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Abstract. In this article, we describe algorithms and techniques used
in the method ExTREEm for the treedepth decomposition problem. Ex-
TREEm won the heuristic track of the 5th Parameterized Algorithms
and Computational Experiments Challenge (PACE 2020). It searches
for a minimum-height treedepth decomposition of a graph via comput-
ing graph separators. Among concepts that are incorporated into the
approach, we can distinguish a new objective function for evaluating
separators, preprocessing based on finding treedepth decompositions in
cactus subgraphs and on identification of graphlets, five algorithms for
finding separators, a separator minimization method for a refinement of
found separators, and a refinement of an obtained treedepth decompo-
sition by merging techniques of tree rotations. This approach enables us
to quickly obtain low-depth decompositions of very large graphs.
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1 Introduction

In this paper, we provide a description of algorithms of the method ExTREEm,
which is a heuristic approach to the treedepth decomposition problem. The goal
of the problem is to find a treedepth decomposition for a given graph with a
height as small as possible. A treedepth decomposition of a connected graph
G = (V,E) is a rooted tree T = (V,ET ) such that every edge of G connects
a pair of nodes that have an ancestor-descendant relationship in T . A treedepth of
a connected graph is a minimum possible height of its treedepth decomposition.
There are many equivalent notions to treedepth. The most commonly used ones
include the notion of elimination tree of a graph and corresponding elimination
height [14], ordered coloring, vertex ranking [10] and centered coloring [13].

There are many fields where the treedepth decomposition is applicable. One
of them is parallel factorization of sparse matrices using the Cholesky factoriza-
tion method [7]. Elimination trees are also used in routing algorithms such as
the Customizable Contraction Hierarchies algorithm [5], where finding good bal-
anced separators and nested dissection orders is of utmost practical importance,
especially when operating on graphs with millions of vertices. Such routing algo-
rithms are used in many navigating systems, as well as in the field of computer
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games, where shortest paths in a given map graph need to be computed many
times each second. The treedepth notion is also relevant for theoretical reasons,
e.g. in the design of fixed-parameter-tractable algorithms [8].

It was shown that the decision variant of the treedepth problem is NP-com-
plete. There are classes of graphs for which the treedepth problem is solvable
in polynomial time; e.g., it is possible for trees [12] and interval graphs [1].
In general, the construction of a minimum height elimination tree for a large
graph in reasonable time seems to be very unlikely. Therefore, instead of exact
algorithms, heuristics are used to create good decompositions. ExTREEm was
designed for such optimization variant of the problem. It enables us to quickly
find good treedepth decompositions even for very large graphs.

2 Preliminaries

Before we proceed to the description of algorithms, let us fix some natural no-
tations and definitions. For a given connected graph G = (V,E), we denote by
T (G) its treedepth decomposition, by h(T ) we denote height of tree T , and by
root(T ) we denote the root of T . We denote by G\S an induced graph G[V \S],
and by C(G,S) the set of connected components of G \ S. For a ∈ V we de-
fine N(a) = {v ∈ V : {a, v} ∈ E}, and for A ⊂ V we take N(A) =

⋃
v∈A

N(v).

To indicate that a neighborhood is considered in graph H (and not in G), we
use notations NH(a) and NH(A), respectively. We denote by sizen(G) (or |V |)
the number of nodes in G and by sizee(G) (or |E|) the number of edges in G.
For a, b ∈ V we denote by d(a, b) the distance between nodes a and b. For
sets A,B ⊂ V we denote by d(A,B) the distance between sets A and B,
d(A,B) = min{d(a, b) : a ∈ A, b ∈ B}. A subset S ⊂ V such that G \ S
is disconnected is called a separator. If additionally, for every C ∈ C(G,S),
the condition size(C) ≤ b · size(G) holds, where size(C) is either sizen(C)
or sizee(C), then we say that separator S is b-balanced. By balanced we mean
b-balanced, where b is a fixed parameter. Given two sets A,B ⊂ V we denote
GA,B = (A ∪B, {{a, b} ⊂ E : a ∈ A, b ∈ B}).

3 Algorithms

In ExTREEm we search for a treedepth decomposition using a nested dissec-
tion approach1. The algorithm works in iterations, each iteration is executed
independently of the others and with modified parameters. We refer to those it-
erations as main iterations. In each main iteration we apply some preprocessing
to a given graph G. Then, we use a set of different heuristics to create a set of
separators of G. Each of five best (according to a certain criterion) candidates is
further refined. After selecting the best one after the refinement, we recursively
obtain treedepth decompositions for components in C(G,S). Finally, we merge

1 ExTREEm is available at https://doi.org/10.5281/zenodo.3873126
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separator S and the decompositions we found into an elimination tree T (G).
At the end we apply some additional improvements to T (G), trying to further
minimize height of the treedepth decomposition.

3.1 Separator evaluation

There are a few commonly used objective functions used to evaluate separators
(see e.g. [9], [3]). We propose a new approach to evaluate separators, based on
the estimated height of the whole elimination tree.

To assess the quality of a separator S, we need to know values mn(G,S)
and me(G,S) denoting, respectively, the maximum number of nodes and the
maximum number of edges of a graph from C(G,S). Now, let us define

scoren(S) = |S| · 1− βd−
log |V |
log β e

1− β
, where β =

mn(G,S)

|V |
.

We analogously define scoree(S) by taking β = me(G,S)
|E| . Objectives scoren

and scoree are used to quickly estimate a total height of the elimination tree,
assuming that all subgraphs considered in recursive calls will have roughly the

same ratio |S|
sizen(G) , respectively |S|

sizee(G) . Now, we can define the final objective

function used to evaluate the quality of separators:

score(S) = θ · scoren(S) + (1− θ) · scoree(S),

where θ ∈ [0, 1] is a parameter.
For given two balanced (b-balanced) or two unbalanced separators S1 and

S2, we say that S1 is better than S2 if score(S1) < score(S2). Additionally,
a balanced separator is always better than an unbalanced one. The balance
parameter b is modified in every main iteration. Greater values are used to
enable the objective score to find tiny separators that disjoin relatively small
subgraphs from the rest of the graph (as it happens, e.g., in road graphs, see [9]),
whereas smaller values are used mainly to find separators with better balance
at the topmost levels of the decomposition.

More details about objective functions scoren(S) and scoree(S) can be found
in Appendix A.

3.2 Preprocessing

The preprocessing phase works in two steps. The first step consists in detecting
some cactus-subgraphs of a given graph G. This is achieved by repetitively per-
forming a vertex contraction operation (see [5]) on a node of degree at most 2,
unless its neighbors are already connected by an edge. For each such cactus
component, we find a treedepth decomposition using recursively the Articula-
tion Point Separator Creator method (see 3.3). By G1 we denote graph G after
the first preprocessing step.



4 S. Swat, M. Kasprzak

The second step of the preprocessing has two substeps. In the first one we find
an independent set I3 of an induced graph G1[{v ∈ V : deg(v) = 3}] and perform
vertex contraction on each v ∈ I3. In the second substep, we find a maximum
independent set I4 of nodes that are “center nodes” of induced subgraphs of G1

isomorphic to some graphlet from the set {Gi : i ∈ {22, 24, 26, 27, 28, 29}} (ac-
cording to the numeration from Fig.2 of [19]). All nodes in the set I4 have degree
4 and the neighborhood of each of those nodes induces a connected subgraph.
We proceed with set I4 in the same way as with I3. By G2 we denote graph G
after the second preprocessing step. After finding recursively a decomposition of
G2, each node v ∈ I4 is attached to the deepest of its neighbors (in G1), then
we analogously proceed with set I3.

Let us now examine how the preprocessing influences the height of a final
treedepth decomposition T (G). For each removed cactus subgraph, we attach
the root of its corresponding decomposition to the lowest of its neighbors in G.
This way, for each cactus C, the value h(T (G1)) after attaching T (C) increases
by exactly max{0, h(T (C)) − h(T (G1)) + max

v∈N(C)\C
dT (v, root(G1))}. Since the

treedepth decomposition of a cactus graph is of size O(log |V |), for most cac-
tus subgraphs it simply does not cause any increase. Attaching nodes from I3
can increase h(T (G2)) by at most one. The same holds for I4. Hence, we have
h(T (G1)) ≤ h(T (G2)) + 2.

Finding decompositions of detected cacti is done in O(|V | · log |V | time, while
the second preprocessing step works in time O(|E| + |V | · log |V |). The overall
complexity of the preprocessing phase is O(|E|+ |V | · log |V |).

3.3 Separator creation

After the preprocessing, we generate a set of separator candidates using several
heuristics. From that set we select five best ones (with respect to their value of
the objective score) that are further subjected to a refinement process called
minimization. As a final separator we take the best one after the minimization.

Articulation Point Separator Creator In this method, we find separators
that contain only articulation points (cut vertices) of the graph G. At the be-
ginning, we find a set A of articulation points of G using Tarjan’s algorithm
[4] for finding biconnected components. We want to find, for each articulation
point v ∈ A, values mn(G, {v}) and me(G, {v}). To do this, during the depth-
first search we additionally keep track of the number of visited nodes and edges.
Whenever we are processing node v and backtracking from node u such that u
and v do not belong to the same biconnected component, we are able to count
the number of nodes and edges in the component C ∈ C(G, {v}) that contains u.
Hence, for each a ∈ A, we can find values sizen and sizee for every component
in C(G, {a}). It is now easy to obtain values mn(G, {v}) and me(G, {v}).

This method of creating separators is used mainly during the preprocessing
phase, where its complexity is O(|V | · log |V |) for creating a treedepth decompo-
sition for each of the processed cactus-subgraphs.



Heuristic approach to the treedepth decomposition problem 5

BFS Separator Creator Here, we create separators basing on the known fact
that set Dl(B) = {v ∈ V : d(v, u) = l, u ∈ B}, for a given set B ⊂ V , is
a separator in graph G. We propose a modification to this algorithm that makes
it useful in practice, especially in the context of the BFS Separator Minimizer
(see section 3.4), where the algorithm’s running time is crucial.

Given a set B ⊂ V , we run the standard breadth-first search with source-

nodes set B. Let L = max
v∈V \B

d(B, {v}) and let Gi = G[V \ (
i−1⋃
j=0

Dj(B))], for

1 ≤ i ≤ L. We divide nodes in Di(B) into blocks, two nodes belong to the
same block if they belong to the same connected component of Gi. Now, for
each such block X we find the minimum vertex cover of a graph GX,Di+1∩NGi (X)

using Kőnig’s theorem and algorithm of Hopcroft and Karp for finding maximum
matching in a bipartite graph (see [15]). In order to perform the whole procedure
quickly, we process sets Di(B) in the reverse order (from L to 1), dynamically
keeping track of the sizen and sizee values of components in graph Gi. We
consider all found vertex covers and all blocks as different separator candidates.

We run the described procedure multiple times, for small random subsets
B ⊂ V . During each iteration we solve multiple instances of finding a vertex
cover of a bipartite graph. By observing that each edge can occur in at most one
such bipartite graph, we obtain the bound O(|E| · |V | 12 ) on the running time.

Component Expansion Separator Creator The method described in this
subsection is an improvement of another known approach. It consists in fixing
some initial set of nodes B, then iteratively expanding set B by adding to it
a node from N(B) \B. We select each time a node with the tightest connection
to B. In case of a tie, a node with fewer neighbors outside B is preferred. We
store a sequence ord = (v0, v1, . . . vn) of nodes added to B. We call that sequence
an expansion order. Creating an expansion order for a given initial set B works
in time O(|E| · log |V |), as the information about node candidates is updated
using a binary heap.

Let us denote Pi =
i⋃

j=0

{vi}. For a given expansion order (v0, v1, . . . vn), we

consider separators of the form Si = {vj ∈ Pi : |N(vj) \ Pi| > 0}. In order to
do this quickly, we process nodes from ord in the reverse order and dynamically
keep track of all necessary information required to calculate sizes of components
in graphs G \ Pi. By processing the nodes from ord in the original order, we
find those information for components in graphs G[Pi]. We are therefore able to
quickly find values mn(G,Si) and me(G,Si) for all 0 < i < n.

It often happens that found separators are not minimal. To avoid those sit-
uations, we want to rearrange nodes in ord in such a way that, when iterating
over i from 1 to n − 1, if |C(G,Pi−1)| < |C(G,Pi)| then all nodes from smaller
components will occur in ord before nodes that are in larger components.

To obtain time complexity better than O(|E| · |V |), we create an auxiliary
graph H. We initially set H = (V, ∅), then we process nodes vi in the reverse
order, dynamically keeping track of the number of nodes and edges in graphs G\
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Pi. For each i we consider the set of representatives of connected components in
G\Pi in which vi has a neighbor, then we sort those representatives by ascending
order of the corresponding values sizee. Finally, considering representatives r in
this order, we add a directed edge (vi, vj) to graph H, where j > i is the smallest
integer such that vj and r belong to the same connected component in G \ Pi.
After processing all nodes, we run a depth-first search on H, starting from v0 and
processing neighbors in the order of adding them to H. We obtain the rearranged
sequence ord by listing nodes in the order in which they were visited during the
traversal. We observed that the use of optimized orders for generating separators
Si almost always results in a huge decrease of the value score(Si).

To create the auxiliary graph H, we need to keep track of component sizes
and their representatives. We additionally need, for each 0 < i < n, to sort a set
of designated representatives. Fortunately, for given index i only one of found
representatives can occur again for another index j < i, as the components are
merged. Hence, creating a rearranged, optimized order takes time O(|E|·log |V |).
The overall running time thus remains O(|E| · log |V |).

FlowCutter Separator Creator We use our own implementation of a slightly
modified version of the FlowCutter algorithm (see [9]). At the beginning, we
create a set L, by initializing it with a random node and iteratively adding to L
a random node v that lies furthest to L. We stop adding nodes when |L| = 50.

As the initial source node and target node for the FlowCutter iteration we
take a random pair of nodes from L. Additionally, we enable expansion of the
larger of the source-reachable and target-reachable sets only if both grow to size

at least |V |10 . When the final cut is found, we consider four different expansion
orders based on the order of adding graph nodes to sources and targets. For each
order we find separators using the Component Expansion Separator Creator. We
also consider as a separator candidate a vertex cover of a bipartite graph GX,Y ,
where X and Y denote final sets of sources and targets.

It is necessary to mention here, that we do not use FlowCutter Separator
Creator if score(S) is large for the the best separator found by other methods.
In those cases graphs seem not to have balanced separators of small size and the
algorithm’s running time O(c · |E|), where c is the size of the most balanced cut,
is too expensive.

Flow Separator Creator We consider sets of the form B = N(N(N(u))) and
E = N(N(N(v))), where u, v are randomly selected nodes. We find a maximum
set of node-disjoint paths that begin in B and end in E. This is done by run-
ning a unit-flow algorithm with unit capacity constraints imposed on nodes . As
a separator we consider the union of all paths and refine that separator using
Greedy Minimizer (see section 3.4). It is worth noting that separators created us-
ing this method are much worse than those from FlowCutter Separator Creator,
but this algorithm works pessimistically in time O(|E| · min(|V | 23 , |E| 12 )), has
much smaller constant factor and works well in the context of Flow Minimizer
(see 3.4), where sets B and E are not created for random u and v.
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3.4 Separator minimization

After creating separator candidates, we proceed to the refinement step. For each
candidate S we try to minimize the value of score(S) using iteratively the fol-
lowing methods, most of which are based on a usage of separator creators with
specific initial settings:

1. Vertex Cover Minimizer - in this minimization technique we find a vertex
cover of a bipartite graph GS,N(S)∩Cd , where Cd is a subset containing a min-
imal number of largest components of C(G,S) whose total sum is at least
|V \S|

4 . The algorithm works in time O(|E| · |V | 12 ).

2. BFS Minimizer and Component Expansion Minimizer - we find separators
using BFS Separator Creator and Component Expansion Separator Creator,
respectively, with the initial source set containing all nodes from S.

3. Greedy Minimizer - we greedily remove nodes from S, each time selecting
a node v which minimizes sizee(C), where C is a component obtained by
merging v and its adjacent components from C(G,S). It is done by operating
on an auxiliary weighted bipartite graph with bipartition (A,B), where set
A represents nodes in S, nodes in set B represent connected components of
C(G,S), and weights represent the number of edges between corresponding
node and component. By using a binary heap to quickly update size values
and removing lazily nodes from the auxiliary graph when a node from S is
removed, we achieve running time O(|E|+ |S|2 · log |V |).

4. FlowCutter Minimizer and Flow Minimizer - we find separators using Flow-
Cutter Separator Creator and Flow Separator Creator, respectively. In the
first variant, as the initial set of sources we take any subset B ⊂ Cd with

size |B| = |Cd|
2 and with the property that there does not exist any v /∈ B

with d({v}, S) > d(B,S) (Cd is taken in the same way as in Vertex Cover
Minimizer). We analogously create the initial set of targets, but we take
nodes from V \ (S∪Cd). In the second variant, we consider initial sets of the
form {v ∈ X : d({v}, S) = t}, where X is Cd or V \ (S ∪ Cd), respectively,
and t is a small value (usually between 2 and 4). Algorithms work in time
O(|E|+ |S| · |V |), but with greatly reduced constant factor.

3.5 Attaching subtrees

After finding decompositions for all components in C(G,S) = {C1, . . . , Ck}, we
need to merge the results to obtain T (G). To do that, we sort all trees T (Ci) by
their depths in the nonincreasing order. Then, we create a sequence S′ (starting
with S′ = ∅) by iteratively adding to S′ nodes from (S ∩ N(Ci)) \ S′. As the
tree T (G) we initially take the tree (path) represented by sequence S′, with the
root set to its first element. We attach each tree T (Ci) to the last node from
sequence S′ that occurs in N(Ci). By using counting sort for sorting heights of
trees and considering only edges with an end in S, the whole procedure works
in time O(|V |+M), where M is the number of edges in a graph G[S ∪N(S)].
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3.6 Tree improvements

In the literature, there were proposed few techniques aiming at the reducing
height of the elimination tree and basing on tree rotations. In this section we
describe two structural improvements. The first one is a variation of a rotation-
based algorithm described in [11] that enables us to implement it very easily.
The second algorithm is, to the best of our knowledge, a new approach to the
reduction of the height of an elimination tree via tree rotations.

Let us fix some additional notations. In this section, by T we mean tree T (G).
For v ∈ V we denote by Tv the subtree of T with root in v. By depthT (v) we
denote the depth of node v in tree T . By the block of v ∈ V in a tree T (G) we
mean a maximal path in T (G) which contains v, such that each node on that
path, apart from the deepest one, has at most one son.

Block pivots Let us fix any block B of tree T (G) and let S be a path from
root(T ) to the topmost node in B. We consider S as a separator in graph G.
Treedepth decompositions Ti = T (Ci) are already constructed for each compo-
nent Ci ∈ C(G,S), 1 ≤ i ≤ k, they form connected components of T \S. We now
rearrange nodes in S using algorithm 3.5 for separator S and trees Ti. We repeat
the algorithm for several blocks B on the longest root-leaf path.

Hall-set pivots The algorithm based on block pivots always needs to rearrange
order of a given, contiguous sequence of initial nodes on a root-leaf path in
tree T . In the following method, we propose a rotation-based technique without
that constraint, which works exceptionally well for graphs that do not contain
balanced separators of small size.

Let us fix any block B in T (G) that lies on a longest root-leaf path P and
let v be the topmost node in that block. Let U(v) be a set of nodes on path
P from the root to the parent of v and D(v) be a set containing the remain-
ing nodes on path P . We now consider a maximum matching M in a bipartite
graph GU(v),N(U(v))∩R, where R = Tv \ D(v). If matching M does not satu-
rate set U(v), then there exists in graph G a set HM ⊂ U(v) with property
|HM | > |N(HM ) ∩R|. In our algorithm, from all sets HM violating Hall’s con-
dition for the existence of a matching saturating set U(v), we select the one
with maximum size. Set HM contains all nodes u ∈ U(v) to which there exists
in GU(v),N(U(v))∩R an M -alternating path starting in an unsaturated node from
U(v). We now remove from tree Tv all nodes belonging to the set N(HM ). For
each node s with par(s) ∈ N(HM ) ∩ Tv we set par(s) to the deepest ancestor
of s in P \ (HM ∪ N(HM )). Let us now consider set S = U(v) ∪ N(HM ) and
a set of treedepth decompositions T (Ci) for Ci ∈ T \S. Using algorithm 3.5, we
obtain a new treedepth decomposition T ′(G).

In the transformation, we removed from path P at least |HM | nodes and
there are at most |N(HM ) ∩ R| < |HM | new nodes in T ′ that became an-
cestors of a node from Tv. It follows that for each node w ∈ Tv we have
depthT ′(w) < depthT (w). Let us mention here, that it not necessarily means that



Heuristic approach to the treedepth decomposition problem 9

h(T ′) < h(T ), as for some other node l ∈ T we may have depthT ′(l) ≥ h(T ).
From our observations, however, the Hall-set pivot technique works very well on

graphs for which the ratio h(T (G))
|V | is large.

Running the algorithm for a single block B is dominated by the factor of
finding a maximum matching in a graph GU(v),N(U(v))∩R, which takes time

O(|E| · |h(T )| 12 ). The selection of the block B is not unimportant. We therefore
consider all blocks B on path P in a leaf-to-root manner. If, at some moment,
for the i-th considered block Bi we obtain a tree T ′ with h(T ′) < h(T ), we
terminate the algorithm and run it again for T ′. If, however, valid set HM does
not exist or h(T ′) ≥ h(T ), we check the next block Bi+1 above Bi. We can now
initialize next matching Mi+1 with all edges from previous matching Mi that
have an endpoint in HMi

\ Bi+1. Such initialization resulted in a considerable
performance improvement. It is also worth mentioning that when a node p ∈ U
becomes saturated in a matching Mi, then it becomes saturated in all further
matchings Mj (j > i), until it leaves U . We therefore terminate processing blocks
as soon as the whole set U is saturated.

4 Results

A thorough comparison of ExTREEm and other methods was made within the
heuristic track of the contest PACE 2020: 5th Parameterized Algorithms and
Computational Experiments Challenge. There, 55 heuristic methods were sub-
mitted and tested on 200 instances differing in size and properties. ExTREEm
won this contest. Here, we focus on a subset of these instances, large graphs.
More information about the contest and short descriptions of several solvers can
be found in [20].

Other methods To the comparison we selected four other best heuristics from
the contest2. They are: FlowCutter [16] (2nd in the contest), Sallow [18] (3rd),
Tweed-Plus [17] (4th), and Fluid [2] (5th).

FlowCutter is based on the previously mentioned algorithm of the same name
from 2016 for finding separators of a graph [9]. Present version of FlowCutter is
additionally supported by two approaches: iterative node contraction and label
propagation. Sallow is another method that incorporates the ideas of FlowCut-
ter from 2016, supplemented with greedy heuristics. The order in which vertices
are processed in greedy heuristics is based on different criteria and is updated
on the fly. Tweed-Plus creates and next improves an elimination tree with two
known methods: nested dissection and the minimum-degree ordering algorithm.
In each of its phases, if a graph is small enough, the computations are repeated
many times with different results due to randomisation. Fluid realizes four sep-
arate strategies and selects as a result the best found solution. Two strategies
iteratively select a vertex with a best score, two others iteratively search for
separators and remove them. The score-based strategies compute an elimination

2 https://pacechallenge.org/2020/results/#heuristic-track
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order, later used in the tree construction, many times with randomness involved.
The separator-based strategies use a greedy approach or the asynchronous fluid
communities algorithm.

Data set From among public instances of PACE 2020 for the heuristic track3,
we chose graphs of more than 1000 vertices. They represent a wide range of
graph kinds; the most important groups according to their origin are biological
and social networks, road graphs and graphs generated according to different
rules. These 66 instances include from 1013 to 1.32 million vertices and have the
average vertex degree from 2 to 148, their presumable heights of the minimum
treedepth decompositions vary from 3 to several thousands. All the instances are
simple connected graphs.

Comparison For the purposes of the comparison, the smallest value of the
criterion function obtained for a graph in the contest by any of the 55 heuristics
is assumed as the optimum value for this graph. We partitioned the data set
into groups from the point of view of a few parameters: graph order, optimum
tree height, average vertex degree, fraction of vertices with degree at least three.
This way it is easy to notice how compared methods deal with smaller groups
of similar instances. The groups are presented in Table 1.

Table 1. Partition of the set of 66 instances into groups by different parameters. In
a row, the cardinality of a subset of instances is followed by the parameter by which
the subset has been determined and the range of its values.

Group of instances Cardinality Parameter Range of values

A 22
graph order

〈1000; 7000)
B 24 〈7000; 50000)
C 20 〈50000; 1.32 mln)

D 23
optimum

tree height

〈1; 100)
E 20 〈100; 300)
F 23 〈300; 78500)

G 24 average
vertex degree

〈2; 3)
H 22 〈3; 8)
I 20 〈8; 150)

J 21
fraction of V

with degree ≥ 3

〈13%; 77%)
K 24 〈77%; 88%)
L 21 〈88%; 100%〉

During the PACE 2020 challenge, every heuristic had the limit of 30 minutes
for returning a solution for an instance. Thus, the results are comparable in this

3 https://pacechallenge.org/files/pace2020-heur-public.tgz
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sense. Figure 1 presents the average quality of solutions obtained by the five
best methods for the particular groups of instances and for all 66 instances. The
quality is calculated as a ratio of the assumed optimum value of the criterion
function to the value returned by a given method.

A B C D E F G H I J K L All

70%

80%

90%

100%

ExTREEm

FlowCutter

Sallow

Tweed-Plus

Fluid

Fig. 1. The comparison of the PACE 2020 results for particular groups of large in-
stances. Every marker stands for an average result of a given heuristic for the data set.
Y axis shows how close to the optimum the results are.

ExTREEm generated solutions of the best quality (on average) for 9 out
of 12 groups of instances A–L and for all large instances as well. For all the
instances, ExTREEm achieved the ratio 98.34%, FlowCutter took the second
rank with 96.18%, and Sallow was the next with 95.11%.The partitioning of the
data set on the basis of graph order led to the same hierarchy. Groups D, H,
and L were best solved by FlowCutter, ExTREEm took the second (H) or the
third position (D, L). It means that a little harder for our method, in comparison
to the others, were instances with a resulting tree of a small height or instances
with a small fraction of vertices having only one or two neighbors.

5 Conclusions

We proposed the new method for the treedepth decomposition problem, which
proved its efficiency in a wide comparison with top and current other algorithms.
As ExTREEm very well solves large graphs, it may be useful in practical applica-
tions involving wide and complex networks, for example in industry of computer
games or navigating systems. On the other hand, the method also deals well
with smaller graphs. The public instances of PACE 2020 with less than 1000
vertices were solved by ExTREEm with the quality equal to 99%. Therefore,
the applicability of ExTREEm is even wider.
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Appendix A

Let us define

scoren(S) = |S| · 1− βd−
log |V |
log β e

1− β
, where β =

mn(G,S)

|V |
,

scoree(S) = |S| · 1− γd−
log |E|
log γ e

1− γ
, where γ =

me(G,S)

|E|
.

We now show why the proposed objective functions scoren(S) and scoree(S)
estimate the height of a treedepth decomposition. We specify only the case of
scoren(S), arguments for scoree(S) are analogous.

Let S be a separator of a graph G = (V,E), α = |S|
|V | , β = mn(G,S)

|V | , and let

EH(G,α, β) be a function that estimates the height of a sought decomposition
T (G). It is calculated on the basis of values α and β, that is on information that
we can obtain knowing only graph G and separator S. For each C ∈ C(G,S)
the decomposition T (C) will be attached to some node from the set S ∩ N(C)
(see 3.5), therefore we use the following estimation:

EH(G,α, β) ≤ |S|+ max
C∈C(G,S)

h(T (C)) = α · |V |+ max
C∈C(G,S)

h(T (C))

Assuming that in each recursive call the values of parameters α and β do
not change, we can replace h(T (C)) with EH(C,α, β) to obtain the following
assessment:

EH(G,α, β) ≤ α · |V |+ max
C∈C(G,S)

h(T (C))

≈ α · |V |+ max
C∈C(G,S)

EH(C,α, β)

≈ α · |V |+ α · β · |V |+ max
C′∈C(C,S′)

EH(C ′, α, β)

≈ α · |V |+ α · β · |V |+ α · β2 · |V |+ . . .

≈
dlogβ−1 |V |e∑

i=0

α · |V | · βi = α · |V | ·
d− log |V |

log β e∑
i=0

βi

≈ |S| · 1− βd−
log |V |
log β e

1− β

Let us note here that the formulas for the objective functions can be further
simplified via the estimation βdlogβ−1 |V |e ≈ βlogβ−1 |V | = 1

|V | . We found, how-

ever, test cases where the replacement made a difference to the evaluation of
separators.


