an interesting debate is ongoing, related 
to the reliability that can be granted to biological conclusions derived from large-scale 
association studies, such as co-expression networks and PPI. A representative sample 
of this debate can be found in the work of Gillis and Pavlidis (2011, 2012). Here 
important considerations on the meaning of connections in gene networks are 
provided. In these two papers the authors challenged the so-called guilty-by-
association principle (GBA) from different points of view. First, they claimed that the 
dominant information in gene interaction networks is essentially contained in direct 
connections between pairs of genes, providing experimental evidence based on both 
MA co-expression and PPI networks (Gillis and Pavlidis, 2011); besides, they showed 
that the aggregation of different co-expression networks obtained in different 
experiments may improve gene function predictions, and that the integration of the co-
expression and PPI network improves predicting power, the latter being in agreement 
with Peña-Castillo et al., (2008). On the other hand, it has been shown how a very little 
subset of edges that satisfy certain properties (critical and exceptional edges) can 
dramatically affect the whole structure of the network and the conclusions that can be 
drawn from it based on the GBA principle (Gillis and Pavlidis, 2012). Also this paper 
seems to suggest the use of the integration of different data sources finalized to the 
identification of a small and compact set of interactions that may represent the 
essential information in a very large network. 
 
The approach proposed in this paper adopts a particular technique to integrate the co-
expression and PPI data. Its originality is to be found in the fact that the two networks 
are equally important in the process: both networks are repeatedly clustered according 
to their own metrics, and then the results of these clusterings are combined into a new 
graph, whose fully connected components (cliques) are analyzed. We named it CLAIM 
(Cluster Analysis Integration Method). It provides the cliques together with a measure 
of their strength and of their robustness with respect to the “noise” that may have 
been generated in the experiments and in the clustering process.  
The main rationale of this method is that really similar proteins will fall into the same 
cluster regardless of the clustering parameters adopted and of the network used. The 
robustness measure, later referred to as “level”, represents exactly the convergence of 
the results w.r.t. to the sources of variation represented by the experiments, the 
samples, and the algorithm used. 
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CLAIM is designed to discover subsets of proteins that appear to be co-regulated by 
important processes associated with the studied organisms and with the experimental 
conditions; for this reason, we test the results of our method in their relation to known 
pathways, under the assumption that our cliques are interesting if they are enriched 
with respect to particular pathways. An additional step consists in using the 
information contained in the cliques as a method to associate new proteins with a 
known pathway. Such a potential role of our cliques is tested with a blind leave-one-out 
test. A final test of validity for our approach is based on the comparison with other 
integration methods. The tests have been run on Arabidopsis thaliana (hereafter, 
Arabidopsis) datasets, a model organism widely studied, with a genome of 135 Mbp 
and approximately 25,000 genes. Biological analysis of CLAIM-derived cliques reveals 
the co-localization and convergence of the mRNA developmental expression profiles of 
clique elements, thereby providing interesting and sound interpretations of our results. 
 
 
MATERIALS AND METHODS 
Co-expression (MA) data 
Affymetrix chip data for time-course transcriptome analysis of Arabidopsis roots, 
exposed to salinity stress (Dinneny et al.,, 2008), were used in this study. Normalized 
data were retrieved from the GEO database (GDS3216). Relative gene expression at 
each treatment time point (0.5h, 1h, 4h, 16h and 32h, versus 0h) was assessed with the 
R/limma package (Smyth, 2005). A set of 3,943 differentially expressed genes was 
selected for further analysis using an F-p value threshold set to 0.05. The Pearson 
correlation coefficient ρij was computed for each couple of genes i and j. We assumed 
that genes showing a large and positive Pearson coefficient (close to 1) are considered 
strongly related, while 0 indicates the absence of a correlation, and large negative 
coefficients (close to -1) indicate a strong negative correlation. The Pearson correlation 
coefficient was converted into a distance that reached its minimum when genes had 
the same profiles, and increased as the difference in the profiles increased. We used 
the measure (1-Pearson correlation coefficient) referred to as the Pearson Correlation 
Measure (PCM) (McShane et al., 2002) of two genes:  
 

 PCM(i,j)=PCM(j,i)=1-ρij, where PCM(i,j):N x N →[0,2]. 
 
Protein-Protein Interaction (PPI) data 
Available information on PPI (Arabidopsis Interactome Mapping Consortium, 2011) 
containing binary interactions between 4,866 proteins was used. Paths of infinite 
lengths were removed by considering only the first connected component, whose 
resulting diameter was equal to 13. On such a sub-network the shortest paths matrix 
among all pairs of nodes was computed by the implementation of the Floyd-Warshall 
algorithm (Lawler, 2001). We defined SPM(i,j) as the Shortest Path Measure of the 
distance between proteins i and j in the network, made equal to the length of any of 
the shortest paths between the two proteins. We assumed the network was undirected 
and thus we obtained  
 

SPM(i,j) = SPM(j,i) = shortest path between i and j, where SPM(i,j): N x N →[0,13]. 
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The intersection of the MA and PPI sets resulted in 694 elements. Given that genes and 
proteins are in a one-to-one relation in the working set, in the following we refer to 
these elements simply as proteins. 
 
Clusterings  
A k-means algorithm (Hartigan, 1975; MacKay, 2003) was used to cluster genes with 
respect to various distances. We use as features for each gene its distance/similarity 
measure from all the other genes. For CLAIM, PCM and SPM distances were used in 
separate clusterings and the algorithm was run for different values of k ranging from 5 
to 30, in increments of 5. In the clusterings based on PCM, we indicated with M5 the 
array representing the results for k = 5, with M10 those for k = 10, and so on, up to M30. 
Analogously in the clusterings based on SPM, the respective arrays were indicated with 
S5,…, S30. For each k-means run, 50 different random initial seeds were considered; 
then, the best clusterization according to a standard clustering quality measure was 
selected. For weighted clustering five different new measures were obtained as linear 
combinations of normalized SPM and PCM with different weights, as reported below: 
 

W( δ) = δ (SPM) + (1 - δ) (PCM) 
 
for δ = 0, 0.25, 0.5, 0.75, 1. Trivially for the extreme values of δ (0 and 1) we obtained 
exactly PCM and SPM respectively, and for δ equal to 0.5 we obtained a fair 
combination of the two measures (we referred to this measure as the CO-CLUSTER 
(Hanisch et al., 2002)).  
 
Cliques 
Given a graph G = (V,E), a clique C in G is a subset of its nodes such that each pair of 
nodes in C is connected by an edge in E. When analyzing a graph G, one is typically 
interested in finding the largest or maximal cliques of G, or to know how many cliques 
of a given size are present. Maximal cliques were identified using the igraph R-Library 
software, which provides a robust implementation of the maximal clique algorithm 
(Csardi and Nepusz, 2006).  
 
Synthesis of Clusterings: the H-graphs and the H-cliques 
From Mi and Sj we built graph Gi,j = (V, Eij) where the node set V contains all the 694 
proteins, and an edge exists between two nodes if they fall into the same cluster in 
both Mi and Sj. We restricted the construction of Gi,j only to those cases where the 
number of clusters in Mi and Sj was sufficiently large, by choosing only those pairs (i,j) 
for which (i × j) ≥ 51 (excluding couples: (5, 5), (5, 10) and (10, 5)). The choice of this 
threshold was motivated by the fact that the higher the number of clusters, the 
stronger the relationship is between two proteins that belong to the same cluster in 
both Mi and Sj. When i and j are both small, the co-presence in the same cluster would 
have been much less significant than in the case when i and j are large. Imposing this 
restriction, we obtained 33 different graphs Gi,j. Given p = 1, 2, …, 33, we defined a new 
graph Hp whose nodes were the same as those of any Gi,j, and an edge between two 
nodes (i.e., proteins) is present only if that edge is present in at least p of the 33 Gi,j 
graphs. 
For each p, we then identified the maximal cliques in Hp and we referred to these 
cliques as H-Cliques. We defined the level of a H-Clique as follows: it has level 1 if it is 
found in all 33 Gi,j graphs; it has level 2 if it is found in 32 of them - and so on - down to 
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level 33, which can be associated with the least relevant cliques. Cliques extracted from 
the Hp (p = 1, ..., 33) graphs can be ordered according to their level and their size (the 
number of nodes that compose them). From the definition, it clearly follows that a H-
Clique of level 1 is also a H-Clique of level 2, 3, ..., 33; in other words, proteins that 
belong to a clique of level 1 are proteins that are clustered together according to both 
PCM and SPM in all the considered clusterings, regardless of the choice of the number 
of clusters used; accordingly, proteins that belong to a clique of level 2 are proteins that 
are clustered together according to both PCM and SPM in all the clusterings considered 
but one, and so on. The computation time of the algorithm is bound by 2 hours on a PC 
desktop i5 dual core CPU with 8GB RAM running Linux Ubuntu 11.10. A scheme of the 
method is represented in Figure 1. 
 
MATISSE analysis 
MATISSE (Ulitsky and Shamir, 2007) version 1.0 was downloaded and used as an 
alternative method for identifying groups of genes with similar functionality. From 
empirical tests we have observed that Matisse  favours larger clusters with respect to 
CLAIM. Each new gene added to the cluster caused a growth of the cluster’s score 
function proportional to the sum of all positive correlations. There was no significant 
penalty observed for genes which are not strongly related to each other. As a result of 
the analysis, we have obtained a set of large clusters with loosely coupled genes and 
the main constraint of their sizes was a predefined value defining the desired maximal 
size of a cluster. Such clusters resulted in very poor performance in our test of assigning 
genes to pathways. That is why we decided to force smaller clusters by requesting sets 
of genes with a limited maximal size. We have performed Matisse analysis 32 times, for 
a maximal size of clusters varying between 3 and 34 (other changeable parameters 
remained at default). Moreover, the Matisse score of each cluster was explicitly 
normalized by the number of maximal possible count of edges in that set of genes. 
Both interventions significantly improved the classifier’s performance. Such clusters 
were similar to those obtained by CLAIM and gave similarly good results in our blind 
test. 
 
Performing enrichment analysis 
The H-cliques were analyzed in terms of their pathway enrichment. Pathway maps 
related to Arabidopsis were downloaded from KEGG (Kanehisa et al., 2006). For each 
clique we computed, using R scripts, the p-value of the hypergeometric test (Lee, 2010) 
for each pathway associated to at least one protein of that clique. The smallest p-value 
was taken into account and associated to each clique. A clique was considered to be 
enriched when it was enriched at least in one pathway, i.e. for at least one pathway the 
hypergeometric test provided a p-value smaller than 0.05. The fraction of enriched 
cliques was computed out of the total number of cliques. Such an enrichment test is 
designed to discount the bias due to randomness and we can assume, provided that a 
sufficiently small p-value as 0.05 is satisfied, that the presence of one or more 
interesting proteins in one of the subsets found by CLAIM cannot be ascribed to chance 
but to the ability of the method. 
 
Pathways Prediction 
KEGG pathway maps for Arabidopsis were used (Kanehisa et al., 2006). We analyzed all 
the selected cliques in terms of their intersection with the pathways, under the 
hypothesis that a protein occurring in a clique that intersects a certain pathway is likely 
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to be involved in that pathway. Under this assumption, we defined a score for each pair 
protein-pathway; the larger the score, the stronger the probability that the given 
protein belongs to that pathway. Given a protein p and a pathway PT, we indicate Np 
cliques containing p with Ci, i=1,…,Np, and then define: 
 

( ) ( )
|C|

PTp,δ|PTC|l=PTp,S
i

i
i

pN

=i

−∩∑ /1
1

 

 
where sum S(p,PT) is over all cliques containing the protein p, li is the level of clique i, 
and δ(p,PT) is equal to 1 if protein p is in pathway PT, and 0 otherwise. The presence of 
δ(p,PT) guarantees that the score is computed without the influence of the protein p, 
which conversely would introduce a bias into the prediction when p belongs to that 
pathway. Prediction is accomplished by assigning a protein to the pathway for which 
the score is above a threshold.  
 
RESULTS 
Identification of sets of related genes (H-Cliques) with CLAIM  
CLAIM integrates co-expression data and PPI data to identify associations among 
proteins. As a case study, we used MA experiments focused on evaluating time-course 
transcriptome changes in Arabidopsis roots under salinity stress (Dinneny et al., 2008). 
The choice of this dataset is directly motivated by our current research interests. Also, 
the early response of Arabidopsis to salt stress (up to 32h, see Materials and Methods) 
manifests in waves of gene expression changes, with only 1.4% of genes being 
differentially expressed across the whole analyzed time period. It therefore provides a 
good test set for the method based on data clustering. For PPI information we turned 
to the Plant Interactome Database (Arabidopsis Interactome Mapping Consortium, 
2011). Currently this is the most comprehensive interactome data source for this 
organism. It contains about 10,900 binary interactions of over 4,800 unique proteins, 
all of them being experimentally identified. The analysis was restricted to the largest 
connected component and further to a set of 694 genes shared between PPI and MA 
(Figure 2). Given that genes and proteins are in a one-to-one relation in the working 
set, in the following we refer to these elements simply as proteins. 
 
The proteins in the working set have been clustered separately according to two 
different distance measures. The first measure was based on the Pearson correlation 
between expression profiles (PCM) and the second was based on the shortest path 
distance between two proteins in the PPI network (SPM). A weighted graph H has then 
been constructed, where two proteins were connected if they belonged to the same 
cluster according to both measures. The clustering algorithms runs have been repeated 
for different values of the parameter that controls the number of clusters.  
A simple example reported in Figure 3 clarifies this procedure. The maximal cliques of 
this graph (H-Cliques) were used to orient biological analysis and to predict the 
pathways to which a protein belongs (see below). 
We wish to highlight that H-cliques represent groups of proteins whose interactome 
topology is suggested by both the PCM and SPM. The cliques are ordered according to 
two parameters: the level — that inversely depends on the weight of edges that define 
the clique — and the size, i.e. the number of nodes that compose it. The level of 
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interest of a clique decreases as its level increases. For the analysis we consider only 
maximal cliques, e.g., cliques that are not contained in any other clique of a larger size.  
As mentioned above, the level of a clique is a measure of its validity and robustness 
w.r.t. not interesting sources of variations, such as those coming from the type of 
distance used, the experiments, the clustering algorithm, and its parameters. This is 
indeed confirmed by control experiments that have been run using randomly shuffled 
distance matrices, where the application of CLAIM resulted in many small to mid-size 
cliques with a very poor level and no clique with a good level. To reinforce this finding 
we also verify that the quality of the clustering significantly worsens on the randomly 
shuffled data, regardless of the number of iterations, the number of clusters, or the 
starting point.  
 
Enrichment of H-Cliques 
The results of CLAIM for the Arabidopsis dataset have been evaluated from different 
points of view. As the first step, in order to test the significance of the identified 
cliques, we evaluated the coherence of the cliques composition with respect to the 
KEGG pathways by performing enrichment analysis. We restricted the analysis to the 
cliques containing at least one annotated protein (n=2,372, out of a total number of 
4,563). 1,679 of those cliques (~71%) turned out to be enriched (p<0.05) according to 
our definition (see Materials and Methods). By limiting the analysis to the cliques with 
a level smaller than 30 (n=564) we found 454 enriched cliques, reaching an enrichment 
percentage of 80%. Additionally, we performed the same analysis with the cliques 
obtained using a weighted combination of the two measures (weighted-clustering) as 
reported in the Materials and Methods section. Weighted-clustering was used as an 
alternative and simple method to extract clusters from the two measures, in order to 
test the ability of our algorithm to integrate the two sources of data. In weighted-
clustering, new distance functions were obtained as convex combinations of the 
normalized values of the PCM and SCM. These new distances were then used to extract 
alternative clusters or sets using the same algorithm (k-means) as for CLAIM. The new 
clusters were evaluated in their pathways’ enrichment and compared with those 
obtained with CLAIM. The percentage of enriched cliques was 48% and 44% for the 
separate clustering of MA and PPI respectively. For CO-CLUSTER (0.5 MA + 0.5 PPI) a 
percentage of 52% was reached and for the two cases 0.25 MA + 0.75 PPI and 0.75 MA 
+ 0.25 PPI a percentage of 42% and 51% was obtained, respectively. The enrichment 
analysis was finally computed for clusters obtained with MATISSE. This method 
searches for clusters with a high similarity in the MA and interconnected in the PPI. The 
choice of MATISSE was motivated by its popularity (162 citations before 2013, 
according to GoogleScholar) and the fact that it has become a usual reference for the 
integration of MA and PPI data. For MATISSE-derived clusters, the percentage of 
pathway enrichment was ~68% (n= 250 enriched clusters out of 366). The results of the 
enrichment analysis related to all the test sets are reported in Figure 4. 
 
 
Pathway prediction power of H-Cliques 
The high correspondence of cliques with the known pathways revealed by GO 
enrichment analysis provides evidence for the biological significance of gene sets 
computed with our method. Besides confirming the validity of our analysis, it provides 
a rationale to assign proteins whose functional roles are unknown to some of the 
known pathways. We have blindly tested the assignment correction against the 
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proteins whose functions have been already described. For this we assumed that we do 
not know the functional class of a protein and we used the CLAIM rule to assign it to a 
pathway. We then verified whether this assignment was correct or not. For each 
threshold of the score function (see Pathways Prediction paragraph in the Materials 
and Methods section), we computed the percentage of correct predictions, and divided 
into true positive (a prediction is a true positive if the protein is assigned to the 
pathway it belongs to), and true negative results (i.e., a protein that does not belong to 
any pathway is not assigned to any pathway). Such experiments are naturally 
summarized by the Receiver Operating Characteristics Curves (ROC curves; Fawcett, 
2006) where the true positive rate is plotted against the false positive rate depending 
on different values of a parameter of the classifier. In this case, the parameter adopted 
was the threshold on the score function: when the score of a protein-pathway pair was 
above the threshold, the protein was assigned to the pathway. A synthetic way to 
establish the value of a classifier from its ROC curve is the Area Under the ROC Curve 
(AUC). The AUC would be equal to 1 if there exists a perfect classifier for at least one 
value of the threshold, while it would equal one half in the case of random classifiers. 
In the ROC curve plotted in Figure 5 (right Panel), we report the true and false positive 
rates over the total number of protein-pathway pairs that can be obtained by 
combining all the proteins present in the H-cliques of CLAIM with all the known 
pathways of Arabidopsis, obtained from the KEGG repository (Kanehisa et al., 2006). 
We point out that the apparent concavity in the curve of between approx. 0.18 and 0.4 
FPR is due to only two values of FPR and that the number of elements that are poorly 
recognized in that portion is very limited. To any extent, this part of the curve is not 
practically relevant as one would not like at all to operate with an FPR larger than 0.15. 
In order to test the pathway predictive power of our method against this acknowledged 
standard, we used the clusters determined by MATISSE for pathway predictions in a 
similar manner as we used the cliques derived from CLAIM. For each of the MATISSE 
clusters we have used the weights provided by the algorithm normalized over the 
dimension of the cluster (used as the reciprocal of the level in the formula provided in 
the Pathways Prediction paragraph, in the Materials and Methods section). We have 
considered only the clusters of a size comparable to those of CLAIM (3 to 30 nodes). 
The reason for limiting the cluster sizes and normalizing the score function was the fact 
that MATISSE’s score favours larger sub-networks. Despite the fact that such an 
approach might be helpful in finding large connected sub-graphs, it does not turn out 
to be effective in finding strong connections between proteins; besides, it would skew 
the analysis. The ROC curve for the MATISSE-based pathway prediction power is 
presented in Figure 5 (left Panel). Although it must be stressed that the results of the 
two methods could not be compared straightforwardly (e.g., the scales of the scores 
and the coefficients in the score formula differed for the two methods), it is interesting 
to point out that the ROC plots show a pathways prediction power for CLAIM surely 
comparable – if not superior – to that of MATISSE; the related AUC, in fact, results in 
0.8837 for MATISSE and 0.9200 for CLAIM. 
 
Biological analysis of H-Cliques 
The information conveyed by the maximal cliques obtained by CLAIM can be used for 
different types of analysis. Cliques of good quality (e.g., with a small value of their 
level) can be analyzed to see if they disclose some biological information of interest 
within the scope of the analysis. Here we have focused on maximal cliques whose size s 
is greater than 2, that count up to 4,563 (see Supplemental Material, Dataset S1– sheet 
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M1). As a starting step, we analyzed some of the smallest and most significant cliques: 
12 cliques of size 3 with a level equal to 1 and 6, represented in Table 1. Their low level 
(≤ 6) guarantees that the proteins belonging to each clique are strictly linked to each 
other and in general fall into the same cluster both in the MA and PPI clusterings. In 
order to check whether the combination of the proteins that fall into a common clique 
reflects their biological relationship, we analyzed their Gene Ontology (GO) annotations 
as well as their expression profiles (on the mRNA level). We compared the proteins’ 
cellular localization, molecular function and the biological processes in which they are 
involved, as listed in the curated TAIR GO annotations (Berardini et al., 2004) 
(Supplemental Material, Dataset S1 – sheet M2). As expected, for proteins with a 
known GO category classification we observed a lot of congruence in their cellular 
localization (cliques: 02 – endomembrane system, 05 - nucleus, 09 – membrane 
system, 10 – (plastid-)membrane and 12 - nucleus) and biological processes (cliques: 02 
- various defence responses, 03 – oxidation-reduction process, 05 – transcription-
related and defence-related, 06 – defence related, 08 – stress response, 11 – stress 
response and 12 – regulation of transcription). This obvious correspondence implies 
that it may be possible to infer the biological annotation of the uncharacterized 
proteins from the GO functions of their clique partners. This assumption was further 
confirmed by analysis of the mRNA developmental expression patterns for each clique. 
The expression profiles reflect the average mRNA levels of each protein at various life 
cycle stages of the Arabidopsis plants. They were calculated with the 
Genevestigator/Condition Search/Development tool by analysis of over 6,500 
Affymetrix gene chip samples from various gene expression experiments (Hruz et al., 
2008) (Supplemental Material, Dataset S1, sheet M4). The correlations between some 
or even all of the clique members are often striking, with the clique 04 being the most 
prominent example. The observed similarities can be seen even more clearly by 
focusing on a particular sample set (in this case on the root expression data only – 
about 600 samples in the Genevestigator database – as the MA data used for cliques 
generation were derived from roots as well (see Supplemental Material, Dataset S1, 
sheet M5)). 
 
Biological analysis of predicted protein-pathway associations 
Considering the high degree of functional similarities observed among proteins 
assigned to a common clique, and the ability of CLAIM to accurately predict protein 
function using GO enrichment analysis information, we turned to using it to predict the 
functional role of proteins for which no pathway was assigned within the KEGG 
repository. We analyzed the computed protein-pathway couples with a score greater 
than 0.2 (for simplicity, in our analysis we did not consider couples associating a protein 
to the general pathway ath01100 - metabolic pathways). A complete list of 160 
computed protein-pathway couples was analyzed, and GO classes were retrieved and 
made available (Supplemental Material, Dataset S1 – sheet M3). The first, second, and 
fourth highest scores were obtained for protein AT2G47400, coupled with the pathways 
ath01064 (biosynthesis of alkaloids derived from ornithine, lysine and nicotinic acid), 
ath00195 (photosynthesis) and ath00960 (tropane, piperidine and pyridine alkaloid 
biosynthesis), respectively. According to TAIR, AT2G47400 is a small peptide which 
belongs to the CP12 gene family, thought to be involved in the formation of a 
supramolecular complex with glyceraldehyde-3-phosphate dehydrogenase (GAPDH) 
and phosphoribulokinase (PRK) embedded in the Calvin cycle. Its targeting to 
chloroplast is well documented and it was reported to be involved in the negative 
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regulation of the reductive pentose-phosphate cycle (Zybailov et al., 2008; Marri et al., 
2005; Marri et al., 2010; Ferro et al., 2010), which is in agreement with our predictions. 
The third highest score was obtained for the couple AT3G21200 – ath00195 – 
photosynthesis. Protein AT3G21200 (PGR7) is coded by a nuclear gene conserved in 
plants, algae and bacteria, yet it has no molecular function assigned. According to 
recent experimental data, it is targeted to chloroplasts. Moreover, the pgr7 gene 
mutation results in lowering of the efficiency of photosynthetic electron transport 
(Ferro et al., 2010), which confirms the correctness of our pathway prediction. 
Assigning a protein to more than one pathway was quite common and fully expected, 
as it is a consequence of the pathway hierarchy. Yet, this multiple assignment can 
provide more confidence for the findings when the pathways are functionally related. 
For example, protein AT2G24550, for which any functional category has not been 
specified until now, has been assigned to three pathways, all related to nucleic acid 
biosynthesis (highlighted in yellow in the Supplemental Material, Dataset S1 - sheet 
M3). It can be noticed that the assignments to pathway ath00195 – photosynthesis, 
were most common (involving 40 various proteins). The MA dataset used in this case 
study consists of genes differentially expressed in the Arabidopsis roots in response to 
salt stress and is highly enriched in chloroplast-related proteins (Dinneny et al., 2008). 
Proteins targeted to these organelles are usually assigned to this – very general – 
pathway, apart from the more specific functional categorization. 
 
 
DISCUSSION 
As anticipated, the integration of different sources of information on genes and their 
products has recently received increasing attention in literature. The main data 
integration approaches and studies differ in the methods they adopt and in the type of 
answers that are sought. In this work we propose CLAIM, a novel approach to the 
couple co-expression and PPI network data that identifies groups of functionally related 
genes/proteins. It has been designed to capture common features of the two sources 
of information by the clique searching approach. The presence of a clique in a special 
graph H, constructed using the results of many runs of a clustering algorithm on each 
data source, guarantees a very robust relationship among the genes/proteins belonging 
to that clique. The analysis was performed on the model plant Arabidopsis; out of the 
694 genes, we selected a total of 4,563 maximal cliques of different size and strength. 
Larger and weaker cliques were more abundant. Nonetheless, the parameter level, 
associated with each clique, represents a further quality measure to select robust 
groups of nodes that exhibit a strong functional relationship. The identification of the 
cliques is a first step that may significantly help to restrict the work of the biologist in 
performing a semi-automated functional analysis and the related annotation process. 
We show that CLAIM exhibits a higher percentage of H-cliques significantly enriched in 
functionally-related genes (p-value of 0.05) with respect to other methods that derive 
clusters or subsets based on the same information. Moreover, using a score function 
derived from the H-cliques, we define a reliable predictor of the association between a 
protein and a pathway. The basic assumption in using CLAIM for pathway prediction is 
that if a protein belongs to a clique and other proteins in that clique are assigned to a 
common pathway, then that protein is likely to belong to that pathway, too. This 
assumption has been validated by blind analysis of the proteins with a known 
functional annotation, testing the ability of the method to assign them to the correct 
pathways. 
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Combining data from various levels of gene expression has shown to support the study 
of processes involving a network of interacting genes, like the plant floral transition (He 
et al., 2010). Also, the integration of data from various levels of genome expression 
may facilitate functional analysis of genes. The fast expanding agrigenomics field 
demands extensive phenotypic data to support the identification of complex genetic 
traits of economic value in plants or animals (Gedil and Rabbi, 2012). In this context, 
the pathway-prediction approach adopted in CLAIM may be of high importance to 
agrigenomics studies. Functional annotation of genes in cultivated plants is mostly 
based on sequence homology-based analyses to model species. At the same time, 
according to The Arabidopsis Information Resource (TAIR), 42% of Arabidopsis protein-
coding genes are not assigned to any GO term within Molecular Function category or 
are classified as “Unknown molecular function”. The same applies to Biological Process 
category. Interestingly, those still functionally uncharacterized genes display extremely 
high variation and are likely to contribute to plant adaptive evolution, as recent large-
scale population sequencing studies revealed (Xu et al., 2011, Cao et al., 2011).  Meta-
analysis of data, utilizing integration methods like CLAIM may therefore help to reveal 
new promising, although less obvious, candidates. As a result, it will reinforce the 
progress of agrigenomics-based crop improvement.  
 
Although the clique-based pathway prediction approach has been designed for CLAIM, 
it can actually be used to derive pathways predictions from any collection of gene sets 
that are supposed to be enriched with respect to pathways, and for which a score 
measure is available. We therefore adopted a similar scoring method to obtain 
pathway predictions from the subsets derived from MATISSE, the tool developed for 
identifying functional modules (Ulitsky and Shamir, 2007). In comparison with MATISSE, 
our method has appeared to achieve better results according to its pathway prediction 
power, as determined from the ROC curve analysis. It must be pointed out that the two 
methods have not been designed for the same purposes; nonetheless, we have tried to 
extract from them and to score analogous information. We also acknowledge that the 
same authors proposed an extension of the method where confidence scores are 
computed on the edges of the PPI network with the use of additional information 
collected from experiments (CEZANNE (Ulitsky and Shamir, 2009)). We have limited the 
actual comparisons with the 2007 version of the method because CLAIM does not use 
the additional information used by CEZANNE and the comparison could suffer from 
that bias. As for the other methods, we note that some of them (Narayanan at al., 
2010; Jung et al., 2010) propose alternative methods for clustering proteins (i.e., 
finding a partition of them) resulting in much larger subsets of proteins than those 
found by CLAIM; besides, they do not exhibit a simple way to control the number of 
subsets that are found and their dimension. Similarly, the interesting work of De Bodt 
et al., (2009) is substantially devoted to improving the PPI of the studied organism, 
rather than finding special small structures based on the pairwise relations between 
proteins. The same considerations apply to the different types of weighted-clustering 
that we have tested. While the enrichment analysis makes perfect sense for comparing 
the methods, the prediction power may be strongly distorted by the different number 
of negative examples that are considered in the different methods. For this reason, it is 
not a straightforward operation to compare the contribution of CLAIM with other 
methods that, in different ways, try to exploit and integrate the co-expression and PPI 
data. Yet it seems that, due to the integration of the MA and PPI data after an 
independent clustering (instead of coupling the data at the beginning as MATISSE and 
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other methods do), CLAIM is more effective in the prediction of protein functions than 
the other methods tested. Also, our algorithm extracts additional information from the 
PPI network, which is the distance between proteins; the use of this at the clustering 
stage had, in our opinion, a visible impact on the outcomes. 
Additional validity of the results generated with CLAIM comes from the analysis of the 
biological meaning of the H-cliques. By simple comparison of the GO annotations of 
proteins assigned to a common clique (in the Biological Process, Molecular Pathway 
and Cellular Compartment categories), we show how interesting biological information 
surfaces from their analysis. Although the PCM clustering process was based on a 
relatively small and specific dataset (the expression profiles of genes in Arabidopsis 
roots subjected to salinity stress, measured at six time points), we were also able to 
demonstrate that genes classified as strongly related according to CLAIM (i.e. falling 
into the same clique of a low level), indeed often display surprisingly congruent 
expression patterns across the whole lifespan of a plant. Due to the satisfactory ability 
to correctly predict the pathway assignment of clique elements in the GO term-
enriched cliques, CLAIM appears to be a useful semi-automated tool for protein 
functional analysis. 
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Table 1. Composition of the 12 “best” cliques of CLAIM according to the level. 

 
Level Size Proteins ID 

  1 3 AT2G24550 AT2G38300 AT3G03000 
1 3 AT1G76520 AT4G22212 AT5G63770 
1 3 AT1G19700 AT1G62180 AT4G02940 
1 3 AT1G23390 AT4G34920 AT5G28770 
1 3 AT1G32640 AT4G37890 AT5G01840 
1 3 AT1G28480 AT4G14060 AT5G11090 
1 3 AT2G02810 AT4G11310 AT5G11650 
1 3 AT3G02140 AT4G11280 AT5G10380 
1 3 AT2G22510 AT2G47770 AT4G28040 
1 3 AT1G64150 AT3G48740 AT5G17170 
6 3 AT1G31280 AT2G40000 AT5G62520 
6 3 AT1G24260 AT3G30530 AT5G39810 
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Figure 1. The flowchart of the computational process. The analysis of Microarray data 
and  PPI  networks  proceeds  in  parallel,  until  the  clusterings  obtained  by  the  two  
different  sources of  information  are  joined  by  the  construction  of  graphs  Gij.  
Then  graphs Hk   are  used  to  represent  aggregated  information  on  the  “weight”  of  
and  edge  throughout  all  graphs Gij ; finally, cliques in Hk  identify subsets of protein 
whose co-regulation behaviour is strongly confirmed. 
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Figure 2. Identification of the core set of genes/proteins. A relevant kernel of 694 
proteins results from the intersection of interesting sets in MA and PPI dataset. 
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Figure 3. An example of the procedure leading to the identification of cliques. Six 
nodes N1, N2 ... N6, and two classes of clusterization D and P are considered. D contains 
two partitions: D2 ( two clusters), and D3 (three clusters). The same stands for P made 
of P2 (two clusters) and P3 (three clusters). In Panel A a table summarizes partitions D2, 
D3, P2, and P3, attributing each node to a cluster. In Panel B four graphs represent each 
couple of partitions belonging to class D and class P. The nodes are always located in 
the same position (labels removed) and each edge in the graph represents a pair of 
nodes falling into the same clusters for both considered partitions. For example, the 
edge linking node 1 to node 2 in the graph D2P3 is due to the presence of node 1 and 
node 2 in cluster labeled 1 in column D2 and to cluster labeled 1 in column P3; in the 
same way the edge linking node 5 to node 6 in the graph D3P3 is due to the presence of 
node 5 and 6 in the cluster 3 in column D3 and in the cluster 3 of column P3. In Panel C 
there is graph H. The weight of an edge in H is the number of graphs DiPj in which the 
considered edge occurs. In the example, the edge linking node 2 to node 3 has a weight 
equal to 2 because it occurs in graph D2P2 and D3P2. In Panel D graph H is represented 
with different values of the level (from 1 to 4; H1,,H2, H3 and H4). We thus have, at level 
1, the clique {1,2}; at level 2 again {1,2}; at level 3 cliques {1,2,3} and {5,6} and at level 4 
cliques {1,2,3}, {4,5} and {5,6}. The best cliques are then {1,2} and {1,2,3}. 
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Figure 4. Enriched clusters w.r.t. to KEGG pathways. Panel A: total number of clusters 
and percentage of enriched ones (p-value ≤ 5%) for 8 different methods. CLAIM results 
are reported leaving out H-cliques of large size (level ≥30). Panel B: Graphic 
representation of the percentage of enriched clusters (p-value ≤ 5%) for the 8 methods. 
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Figure 5. Comparison of predicting power of CLAIM and MATISSE. ROC curves 
represent true positive and false positive rates pair for different values of the decision 
threshold on the classification score (200 intervals from min to max values of 
thresholds). The training set is composed of all protein-pathway pairs where the 
methods produces a score. AUC values are reported over the plots.  
 


